Skip to content

Instantly share code, notes, and snippets.

@Fil
Last active April 30, 2017 16:40
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Save Fil/57faf887637f29a5602d3659abb71c13 to your computer and use it in GitHub Desktop.
visualizing map distortion d3v4 (with Bertin and a forked d3-geo for inverse) [UNLISTED]
license: mit

Ported to d3v4 by Philippe Rivière from Ian Johnson's block: visualizing map distortion

I'm using a fork of d3-geo that allows inverse projections on all projections (see d3-geo-projection issue #85).


@enjalot: Whenever we try to represent our 3D earth on a 2D map we necessarily introduce distortion. This tool attempts to visualize the phenomenon.

Inspiration

Original prompt by @curran
Bounding box solution by @tyrasd

References

projection comparison
map zoom

forked from Fil's block: visualizing map distortion d3v4

// https://d3js.org/d3-geo/ Version 1.6.3. Copyright 2017 Mike Bostock.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) :
typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) :
(factory((global.d3 = global.d3 || {}),global.d3));
}(this, function (exports,d3Array) { 'use strict';
// Adds floating point numbers with twice the normal precision.
// Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and
// Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3)
// 305–363 (1997).
// Code adapted from GeographicLib by Charles F. F. Karney,
// http://geographiclib.sourceforge.net/
function adder() {
return new Adder;
}
function Adder() {
this.reset();
}
Adder.prototype = {
constructor: Adder,
reset: function() {
this.s = // rounded value
this.t = 0; // exact error
},
add: function(y) {
add(temp, y, this.t);
add(this, temp.s, this.s);
if (this.s) this.t += temp.t;
else this.s = temp.t;
},
valueOf: function() {
return this.s;
}
};
var temp = new Adder;
function add(adder, a, b) {
var x = adder.s = a + b,
bv = x - a,
av = x - bv;
adder.t = (a - av) + (b - bv);
}
var epsilon = 1e-6;
var epsilon2 = 1e-12;
var pi = Math.PI;
var halfPi = pi / 2;
var quarterPi = pi / 4;
var tau = pi * 2;
var degrees = 180 / pi;
var radians = pi / 180;
var abs = Math.abs;
var atan = Math.atan;
var atan2 = Math.atan2;
var cos = Math.cos;
var ceil = Math.ceil;
var exp = Math.exp;
var log = Math.log;
var pow = Math.pow;
var sin = Math.sin;
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sqrt = Math.sqrt;
var tan = Math.tan;
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function asin(x) {
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
}
function haversin(x) {
return (x = sin(x / 2)) * x;
}
function noop() {}
function streamGeometry(geometry, stream) {
if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
streamGeometryType[geometry.type](geometry, stream);
}
}
var streamObjectType = {
Feature: function(object, stream) {
streamGeometry(object.geometry, stream);
},
FeatureCollection: function(object, stream) {
var features = object.features, i = -1, n = features.length;
while (++i < n) streamGeometry(features[i].geometry, stream);
}
};
var streamGeometryType = {
Sphere: function(object, stream) {
stream.sphere();
},
Point: function(object, stream) {
object = object.coordinates;
stream.point(object[0], object[1], object[2]);
},
MultiPoint: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
},
LineString: function(object, stream) {
streamLine(object.coordinates, stream, 0);
},
MultiLineString: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamLine(coordinates[i], stream, 0);
},
Polygon: function(object, stream) {
streamPolygon(object.coordinates, stream);
},
MultiPolygon: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamPolygon(coordinates[i], stream);
},
GeometryCollection: function(object, stream) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) streamGeometry(geometries[i], stream);
}
};
function streamLine(coordinates, stream, closed) {
var i = -1, n = coordinates.length - closed, coordinate;
stream.lineStart();
while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
stream.lineEnd();
}
function streamPolygon(coordinates, stream) {
var i = -1, n = coordinates.length;
stream.polygonStart();
while (++i < n) streamLine(coordinates[i], stream, 1);
stream.polygonEnd();
}
function geoStream(object, stream) {
if (object && streamObjectType.hasOwnProperty(object.type)) {
streamObjectType[object.type](object, stream);
} else {
streamGeometry(object, stream);
}
}
var areaRingSum = adder();
var areaSum = adder();
var lambda00;
var phi00;
var lambda0;
var cosPhi0;
var sinPhi0;
var areaStream = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaRingSum.reset();
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
var areaRing = +areaRingSum;
areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);
this.lineStart = this.lineEnd = this.point = noop;
},
sphere: function() {
areaSum.add(tau);
}
};
function areaRingStart() {
areaStream.point = areaPointFirst;
}
function areaRingEnd() {
areaPoint(lambda00, phi00);
}
function areaPointFirst(lambda, phi) {
areaStream.point = areaPoint;
lambda00 = lambda, phi00 = phi;
lambda *= radians, phi *= radians;
lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi);
}
function areaPoint(lambda, phi) {
lambda *= radians, phi *= radians;
phi = phi / 2 + quarterPi; // half the angular distance from south pole
// Spherical excess E for a spherical triangle with vertices: south pole,
// previous point, current point. Uses a formula derived from Cagnoli’s
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
var dLambda = lambda - lambda0,
sdLambda = dLambda >= 0 ? 1 : -1,
adLambda = sdLambda * dLambda,
cosPhi = cos(phi),
sinPhi = sin(phi),
k = sinPhi0 * sinPhi,
u = cosPhi0 * cosPhi + k * cos(adLambda),
v = k * sdLambda * sin(adLambda);
areaRingSum.add(atan2(v, u));
// Advance the previous points.
lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi;
}
function area(object) {
areaSum.reset();
geoStream(object, areaStream);
return areaSum * 2;
}
function spherical(cartesian) {
return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];
}
function cartesian(spherical) {
var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);
return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];
}
function cartesianDot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
function cartesianCross(a, b) {
return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
}
// TODO return a
function cartesianAddInPlace(a, b) {
a[0] += b[0], a[1] += b[1], a[2] += b[2];
}
function cartesianScale(vector, k) {
return [vector[0] * k, vector[1] * k, vector[2] * k];
}
// TODO return d
function cartesianNormalizeInPlace(d) {
var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
d[0] /= l, d[1] /= l, d[2] /= l;
}
var lambda0$1;
var phi0;
var lambda1;
var phi1;
var lambda2;
var lambda00$1;
var phi00$1;
var p0;
var deltaSum = adder();
var ranges;
var range$1;
var boundsStream = {
point: boundsPoint,
lineStart: boundsLineStart,
lineEnd: boundsLineEnd,
polygonStart: function() {
boundsStream.point = boundsRingPoint;
boundsStream.lineStart = boundsRingStart;
boundsStream.lineEnd = boundsRingEnd;
deltaSum.reset();
areaStream.polygonStart();
},
polygonEnd: function() {
areaStream.polygonEnd();
boundsStream.point = boundsPoint;
boundsStream.lineStart = boundsLineStart;
boundsStream.lineEnd = boundsLineEnd;
if (areaRingSum < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
else if (deltaSum > epsilon) phi1 = 90;
else if (deltaSum < -epsilon) phi0 = -90;
range$1[0] = lambda0$1, range$1[1] = lambda1;
}
};
function boundsPoint(lambda, phi) {
ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]);
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
function linePoint(lambda, phi) {
var p = cartesian([lambda * radians, phi * radians]);
if (p0) {
var normal = cartesianCross(p0, p),
equatorial = [normal[1], -normal[0], 0],
inflection = cartesianCross(equatorial, normal);
cartesianNormalizeInPlace(inflection);
inflection = spherical(inflection);
var delta = lambda - lambda2,
sign = delta > 0 ? 1 : -1,
lambdai = inflection[0] * degrees * sign,
phii,
antimeridian = abs(delta) > 180;
if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
phii = inflection[1] * degrees;
if (phii > phi1) phi1 = phii;
} else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
phii = -inflection[1] * degrees;
if (phii < phi0) phi0 = phii;
} else {
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
if (antimeridian) {
if (lambda < lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
} else {
if (lambda1 >= lambda0$1) {
if (lambda < lambda0$1) lambda0$1 = lambda;
if (lambda > lambda1) lambda1 = lambda;
} else {
if (lambda > lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
}
}
} else {
ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]);
}
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
p0 = p, lambda2 = lambda;
}
function boundsLineStart() {
boundsStream.point = linePoint;
}
function boundsLineEnd() {
range$1[0] = lambda0$1, range$1[1] = lambda1;
boundsStream.point = boundsPoint;
p0 = null;
}
function boundsRingPoint(lambda, phi) {
if (p0) {
var delta = lambda - lambda2;
deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
} else {
lambda00$1 = lambda, phi00$1 = phi;
}
areaStream.point(lambda, phi);
linePoint(lambda, phi);
}
function boundsRingStart() {
areaStream.lineStart();
}
function boundsRingEnd() {
boundsRingPoint(lambda00$1, phi00$1);
areaStream.lineEnd();
if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180);
range$1[0] = lambda0$1, range$1[1] = lambda1;
p0 = null;
}
// Finds the left-right distance between two longitudes.
// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
// the distance between ±180° to be 360°.
function angle(lambda0, lambda1) {
return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
}
function rangeCompare(a, b) {
return a[0] - b[0];
}
function rangeContains(range, x) {
return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
}
function bounds(feature) {
var i, n, a, b, merged, deltaMax, delta;
phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity);
ranges = [];
geoStream(feature, boundsStream);
// First, sort ranges by their minimum longitudes.
if (n = ranges.length) {
ranges.sort(rangeCompare);
// Then, merge any ranges that overlap.
for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
b = ranges[i];
if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
} else {
merged.push(a = b);
}
}
// Finally, find the largest gap between the merged ranges.
// The final bounding box will be the inverse of this gap.
for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
b = merged[i];
if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1];
}
}
ranges = range$1 = null;
return lambda0$1 === Infinity || phi0 === Infinity
? [[NaN, NaN], [NaN, NaN]]
: [[lambda0$1, phi0], [lambda1, phi1]];
}
var W0;
var W1;
var X0;
var Y0;
var Z0;
var X1;
var Y1;
var Z1;
var X2;
var Y2;
var Z2;
var lambda00$2;
var phi00$2;
var x0;
var y0;
var z0;
// previous point
var centroidStream = {
sphere: noop,
point: centroidPoint,
lineStart: centroidLineStart,
lineEnd: centroidLineEnd,
polygonStart: function() {
centroidStream.lineStart = centroidRingStart;
centroidStream.lineEnd = centroidRingEnd;
},
polygonEnd: function() {
centroidStream.lineStart = centroidLineStart;
centroidStream.lineEnd = centroidLineEnd;
}
};
// Arithmetic mean of Cartesian vectors.
function centroidPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));
}
function centroidPointCartesian(x, y, z) {
++W0;
X0 += (x - X0) / W0;
Y0 += (y - Y0) / W0;
Z0 += (z - Z0) / W0;
}
function centroidLineStart() {
centroidStream.point = centroidLinePointFirst;
}
function centroidLinePointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
x0 = cosPhi * cos(lambda);
y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidStream.point = centroidLinePoint;
centroidPointCartesian(x0, y0, z0);
}
function centroidLinePoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z);
W1 += w;
X1 += w * (x0 + (x0 = x));
Y1 += w * (y0 + (y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0, y0, z0);
}
function centroidLineEnd() {
centroidStream.point = centroidPoint;
}
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
// J. Applied Mechanics 42, 239 (1975).
function centroidRingStart() {
centroidStream.point = centroidRingPointFirst;
}
function centroidRingEnd() {
centroidRingPoint(lambda00$2, phi00$2);
centroidStream.point = centroidPoint;
}
function centroidRingPointFirst(lambda, phi) {
lambda00$2 = lambda, phi00$2 = phi;
lambda *= radians, phi *= radians;
centroidStream.point = centroidRingPoint;
var cosPhi = cos(phi);
x0 = cosPhi * cos(lambda);
y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidPointCartesian(x0, y0, z0);
}
function centroidRingPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
cx = y0 * z - z0 * y,
cy = z0 * x - x0 * z,
cz = x0 * y - y0 * x,
m = sqrt(cx * cx + cy * cy + cz * cz),
w = asin(m), // line weight = angle
v = m && -w / m; // area weight multiplier
X2 += v * cx;
Y2 += v * cy;
Z2 += v * cz;
W1 += w;
X1 += w * (x0 + (x0 = x));
Y1 += w * (y0 + (y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0, y0, z0);
}
function centroid(object) {
W0 = W1 =
X0 = Y0 = Z0 =
X1 = Y1 = Z1 =
X2 = Y2 = Z2 = 0;
geoStream(object, centroidStream);
var x = X2,
y = Y2,
z = Z2,
m = x * x + y * y + z * z;
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
if (m < epsilon2) {
x = X1, y = Y1, z = Z1;
// If the feature has zero length, fall back to arithmetic mean of point vectors.
if (W1 < epsilon) x = X0, y = Y0, z = Z0;
m = x * x + y * y + z * z;
// If the feature still has an undefined ccentroid, then return.
if (m < epsilon2) return [NaN, NaN];
}
return [atan2(y, x) * degrees, asin(z / sqrt(m)) * degrees];
}
function constant(x) {
return function() {
return x;
};
}
function compose(a, b) {
function compose(x, y) {
return x = a(x, y), b(x[0], x[1]);
}
if (a.invert && b.invert) compose.invert = function(x, y) {
return x = b.invert(x, y), x && a.invert(x[0], x[1]);
};
return compose;
}
function rotationIdentity(lambda, phi) {
return [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
}
rotationIdentity.invert = rotationIdentity;
function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
: rotationLambda(deltaLambda))
: (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
: rotationIdentity);
}
function forwardRotationLambda(deltaLambda) {
return function(lambda, phi) {
return lambda += deltaLambda, [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
};
}
function rotationLambda(deltaLambda) {
var rotation = forwardRotationLambda(deltaLambda);
rotation.invert = forwardRotationLambda(-deltaLambda);
return rotation;
}
function rotationPhiGamma(deltaPhi, deltaGamma) {
var cosDeltaPhi = cos(deltaPhi),
sinDeltaPhi = sin(deltaPhi),
cosDeltaGamma = cos(deltaGamma),
sinDeltaGamma = sin(deltaGamma);
function rotation(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaPhi + x * sinDeltaPhi;
return [
atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
asin(k * cosDeltaGamma + y * sinDeltaGamma)
];
}
rotation.invert = function(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaGamma - y * sinDeltaGamma;
return [
atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
asin(k * cosDeltaPhi - x * sinDeltaPhi)
];
};
return rotation;
}
function rotation(rotate) {
rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
function forward(coordinates) {
coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
}
forward.invert = function(coordinates) {
coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
};
return forward;
}
// Generates a circle centered at [0°, 0°], with a given radius and precision.
function circleStream(stream, radius, delta, direction, t0, t1) {
if (!delta) return;
var cosRadius = cos(radius),
sinRadius = sin(radius),
step = direction * delta;
if (t0 == null) {
t0 = radius + direction * tau;
t1 = radius - step / 2;
} else {
t0 = circleRadius(cosRadius, t0);
t1 = circleRadius(cosRadius, t1);
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
}
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
stream.point(point[0], point[1]);
}
}
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
function circleRadius(cosRadius, point) {
point = cartesian(point), point[0] -= cosRadius;
cartesianNormalizeInPlace(point);
var radius = acos(-point[1]);
return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
}
function circle() {
var center = constant([0, 0]),
radius = constant(90),
precision = constant(6),
ring,
rotate,
stream = {point: point};
function point(x, y) {
ring.push(x = rotate(x, y));
x[0] *= degrees, x[1] *= degrees;
}
function circle() {
var c = center.apply(this, arguments),
r = radius.apply(this, arguments) * radians,
p = precision.apply(this, arguments) * radians;
ring = [];
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
circleStream(stream, r, p, 1);
c = {type: "Polygon", coordinates: [ring]};
ring = rotate = null;
return c;
}
circle.center = function(_) {
return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
};
circle.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
};
circle.precision = function(_) {
return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
};
return circle;
}
function clipBuffer() {
var lines = [],
line;
return {
point: function(x, y) {
line.push([x, y]);
},
lineStart: function() {
lines.push(line = []);
},
lineEnd: noop,
rejoin: function() {
if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
},
result: function() {
var result = lines;
lines = [];
line = null;
return result;
}
};
}
function clipLine(a, b, x0, y0, x1, y1) {
var ax = a[0],
ay = a[1],
bx = b[0],
by = b[1],
t0 = 0,
t1 = 1,
dx = bx - ax,
dy = by - ay,
r;
r = x0 - ax;
if (!dx && r > 0) return;
r /= dx;
if (dx < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dx > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = x1 - ax;
if (!dx && r < 0) return;
r /= dx;
if (dx < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dx > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
r = y0 - ay;
if (!dy && r > 0) return;
r /= dy;
if (dy < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dy > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = y1 - ay;
if (!dy && r < 0) return;
r /= dy;
if (dy < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dy > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
return true;
}
function pointEqual(a, b) {
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
}
function Intersection(point, points, other, entry) {
this.x = point;
this.z = points;
this.o = other; // another intersection
this.e = entry; // is an entry?
this.v = false; // visited
this.n = this.p = null; // next & previous
}
// A generalized polygon clipping algorithm: given a polygon that has been cut
// into its visible line segments, and rejoins the segments by interpolating
// along the clip edge.
function clipPolygon(segments, compareIntersection, startInside, interpolate, stream) {
var subject = [],
clip = [],
i,
n;
segments.forEach(function(segment) {
if ((n = segment.length - 1) <= 0) return;
var n, p0 = segment[0], p1 = segment[n], x;
// If the first and last points of a segment are coincident, then treat as a
// closed ring. TODO if all rings are closed, then the winding order of the
// exterior ring should be checked.
if (pointEqual(p0, p1)) {
stream.lineStart();
for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
stream.lineEnd();
return;
}
subject.push(x = new Intersection(p0, segment, null, true));
clip.push(x.o = new Intersection(p0, null, x, false));
subject.push(x = new Intersection(p1, segment, null, false));
clip.push(x.o = new Intersection(p1, null, x, true));
});
if (!subject.length) return;
clip.sort(compareIntersection);
link(subject);
link(clip);
for (i = 0, n = clip.length; i < n; ++i) {
clip[i].e = startInside = !startInside;
}
var start = subject[0],
points,
point;
while (1) {
// Find first unvisited intersection.
var current = start,
isSubject = true;
while (current.v) if ((current = current.n) === start) return;
points = current.z;
stream.lineStart();
do {
current.v = current.o.v = true;
if (current.e) {
if (isSubject) {
for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.n.x, 1, stream);
}
current = current.n;
} else {
if (isSubject) {
points = current.p.z;
for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.p.x, -1, stream);
}
current = current.p;
}
current = current.o;
points = current.z;
isSubject = !isSubject;
} while (!current.v);
stream.lineEnd();
}
}
function link(array) {
if (!(n = array.length)) return;
var n,
i = 0,
a = array[0],
b;
while (++i < n) {
a.n = b = array[i];
b.p = a;
a = b;
}
a.n = b = array[0];
b.p = a;
}
var clipMax = 1e9;
var clipMin = -clipMax;
// TODO Use d3-polygon’s polygonContains here for the ring check?
// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
function clipExtent(x0, y0, x1, y1) {
function visible(x, y) {
return x0 <= x && x <= x1 && y0 <= y && y <= y1;
}
function interpolate(from, to, direction, stream) {
var a = 0, a1 = 0;
if (from == null
|| (a = corner(from, direction)) !== (a1 = corner(to, direction))
|| comparePoint(from, to) < 0 ^ direction > 0) {
do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
while ((a = (a + direction + 4) % 4) !== a1);
} else {
stream.point(to[0], to[1]);
}
}
function corner(p, direction) {
return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3
: abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1
: abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0
: direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
}
function compareIntersection(a, b) {
return comparePoint(a.x, b.x);
}
function comparePoint(a, b) {
var ca = corner(a, 1),
cb = corner(b, 1);
return ca !== cb ? ca - cb
: ca === 0 ? b[1] - a[1]
: ca === 1 ? a[0] - b[0]
: ca === 2 ? a[1] - b[1]
: b[0] - a[0];
}
return function(stream) {
var activeStream = stream,
bufferStream = clipBuffer(),
segments,
polygon,
ring,
x__, y__, v__, // first point
x_, y_, v_, // previous point
first,
clean;
var clipStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: polygonStart,
polygonEnd: polygonEnd
};
function point(x, y) {
if (visible(x, y)) activeStream.point(x, y);
}
function polygonInside() {
var winding = 0;
for (var i = 0, n = polygon.length; i < n; ++i) {
for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
}
}
return winding;
}
// Buffer geometry within a polygon and then clip it en masse.
function polygonStart() {
activeStream = bufferStream, segments = [], polygon = [], clean = true;
}
function polygonEnd() {
var startInside = polygonInside(),
cleanInside = clean && startInside,
visible = (segments = d3Array.merge(segments)).length;
if (cleanInside || visible) {
stream.polygonStart();
if (cleanInside) {
stream.lineStart();
interpolate(null, null, 1, stream);
stream.lineEnd();
}
if (visible) {
clipPolygon(segments, compareIntersection, startInside, interpolate, stream);
}
stream.polygonEnd();
}
activeStream = stream, segments = polygon = ring = null;
}
function lineStart() {
clipStream.point = linePoint;
if (polygon) polygon.push(ring = []);
first = true;
v_ = false;
x_ = y_ = NaN;
}
// TODO rather than special-case polygons, simply handle them separately.
// Ideally, coincident intersection points should be jittered to avoid
// clipping issues.
function lineEnd() {
if (segments) {
linePoint(x__, y__);
if (v__ && v_) bufferStream.rejoin();
segments.push(bufferStream.result());
}
clipStream.point = point;
if (v_) activeStream.lineEnd();
}
function linePoint(x, y) {
var v = visible(x, y);
if (polygon) ring.push([x, y]);
if (first) {
x__ = x, y__ = y, v__ = v;
first = false;
if (v) {
activeStream.lineStart();
activeStream.point(x, y);
}
} else {
if (v && v_) activeStream.point(x, y);
else {
var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
if (clipLine(a, b, x0, y0, x1, y1)) {
if (!v_) {
activeStream.lineStart();
activeStream.point(a[0], a[1]);
}
activeStream.point(b[0], b[1]);
if (!v) activeStream.lineEnd();
clean = false;
} else if (v) {
activeStream.lineStart();
activeStream.point(x, y);
clean = false;
}
}
}
x_ = x, y_ = y, v_ = v;
}
return clipStream;
};
}
function extent() {
var x0 = 0,
y0 = 0,
x1 = 960,
y1 = 500,
cache,
cacheStream,
clip;
return clip = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = clipExtent(x0, y0, x1, y1)(cacheStream = stream);
},
extent: function(_) {
return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
}
};
}
var sum = adder();
function polygonContains(polygon, point) {
var lambda = point[0],
phi = point[1],
normal = [sin(lambda), -cos(lambda), 0],
angle = 0,
winding = 0;
sum.reset();
for (var i = 0, n = polygon.length; i < n; ++i) {
if (!(m = (ring = polygon[i]).length)) continue;
var ring,
m,
point0 = ring[m - 1],
lambda0 = point0[0],
phi0 = point0[1] / 2 + quarterPi,
sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
var point1 = ring[j],
lambda1 = point1[0],
phi1 = point1[1] / 2 + quarterPi,
sinPhi1 = sin(phi1),
cosPhi1 = cos(phi1),
delta = lambda1 - lambda0,
sign = delta >= 0 ? 1 : -1,
absDelta = sign * delta,
antimeridian = absDelta > pi,
k = sinPhi0 * sinPhi1;
sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
angle += antimeridian ? delta + sign * tau : delta;
// Are the longitudes either side of the point’s meridian (lambda),
// and are the latitudes smaller than the parallel (phi)?
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
var arc = cartesianCross(cartesian(point0), cartesian(point1));
cartesianNormalizeInPlace(arc);
var intersection = cartesianCross(normal, arc);
cartesianNormalizeInPlace(intersection);
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
winding += antimeridian ^ delta >= 0 ? 1 : -1;
}
}
}
}
// First, determine whether the South pole is inside or outside:
//
// It is inside if:
// * the polygon winds around it in a clockwise direction.
// * the polygon does not (cumulatively) wind around it, but has a negative
// (counter-clockwise) area.
//
// Second, count the (signed) number of times a segment crosses a lambda
// from the point to the South pole. If it is zero, then the point is the
// same side as the South pole.
return (angle < -epsilon || angle < epsilon && sum < -epsilon) ^ (winding & 1);
}
var lengthSum = adder();
var lambda0$2;
var sinPhi0$1;
var cosPhi0$1;
var lengthStream = {
sphere: noop,
point: noop,
lineStart: lengthLineStart,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop
};
function lengthLineStart() {
lengthStream.point = lengthPointFirst;
lengthStream.lineEnd = lengthLineEnd;
}
function lengthLineEnd() {
lengthStream.point = lengthStream.lineEnd = noop;
}
function lengthPointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
lambda0$2 = lambda, sinPhi0$1 = sin(phi), cosPhi0$1 = cos(phi);
lengthStream.point = lengthPoint;
}
function lengthPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var sinPhi = sin(phi),
cosPhi = cos(phi),
delta = abs(lambda - lambda0$2),
cosDelta = cos(delta),
sinDelta = sin(delta),
x = cosPhi * sinDelta,
y = cosPhi0$1 * sinPhi - sinPhi0$1 * cosPhi * cosDelta,
z = sinPhi0$1 * sinPhi + cosPhi0$1 * cosPhi * cosDelta;
lengthSum.add(atan2(sqrt(x * x + y * y), z));
lambda0$2 = lambda, sinPhi0$1 = sinPhi, cosPhi0$1 = cosPhi;
}
function length(object) {
lengthSum.reset();
geoStream(object, lengthStream);
return +lengthSum;
}
var coordinates = [null, null];
var object = {type: "LineString", coordinates: coordinates};
function distance(a, b) {
coordinates[0] = a;
coordinates[1] = b;
return length(object);
}
var containsObjectType = {
Feature: function(object, point) {
return containsGeometry(object.geometry, point);
},
FeatureCollection: function(object, point) {
var features = object.features, i = -1, n = features.length;
while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
return false;
}
};
var containsGeometryType = {
Sphere: function() {
return true;
},
Point: function(object, point) {
return containsPoint(object.coordinates, point);
},
MultiPoint: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPoint(coordinates[i], point)) return true;
return false;
},
LineString: function(object, point) {
return containsLine(object.coordinates, point);
},
MultiLineString: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsLine(coordinates[i], point)) return true;
return false;
},
Polygon: function(object, point) {
return containsPolygon(object.coordinates, point);
},
MultiPolygon: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
return false;
},
GeometryCollection: function(object, point) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) if (containsGeometry(geometries[i], point)) return true;
return false;
}
};
function containsGeometry(geometry, point) {
return geometry && containsGeometryType.hasOwnProperty(geometry.type)
? containsGeometryType[geometry.type](geometry, point)
: false;
}
function containsPoint(coordinates, point) {
return distance(coordinates, point) === 0;
}
function containsLine(coordinates, point) {
var ab = distance(coordinates[0], coordinates[1]),
ao = distance(coordinates[0], point),
ob = distance(point, coordinates[1]);
return ao + ob <= ab + epsilon;
}
function containsPolygon(coordinates, point) {
return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
}
function ringRadians(ring) {
return ring = ring.map(pointRadians), ring.pop(), ring;
}
function pointRadians(point) {
return [point[0] * radians, point[1] * radians];
}
function contains(object, point) {
return (object && containsObjectType.hasOwnProperty(object.type)
? containsObjectType[object.type]
: containsGeometry)(object, point);
}
function graticuleX(y0, y1, dy) {
var y = d3Array.range(y0, y1 - epsilon, dy).concat(y1);
return function(x) { return y.map(function(y) { return [x, y]; }); };
}
function graticuleY(x0, x1, dx) {
var x = d3Array.range(x0, x1 - epsilon, dx).concat(x1);
return function(y) { return x.map(function(x) { return [x, y]; }); };
}
function graticule() {
var x1, x0, X1, X0,
y1, y0, Y1, Y0,
dx = 10, dy = dx, DX = 90, DY = 360,
x, y, X, Y,
precision = 2.5;
function graticule() {
return {type: "MultiLineString", coordinates: lines()};
}
function lines() {
return d3Array.range(ceil(X0 / DX) * DX, X1, DX).map(X)
.concat(d3Array.range(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
.concat(d3Array.range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))
.concat(d3Array.range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));
}
graticule.lines = function() {
return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
};
graticule.outline = function() {
return {
type: "Polygon",
coordinates: [
X(X0).concat(
Y(Y1).slice(1),
X(X1).reverse().slice(1),
Y(Y0).reverse().slice(1))
]
};
};
graticule.extent = function(_) {
if (!arguments.length) return graticule.extentMinor();
return graticule.extentMajor(_).extentMinor(_);
};
graticule.extentMajor = function(_) {
if (!arguments.length) return [[X0, Y0], [X1, Y1]];
X0 = +_[0][0], X1 = +_[1][0];
Y0 = +_[0][1], Y1 = +_[1][1];
if (X0 > X1) _ = X0, X0 = X1, X1 = _;
if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
return graticule.precision(precision);
};
graticule.extentMinor = function(_) {
if (!arguments.length) return [[x0, y0], [x1, y1]];
x0 = +_[0][0], x1 = +_[1][0];
y0 = +_[0][1], y1 = +_[1][1];
if (x0 > x1) _ = x0, x0 = x1, x1 = _;
if (y0 > y1) _ = y0, y0 = y1, y1 = _;
return graticule.precision(precision);
};
graticule.step = function(_) {
if (!arguments.length) return graticule.stepMinor();
return graticule.stepMajor(_).stepMinor(_);
};
graticule.stepMajor = function(_) {
if (!arguments.length) return [DX, DY];
DX = +_[0], DY = +_[1];
return graticule;
};
graticule.stepMinor = function(_) {
if (!arguments.length) return [dx, dy];
dx = +_[0], dy = +_[1];
return graticule;
};
graticule.precision = function(_) {
if (!arguments.length) return precision;
precision = +_;
x = graticuleX(y0, y1, 90);
y = graticuleY(x0, x1, precision);
X = graticuleX(Y0, Y1, 90);
Y = graticuleY(X0, X1, precision);
return graticule;
};
return graticule
.extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])
.extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);
}
function graticule10() {
return graticule()();
}
function interpolate(a, b) {
var x0 = a[0] * radians,
y0 = a[1] * radians,
x1 = b[0] * radians,
y1 = b[1] * radians,
cy0 = cos(y0),
sy0 = sin(y0),
cy1 = cos(y1),
sy1 = sin(y1),
kx0 = cy0 * cos(x0),
ky0 = cy0 * sin(x0),
kx1 = cy1 * cos(x1),
ky1 = cy1 * sin(x1),
d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
k = sin(d);
var interpolate = d ? function(t) {
var B = sin(t *= d) / k,
A = sin(d - t) / k,
x = A * kx0 + B * kx1,
y = A * ky0 + B * ky1,
z = A * sy0 + B * sy1;
return [
atan2(y, x) * degrees,
atan2(z, sqrt(x * x + y * y)) * degrees
];
} : function() {
return [x0 * degrees, y0 * degrees];
};
interpolate.distance = d;
return interpolate;
}
function identity(x) {
return x;
}
var areaSum$1 = adder();
var areaRingSum$1 = adder();
var x00;
var y00;
var x0$1;
var y0$1;
var areaStream$1 = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaStream$1.lineStart = areaRingStart$1;
areaStream$1.lineEnd = areaRingEnd$1;
},
polygonEnd: function() {
areaStream$1.lineStart = areaStream$1.lineEnd = areaStream$1.point = noop;
areaSum$1.add(abs(areaRingSum$1));
areaRingSum$1.reset();
},
result: function() {
var area = areaSum$1 / 2;
areaSum$1.reset();
return area;
}
};
function areaRingStart$1() {
areaStream$1.point = areaPointFirst$1;
}
function areaPointFirst$1(x, y) {
areaStream$1.point = areaPoint$1;
x00 = x0$1 = x, y00 = y0$1 = y;
}
function areaPoint$1(x, y) {
areaRingSum$1.add(y0$1 * x - x0$1 * y);
x0$1 = x, y0$1 = y;
}
function areaRingEnd$1() {
areaPoint$1(x00, y00);
}
var x0$2 = Infinity;
var y0$2 = x0$2;
var x1 = -x0$2;
var y1 = x1;
var boundsStream$1 = {
point: boundsPoint$1,
lineStart: noop,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop,
result: function() {
var bounds = [[x0$2, y0$2], [x1, y1]];
x1 = y1 = -(y0$2 = x0$2 = Infinity);
return bounds;
}
};
function boundsPoint$1(x, y) {
if (x < x0$2) x0$2 = x;
if (x > x1) x1 = x;
if (y < y0$2) y0$2 = y;
if (y > y1) y1 = y;
}
var X0$1 = 0;
var Y0$1 = 0;
var Z0$1 = 0;
var X1$1 = 0;
var Y1$1 = 0;
var Z1$1 = 0;
var X2$1 = 0;
var Y2$1 = 0;
var Z2$1 = 0;
var x00$1;
var y00$1;
var x0$3;
var y0$3;
var centroidStream$1 = {
point: centroidPoint$1,
lineStart: centroidLineStart$1,
lineEnd: centroidLineEnd$1,
polygonStart: function() {
centroidStream$1.lineStart = centroidRingStart$1;
centroidStream$1.lineEnd = centroidRingEnd$1;
},
polygonEnd: function() {
centroidStream$1.point = centroidPoint$1;
centroidStream$1.lineStart = centroidLineStart$1;
centroidStream$1.lineEnd = centroidLineEnd$1;
},
result: function() {
var centroid = Z2$1 ? [X2$1 / Z2$1, Y2$1 / Z2$1]
: Z1$1 ? [X1$1 / Z1$1, Y1$1 / Z1$1]
: Z0$1 ? [X0$1 / Z0$1, Y0$1 / Z0$1]
: [NaN, NaN];
X0$1 = Y0$1 = Z0$1 =
X1$1 = Y1$1 = Z1$1 =
X2$1 = Y2$1 = Z2$1 = 0;
return centroid;
}
};
function centroidPoint$1(x, y) {
X0$1 += x;
Y0$1 += y;
++Z0$1;
}
function centroidLineStart$1() {
centroidStream$1.point = centroidPointFirstLine;
}
function centroidPointFirstLine(x, y) {
centroidStream$1.point = centroidPointLine;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function centroidPointLine(x, y) {
var dx = x - x0$3, dy = y - y0$3, z = sqrt(dx * dx + dy * dy);
X1$1 += z * (x0$3 + x) / 2;
Y1$1 += z * (y0$3 + y) / 2;
Z1$1 += z;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function centroidLineEnd$1() {
centroidStream$1.point = centroidPoint$1;
}
function centroidRingStart$1() {
centroidStream$1.point = centroidPointFirstRing;
}
function centroidRingEnd$1() {
centroidPointRing(x00$1, y00$1);
}
function centroidPointFirstRing(x, y) {
centroidStream$1.point = centroidPointRing;
centroidPoint$1(x00$1 = x0$3 = x, y00$1 = y0$3 = y);
}
function centroidPointRing(x, y) {
var dx = x - x0$3,
dy = y - y0$3,
z = sqrt(dx * dx + dy * dy);
X1$1 += z * (x0$3 + x) / 2;
Y1$1 += z * (y0$3 + y) / 2;
Z1$1 += z;
z = y0$3 * x - x0$3 * y;
X2$1 += z * (x0$3 + x);
Y2$1 += z * (y0$3 + y);
Z2$1 += z * 3;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function PathContext(context) {
this._context = context;
}
PathContext.prototype = {
_radius: 4.5,
pointRadius: function(_) {
return this._radius = _, this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._context.closePath();
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._context.moveTo(x, y);
this._point = 1;
break;
}
case 1: {
this._context.lineTo(x, y);
break;
}
default: {
this._context.moveTo(x + this._radius, y);
this._context.arc(x, y, this._radius, 0, tau);
break;
}
}
},
result: noop
};
var lengthSum$1 = adder();
var lengthRing;
var x00$2;
var y00$2;
var x0$4;
var y0$4;
var lengthStream$1 = {
point: noop,
lineStart: function() {
lengthStream$1.point = lengthPointFirst$1;
},
lineEnd: function() {
if (lengthRing) lengthPoint$1(x00$2, y00$2);
lengthStream$1.point = noop;
},
polygonStart: function() {
lengthRing = true;
},
polygonEnd: function() {
lengthRing = null;
},
result: function() {
var length = +lengthSum$1;
lengthSum$1.reset();
return length;
}
};
function lengthPointFirst$1(x, y) {
lengthStream$1.point = lengthPoint$1;
x00$2 = x0$4 = x, y00$2 = y0$4 = y;
}
function lengthPoint$1(x, y) {
x0$4 -= x, y0$4 -= y;
lengthSum$1.add(sqrt(x0$4 * x0$4 + y0$4 * y0$4));
x0$4 = x, y0$4 = y;
}
function PathString() {
this._string = [];
}
PathString.prototype = {
_circle: circle$1(4.5),
pointRadius: function(_) {
return this._circle = circle$1(_), this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._string.push("Z");
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._string.push("M", x, ",", y);
this._point = 1;
break;
}
case 1: {
this._string.push("L", x, ",", y);
break;
}
default: {
this._string.push("M", x, ",", y, this._circle);
break;
}
}
},
result: function() {
if (this._string.length) {
var result = this._string.join("");
this._string = [];
return result;
}
}
};
function circle$1(radius) {
return "m0," + radius
+ "a" + radius + "," + radius + " 0 1,1 0," + -2 * radius
+ "a" + radius + "," + radius + " 0 1,1 0," + 2 * radius
+ "z";
}
function index(projection, context) {
var pointRadius = 4.5,
projectionStream,
contextStream;
function path(object) {
if (object) {
if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
geoStream(object, projectionStream(contextStream));
}
return contextStream.result();
}
path.area = function(object) {
geoStream(object, projectionStream(areaStream$1));
return areaStream$1.result();
};
path.measure = function(object) {
geoStream(object, projectionStream(lengthStream$1));
return lengthStream$1.result();
};
path.bounds = function(object) {
geoStream(object, projectionStream(boundsStream$1));
return boundsStream$1.result();
};
path.centroid = function(object) {
geoStream(object, projectionStream(centroidStream$1));
return centroidStream$1.result();
};
path.projection = function(_) {
return arguments.length ? (projectionStream = _ == null ? (projection = null, identity) : (projection = _).stream, path) : projection;
};
path.context = function(_) {
if (!arguments.length) return context;
contextStream = _ == null ? (context = null, new PathString) : new PathContext(context = _);
if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
return path;
};
path.pointRadius = function(_) {
if (!arguments.length) return pointRadius;
pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
return path;
};
return path.projection(projection).context(context);
}
function clip(pointVisible, clipLine, interpolate, start) {
return function(rotate, sink) {
var line = clipLine(sink),
rotatedStart = rotate.invert(start[0], start[1]),
ringBuffer = clipBuffer(),
ringSink = clipLine(ringBuffer),
polygonStarted = false,
polygon,
segments,
ring;
var clip = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() {
clip.point = pointRing;
clip.lineStart = ringStart;
clip.lineEnd = ringEnd;
segments = [];
polygon = [];
},
polygonEnd: function() {
clip.point = point;
clip.lineStart = lineStart;
clip.lineEnd = lineEnd;
segments = d3Array.merge(segments);
var startInside = polygonContains(polygon, rotatedStart);
if (segments.length) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
clipPolygon(segments, compareIntersection, startInside, interpolate, sink);
} else if (startInside) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
}
if (polygonStarted) sink.polygonEnd(), polygonStarted = false;
segments = polygon = null;
},
sphere: function() {
sink.polygonStart();
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
sink.polygonEnd();
}
};
function point(lambda, phi) {
var point = rotate(lambda, phi);
if (pointVisible(lambda = point[0], phi = point[1])) sink.point(lambda, phi);
}
function pointLine(lambda, phi) {
var point = rotate(lambda, phi);
line.point(point[0], point[1]);
}
function lineStart() {
clip.point = pointLine;
line.lineStart();
}
function lineEnd() {
clip.point = point;
line.lineEnd();
}
function pointRing(lambda, phi) {
ring.push([lambda, phi]);
var point = rotate(lambda, phi);
ringSink.point(point[0], point[1]);
}
function ringStart() {
ringSink.lineStart();
ring = [];
}
function ringEnd() {
pointRing(ring[0][0], ring[0][1]);
ringSink.lineEnd();
var clean = ringSink.clean(),
ringSegments = ringBuffer.result(),
i, n = ringSegments.length, m,
segment,
point;
ring.pop();
polygon.push(ring);
ring = null;
if (!n) return;
// No intersections.
if (clean & 1) {
segment = ringSegments[0];
if ((m = segment.length - 1) > 0) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);
sink.lineEnd();
}
return;
}
// Rejoin connected segments.
// TODO reuse ringBuffer.rejoin()?
if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));
segments.push(ringSegments.filter(validSegment));
}
return clip;
};
}
function validSegment(segment) {
return segment.length > 1;
}
// Intersections are sorted along the clip edge. For both antimeridian cutting
// and circle clipping, the same comparison is used.
function compareIntersection(a, b) {
return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1])
- ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]);
}
var clipAntimeridian = clip(
function() { return true; },
clipAntimeridianLine,
clipAntimeridianInterpolate,
[-pi, -halfPi]
);
// Takes a line and cuts into visible segments. Return values: 0 - there were
// intersections or the line was empty; 1 - no intersections; 2 - there were
// intersections, and the first and last segments should be rejoined.
function clipAntimeridianLine(stream) {
var lambda0 = NaN,
phi0 = NaN,
sign0 = NaN,
clean; // no intersections
return {
lineStart: function() {
stream.lineStart();
clean = 1;
},
point: function(lambda1, phi1) {
var sign1 = lambda1 > 0 ? pi : -pi,
delta = abs(lambda1 - lambda0);
if (abs(delta - pi) < epsilon) { // line crosses a pole
stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
stream.point(lambda1, phi0);
clean = 0;
} else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian
if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies
if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon;
phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
clean = 0;
}
stream.point(lambda0 = lambda1, phi0 = phi1);
sign0 = sign1;
},
lineEnd: function() {
stream.lineEnd();
lambda0 = phi0 = NaN;
},
clean: function() {
return 2 - clean; // if intersections, rejoin first and last segments
}
};
}
function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {
var cosPhi0,
cosPhi1,
sinLambda0Lambda1 = sin(lambda0 - lambda1);
return abs(sinLambda0Lambda1) > epsilon
? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1)
- sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0))
/ (cosPhi0 * cosPhi1 * sinLambda0Lambda1))
: (phi0 + phi1) / 2;
}
function clipAntimeridianInterpolate(from, to, direction, stream) {
var phi;
if (from == null) {
phi = direction * halfPi;
stream.point(-pi, phi);
stream.point(0, phi);
stream.point(pi, phi);
stream.point(pi, 0);
stream.point(pi, -phi);
stream.point(0, -phi);
stream.point(-pi, -phi);
stream.point(-pi, 0);
stream.point(-pi, phi);
} else if (abs(from[0] - to[0]) > epsilon) {
var lambda = from[0] < to[0] ? pi : -pi;
phi = direction * lambda / 2;
stream.point(-lambda, phi);
stream.point(0, phi);
stream.point(lambda, phi);
} else {
stream.point(to[0], to[1]);
}
}
function clipCircle(radius, delta) {
var cr = cos(radius),
smallRadius = cr > 0,
notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case
function interpolate(from, to, direction, stream) {
circleStream(stream, radius, delta, direction, from, to);
}
function visible(lambda, phi) {
return cos(lambda) * cos(phi) > cr;
}
// Takes a line and cuts into visible segments. Return values used for polygon
// clipping: 0 - there were intersections or the line was empty; 1 - no
// intersections 2 - there were intersections, and the first and last segments
// should be rejoined.
function clipLine(stream) {
var point0, // previous point
c0, // code for previous point
v0, // visibility of previous point
v00, // visibility of first point
clean; // no intersections
return {
lineStart: function() {
v00 = v0 = false;
clean = 1;
},
point: function(lambda, phi) {
var point1 = [lambda, phi],
point2,
v = visible(lambda, phi),
c = smallRadius
? v ? 0 : code(lambda, phi)
: v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0;
if (!point0 && (v00 = v0 = v)) stream.lineStart();
// Handle degeneracies.
// TODO ignore if not clipping polygons.
if (v !== v0) {
point2 = intersect(point0, point1);
if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2)) {
point1[0] += epsilon;
point1[1] += epsilon;
v = visible(point1[0], point1[1]);
}
}
if (v !== v0) {
clean = 0;
if (v) {
// outside going in
stream.lineStart();
point2 = intersect(point1, point0);
stream.point(point2[0], point2[1]);
} else {
// inside going out
point2 = intersect(point0, point1);
stream.point(point2[0], point2[1]);
stream.lineEnd();
}
point0 = point2;
} else if (notHemisphere && point0 && smallRadius ^ v) {
var t;
// If the codes for two points are different, or are both zero,
// and there this segment intersects with the small circle.
if (!(c & c0) && (t = intersect(point1, point0, true))) {
clean = 0;
if (smallRadius) {
stream.lineStart();
stream.point(t[0][0], t[0][1]);
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
} else {
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
stream.lineStart();
stream.point(t[0][0], t[0][1]);
}
}
}
if (v && (!point0 || !pointEqual(point0, point1))) {
stream.point(point1[0], point1[1]);
}
point0 = point1, v0 = v, c0 = c;
},
lineEnd: function() {
if (v0) stream.lineEnd();
point0 = null;
},
// Rejoin first and last segments if there were intersections and the first
// and last points were visible.
clean: function() {
return clean | ((v00 && v0) << 1);
}
};
}
// Intersects the great circle between a and b with the clip circle.
function intersect(a, b, two) {
var pa = cartesian(a),
pb = cartesian(b);
// We have two planes, n1.p = d1 and n2.p = d2.
// Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2).
var n1 = [1, 0, 0], // normal
n2 = cartesianCross(pa, pb),
n2n2 = cartesianDot(n2, n2),
n1n2 = n2[0], // cartesianDot(n1, n2),
determinant = n2n2 - n1n2 * n1n2;
// Two polar points.
if (!determinant) return !two && a;
var c1 = cr * n2n2 / determinant,
c2 = -cr * n1n2 / determinant,
n1xn2 = cartesianCross(n1, n2),
A = cartesianScale(n1, c1),
B = cartesianScale(n2, c2);
cartesianAddInPlace(A, B);
// Solve |p(t)|^2 = 1.
var u = n1xn2,
w = cartesianDot(A, u),
uu = cartesianDot(u, u),
t2 = w * w - uu * (cartesianDot(A, A) - 1);
if (t2 < 0) return;
var t = sqrt(t2),
q = cartesianScale(u, (-w - t) / uu);
cartesianAddInPlace(q, A);
q = spherical(q);
if (!two) return q;
// Two intersection points.
var lambda0 = a[0],
lambda1 = b[0],
phi0 = a[1],
phi1 = b[1],
z;
if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;
var delta = lambda1 - lambda0,
polar = abs(delta - pi) < epsilon,
meridian = polar || delta < epsilon;
if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;
// Check that the first point is between a and b.
if (meridian
? polar
? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1)
: phi0 <= q[1] && q[1] <= phi1
: delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) {
var q1 = cartesianScale(u, (-w + t) / uu);
cartesianAddInPlace(q1, A);
return [q, spherical(q1)];
}
}
// Generates a 4-bit vector representing the location of a point relative to
// the small circle's bounding box.
function code(lambda, phi) {
var r = smallRadius ? radius : pi - radius,
code = 0;
if (lambda < -r) code |= 1; // left
else if (lambda > r) code |= 2; // right
if (phi < -r) code |= 4; // below
else if (phi > r) code |= 8; // above
return code;
}
return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]);
}
function transform(methods) {
return {
stream: transformer(methods)
};
}
function transformer(methods) {
return function(stream) {
var s = new TransformStream;
for (var key in methods) s[key] = methods[key];
s.stream = stream;
return s;
};
}
function TransformStream() {}
TransformStream.prototype = {
constructor: TransformStream,
point: function(x, y) { this.stream.point(x, y); },
sphere: function() { this.stream.sphere(); },
lineStart: function() { this.stream.lineStart(); },
lineEnd: function() { this.stream.lineEnd(); },
polygonStart: function() { this.stream.polygonStart(); },
polygonEnd: function() { this.stream.polygonEnd(); }
};
function fitExtent(projection, extent, object) {
var w = extent[1][0] - extent[0][0],
h = extent[1][1] - extent[0][1],
clip = projection.clipExtent && projection.clipExtent();
projection
.scale(150)
.translate([0, 0]);
if (clip != null) projection.clipExtent(null);
geoStream(object, projection.stream(boundsStream$1));
var b = boundsStream$1.result(),
k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),
x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,
y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;
if (clip != null) projection.clipExtent(clip);
return projection
.scale(k * 150)
.translate([x, y]);
}
function fitSize(projection, size, object) {
return fitExtent(projection, [[0, 0], size], object);
}
var maxDepth = 16;
var cosMinDistance = cos(30 * radians);
// cos(minimum angular distance)
function resample(project, delta2) {
return +delta2 ? resample$1(project, delta2) : resampleNone(project);
}
function resampleNone(project) {
return transformer({
point: function(x, y) {
x = project(x, y);
this.stream.point(x[0], x[1]);
}
});
}
function resample$1(project, delta2) {
function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {
var dx = x1 - x0,
dy = y1 - y0,
d2 = dx * dx + dy * dy;
if (d2 > 4 * delta2 && depth--) {
var a = a0 + a1,
b = b0 + b1,
c = c0 + c1,
m = sqrt(a * a + b * b + c * c),
phi2 = asin(c /= m),
lambda2 = abs(abs(c) - 1) < epsilon || abs(lambda0 - lambda1) < epsilon ? (lambda0 + lambda1) / 2 : atan2(b, a),
p = project(lambda2, phi2),
x2 = p[0],
y2 = p[1],
dx2 = x2 - x0,
dy2 = y2 - y0,
dz = dy * dx2 - dx * dy2;
if (dz * dz / d2 > delta2 // perpendicular projected distance
|| abs((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end
|| a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);
stream.point(x2, y2);
resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);
}
}
}
return function(stream) {
var lambda00, x00, y00, a00, b00, c00, // first point
lambda0, x0, y0, a0, b0, c0; // previous point
var resampleStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },
polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }
};
function point(x, y) {
x = project(x, y);
stream.point(x[0], x[1]);
}
function lineStart() {
x0 = NaN;
resampleStream.point = linePoint;
stream.lineStart();
}
function linePoint(lambda, phi) {
var c = cartesian([lambda, phi]), p = project(lambda, phi);
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
stream.point(x0, y0);
}
function lineEnd() {
resampleStream.point = point;
stream.lineEnd();
}
function ringStart() {
lineStart();
resampleStream.point = ringPoint;
resampleStream.lineEnd = ringEnd;
}
function ringPoint(lambda, phi) {
linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
resampleStream.point = linePoint;
}
function ringEnd() {
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);
resampleStream.lineEnd = lineEnd;
lineEnd();
}
return resampleStream;
};
}
function solve(project, precision) {
var n = 100,
step = (halfPi - epsilon) / n,
i,
j,
grid = [];
for (i = 0; i <= 4 * n; i++) {
grid[i] = [];
for (j = 0; j <= 2 * n; j++) {
grid[i][j] = project((i - 2 * n) * step, (j - n) * step);
}
}
function invert (x, y) {
// find a start point c "close enough" to x,y
var i, j,
c,
m, min = +Infinity;
// d3.scan
for (i = 0; i <= 4 * n; i++) {
for (j = 0; j <= 2 * n; j++) {
m = abs(x - grid[i][j][0]) + abs(y - grid[i][j][1]);
if (m < min) {
c = [i,j];
min = m;
}
}
}
c = [ step * (c[0] - 2 * n), step * (c[1] - n) ];
c = cartesian(c);
// solve for x,y
var solution = Newton.Solve(g => {
var norm = g[0] * g[0] + g[1] * g[1] + g[2] * g[2];
cartesianScale(g, 1 / sqrt(norm));
var s = spherical(g),
p = project(s[0], s[1]);
return [p[0], p[1], norm];
}, [x, y, 1], { start: c, acc: precision });
var norm = solution[0] * solution[0] + solution[1] * solution[1] + solution[2] * solution[2];
cartesianScale(solution, 1 / sqrt(norm));
return spherical(solution);
}
return invert;
}
/*
* Newton's method for finding roots
*
* code adapted from D.V. Fedorov,
* “Introduction to Numerical Methods with examples in Javascript”
* http://owww.phys.au.dk/~fedorov/nucltheo/Numeric/11/book.pdf
* (licensed under the GPL)
* by Philippe Riviere <philippe.riviere@illisible.net> March 2014
* modified for compatibility with Chrome/Safari
* added a max iterations parameter
*
* Usage: Newton.Solve(Math.exp, 2)); => ~ log(2)
* Newton.Solve(d3.geo.chamberlin(), [200,240])
*/
var Newton = {version: "1.0.0"}; // semver
Newton.Norm = function (v) {
return Math.sqrt(v.reduce(function (s, e) {
return s + e * e
}, 0));
}
Newton.Dot = function (a, b) {
var s = 0;
for (var i in a) s += a[i] * b[i];
return s;
}
// QR - decomposition A=QR of matrix A
Newton.QRDec = function(A){
var m = A.length, R = [], i, j, k;
for (j in A) {
R[j] = [];
for (i in A) R[j][i] = 0;
}
var Q = [];
for (i in A) {
Q[i] = [];
for (j in A[0]) Q[i][j] = A[i][j];
}
// Q is a copy of A
for (i = 0; i < m; i++) {
var e = Q[i],
r = Math.sqrt(Newton.Dot(e, e));
if (r == 0) throw "Newton.QRDec: singular matrix"
R[i][i] = r;
for (k in e) e[k] /= r;
// normalization
for (j = i + 1; j < m; j++) {
var q = Q[j],
s = Newton.Dot(e, q);
for (k in q) q[k] -= s * e[k];
// orthogonalization
R[j][i] = s;
}
}
return [Q, R];
};
// QR - backsubstitution
// input: matrices Q,R, array b; output: array x such that QRx=b
Newton.QRBack = function(Q, R, b) {
var m = Q.length,
c = new Array(m),
x = new Array(m),
i, k, s;
for (i in Q) {
// c = QˆT b
c[i] = 0;
for (k in b) c[i] += Q[i][k] * b[k];
}
for (i = m - 1; i >= 0; i--) {
// back substitution
for (s = 0, k = i + 1; k < m; k++) s += R[k][i] * x[k];
x[i] = (c[i] - s) / R[i][i];
}
return x;
}
// calculates inverse of matrix A
Newton.Inverse = function(A){
var t = Newton.QRDec(A),
Q = t[0],
R = t[1];
var m = [], i, k, n;
for (i in A) {
n = [];
for (k in A) {
n[k] = (k == i ? 1 : 0)
}
m[i] = Newton.QRBack(Q, R, n);
}
return m;
};
Newton.Zero = function (fs, x, opts={} /* acc, dx, max */) {
// Newton's root-finding method
var i, j, k;
if (opts.acc == undefined) opts.acc = 1e-6
if (opts.dx == undefined) opts.dx = 1e-3
if (opts.max == undefined) opts.max = 40 // max iterations
var J = [];
for (i in x) {
J[i] = [];
for (j in x) J[i][j] = 0;
}
var minusfx = [];
var v = fs(x);
if (v == null) throw "unable to compute fs at "+JSON.stringify(x)
for (i in x) minusfx[i] = -v[i];
do {
if (opts.max-- < 0) return null;
for (i in x)
for (k in x) {
// calculate Jacobian
x[k] += opts.dx
v = fs(x);
if (v == null) throw "unable to compute fs at "+JSON.stringify(x)
J[k][i] = (v[i] + minusfx[i]) / opts.dx
x[k] -= opts.dx
}
var t = Newton.QRDec(J),
Q = t[0],
R = t[1],
Dx = Newton.QRBack(Q, R, minusfx)
// Newton's step
var s = 2
do {
// simple backtracking line search
s = s / 2;
var z = [];
for (i in x) {
z[i] = x[i] + s * Dx[i];
}
var minusfz = [];
v = fs(z);
if (v == null) throw "unable to compute fs at "+JSON.stringify(z)
for (i in x) {
minusfz[i] = -v[i];
}
}
while (Newton.Norm(minusfz) > (1 - s / 2) * Newton.Norm(minusfx) && s > 1. / 128)
minusfx = minusfz;
x = z;
// step done
}
while (Newton.Norm(minusfx) > opts.acc)
return x;
}
Newton.Solve = function(fs, res, opts={}){
if (typeof res != 'object') res = [ typeof res == 'number'
? + res
: 0
];
var _fs = fs;
fs = function(x) {
var r = _fs(x);
if (typeof r == 'number') r = [ r ];
for (var i in r) r[i] -= res[i];
return r;
}
var start = [];
if (opts.start) {
start = opts.start;
} else {
for (var i in res) start[i]=0;
}
var n = Newton.Zero(fs, start, opts);
if (n && n.length == 1) n = n[0];
return n;
};
var transformRadians = transformer({
point: function(x, y) {
this.stream.point(x * radians, y * radians);
}
});
function projection(project) {
return projectionMutator(function() { return project; })();
}
function projectionMutator(projectAt) {
var project,
k = 150, // scale
x = 480, y = 250, // translate
dx, dy, lambda = 0, phi = 0, // center
deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, projectRotate, // rotate
theta = null, preclip = clipAntimeridian, // clip angle
x0 = null, y0, x1, y1, postclip = identity, // clip extent
delta2 = 0.5, projectResample = resample(projectTransform, delta2), // precision
cache,
cacheStream;
function projection(point) {
point = projectRotate(point[0] * radians, point[1] * radians);
return [point[0] * k + dx, dy - point[1] * k];
}
function invert(point) {
point = projectRotate.invert((point[0] - dx) / k, (dy - point[1]) / k);
return point && [point[0] * degrees, point[1] * degrees];
}
function projectTransform(x, y) {
return x = project(x, y), [x[0] * k + dx, dy - x[1] * k];
}
projection.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = transformRadians(preclip(rotate, projectResample(postclip(cacheStream = stream))));
};
projection.clipAngle = function(_) {
return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians, 6 * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees;
};
projection.clipExtent = function(_) {
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipExtent(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
projection.scale = function(_) {
return arguments.length ? (k = +_, recenter()) : k;
};
projection.translate = function(_) {
return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];
};
projection.center = function(_) {
return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];
};
projection.rotate = function(_) {
return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];
};
projection.precision = function(_) {
return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt(delta2);
};
projection.fitExtent = function(extent, object) {
return fitExtent(projection, extent, object);
};
projection.fitSize = function(size, object) {
return fitSize(projection, size, object);
};
function recenter() {
projectRotate = compose(rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma), project);
var center = project(lambda, phi);
dx = x - center[0] * k;
dy = y + center[1] * k;
return reset();
}
function reset() {
cache = cacheStream = null;
return projection;
}
return function() {
project = projectAt.apply(this, arguments);
if (!project.invert) { project.invert = solve(project); }
projection.invert = project.invert && invert;
return recenter();
};
}
function conicProjection(projectAt) {
var phi0 = 0,
phi1 = pi / 3,
m = projectionMutator(projectAt),
p = m(phi0, phi1);
p.parallels = function(_) {
return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];
};
return p;
}
function cylindricalEqualAreaRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, sin(phi) / cosPhi0];
}
forward.invert = function(x, y) {
return [x / cosPhi0, asin(y * cosPhi0)];
};
return forward;
}
function conicEqualAreaRaw(y0, y1) {
var sy0 = sin(y0), n = (sy0 + sin(y1)) / 2;
// Are the parallels symmetrical around the Equator?
if (abs(n) < epsilon) return cylindricalEqualAreaRaw(y0);
var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt(c) / n;
function project(x, y) {
var r = sqrt(c - 2 * n * sin(y)) / n;
return [r * sin(x *= n), r0 - r * cos(x)];
}
project.invert = function(x, y) {
var r0y = r0 - y;
return [atan2(x, abs(r0y)) / n * sign(r0y), asin((c - (x * x + r0y * r0y) * n * n) / (2 * n))];
};
return project;
}
function conicEqualArea() {
return conicProjection(conicEqualAreaRaw)
.scale(155.424)
.center([0, 33.6442]);
}
function albers() {
return conicEqualArea()
.parallels([29.5, 45.5])
.scale(1070)
.translate([480, 250])
.rotate([96, 0])
.center([-0.6, 38.7]);
}
// The projections must have mutually exclusive clip regions on the sphere,
// as this will avoid emitting interleaving lines and polygons.
function multiplex(streams) {
var n = streams.length;
return {
point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },
sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },
lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },
lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },
polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },
polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }
};
}
// A composite projection for the United States, configured by default for
// 960×500. The projection also works quite well at 960×600 if you change the
// scale to 1285 and adjust the translate accordingly. The set of standard
// parallels for each region comes from USGS, which is published here:
// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
function albersUsa() {
var cache,
cacheStream,
lower48 = albers(), lower48Point,
alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338
hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007
point, pointStream = {point: function(x, y) { point = [x, y]; }};
function albersUsa(coordinates) {
var x = coordinates[0], y = coordinates[1];
return point = null,
(lower48Point.point(x, y), point)
|| (alaskaPoint.point(x, y), point)
|| (hawaiiPoint.point(x, y), point);
}
albersUsa.invert = function(coordinates) {
var k = lower48.scale(),
t = lower48.translate(),
x = (coordinates[0] - t[0]) / k,
y = (coordinates[1] - t[1]) / k;
return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska
: y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii
: lower48).invert(coordinates);
};
albersUsa.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);
};
albersUsa.precision = function(_) {
if (!arguments.length) return lower48.precision();
lower48.precision(_), alaska.precision(_), hawaii.precision(_);
return reset();
};
albersUsa.scale = function(_) {
if (!arguments.length) return lower48.scale();
lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);
return albersUsa.translate(lower48.translate());
};
albersUsa.translate = function(_) {
if (!arguments.length) return lower48.translate();
var k = lower48.scale(), x = +_[0], y = +_[1];
lower48Point = lower48
.translate(_)
.clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])
.stream(pointStream);
alaskaPoint = alaska
.translate([x - 0.307 * k, y + 0.201 * k])
.clipExtent([[x - 0.425 * k + epsilon, y + 0.120 * k + epsilon], [x - 0.214 * k - epsilon, y + 0.234 * k - epsilon]])
.stream(pointStream);
hawaiiPoint = hawaii
.translate([x - 0.205 * k, y + 0.212 * k])
.clipExtent([[x - 0.214 * k + epsilon, y + 0.166 * k + epsilon], [x - 0.115 * k - epsilon, y + 0.234 * k - epsilon]])
.stream(pointStream);
return reset();
};
albersUsa.fitExtent = function(extent, object) {
return fitExtent(albersUsa, extent, object);
};
albersUsa.fitSize = function(size, object) {
return fitSize(albersUsa, size, object);
};
function reset() {
cache = cacheStream = null;
return albersUsa;
}
return albersUsa.scale(1070);
}
function azimuthalRaw(scale) {
return function(x, y) {
var cx = cos(x),
cy = cos(y),
k = scale(cx * cy);
return [
k * cy * sin(x),
k * sin(y)
];
}
}
function azimuthalInvert(angle) {
return function(x, y) {
var z = sqrt(x * x + y * y),
c = angle(z),
sc = sin(c),
cc = cos(c);
return [
atan2(x * sc, z * cc),
asin(z && y * sc / z)
];
}
}
var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {
return sqrt(2 / (1 + cxcy));
});
azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {
return 2 * asin(z / 2);
});
function azimuthalEqualArea() {
return projection(azimuthalEqualAreaRaw)
.scale(124.75)
.clipAngle(180 - 1e-3);
}
var azimuthalEquidistantRaw = azimuthalRaw(function(c) {
return (c = acos(c)) && c / sin(c);
});
azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {
return z;
});
function azimuthalEquidistant() {
return projection(azimuthalEquidistantRaw)
.scale(79.4188)
.clipAngle(180 - 1e-3);
}
function mercatorRaw(lambda, phi) {
return [lambda, log(tan((halfPi + phi) / 2))];
}
mercatorRaw.invert = function(x, y) {
return [x, 2 * atan(exp(y)) - halfPi];
};
function mercator() {
return mercatorProjection(mercatorRaw)
.scale(961 / tau);
}
function mercatorProjection(project) {
var m = projection(project),
center = m.center,
scale = m.scale,
translate = m.translate,
clipExtent = m.clipExtent,
x0 = null, y0, x1, y1; // clip extent
m.scale = function(_) {
return arguments.length ? (scale(_), reclip()) : scale();
};
m.translate = function(_) {
return arguments.length ? (translate(_), reclip()) : translate();
};
m.center = function(_) {
return arguments.length ? (center(_), reclip()) : center();
};
m.clipExtent = function(_) {
return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
function reclip() {
var k = pi * scale(),
t = m(rotation(m.rotate()).invert([0, 0]));
return clipExtent(x0 == null
? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw
? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]
: [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);
}
return reclip();
}
function tany(y) {
return tan((halfPi + y) / 2);
}
function conicConformalRaw(y0, y1) {
var cy0 = cos(y0),
n = y0 === y1 ? sin(y0) : log(cy0 / cos(y1)) / log(tany(y1) / tany(y0)),
f = cy0 * pow(tany(y0), n) / n;
if (!n) return mercatorRaw;
function project(x, y) {
if (f > 0) { if (y < -halfPi + epsilon) y = -halfPi + epsilon; }
else { if (y > halfPi - epsilon) y = halfPi - epsilon; }
var r = f / pow(tany(y), n);
return [r * sin(n * x), f - r * cos(n * x)];
}
project.invert = function(x, y) {
var fy = f - y, r = sign(n) * sqrt(x * x + fy * fy);
return [atan2(x, abs(fy)) / n * sign(fy), 2 * atan(pow(f / r, 1 / n)) - halfPi];
};
return project;
}
function conicConformal() {
return conicProjection(conicConformalRaw)
.scale(109.5)
.parallels([30, 30]);
}
function equirectangularRaw(lambda, phi) {
return [lambda, phi];
}
equirectangularRaw.invert = equirectangularRaw;
function equirectangular() {
return projection(equirectangularRaw)
.scale(152.63);
}
function conicEquidistantRaw(y0, y1) {
var cy0 = cos(y0),
n = y0 === y1 ? sin(y0) : (cy0 - cos(y1)) / (y1 - y0),
g = cy0 / n + y0;
if (abs(n) < epsilon) return equirectangularRaw;
function project(x, y) {
var gy = g - y, nx = n * x;
return [gy * sin(nx), g - gy * cos(nx)];
}
project.invert = function(x, y) {
var gy = g - y;
return [atan2(x, abs(gy)) / n * sign(gy), g - sign(n) * sqrt(x * x + gy * gy)];
};
return project;
}
function conicEquidistant() {
return conicProjection(conicEquidistantRaw)
.scale(131.154)
.center([0, 13.9389]);
}
function gnomonicRaw(x, y) {
var cy = cos(y), k = cos(x) * cy;
return [cy * sin(x) / k, sin(y) / k];
}
gnomonicRaw.invert = azimuthalInvert(atan);
function gnomonic() {
return projection(gnomonicRaw)
.scale(144.049)
.clipAngle(60);
}
function scaleTranslate(kx, ky, tx, ty) {
return kx === 1 && ky === 1 && tx === 0 && ty === 0 ? identity : transformer({
point: function(x, y) {
this.stream.point(x * kx + tx, y * ky + ty);
}
});
}
function identity$1() {
var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, transform = identity, // scale, translate and reflect
x0 = null, y0, x1, y1, clip = identity, // clip extent
cache,
cacheStream,
projection;
function reset() {
cache = cacheStream = null;
return projection;
}
return projection = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = transform(clip(cacheStream = stream));
},
clipExtent: function(_) {
return arguments.length ? (clip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipExtent(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
},
scale: function(_) {
return arguments.length ? (transform = scaleTranslate((k = +_) * sx, k * sy, tx, ty), reset()) : k;
},
translate: function(_) {
return arguments.length ? (transform = scaleTranslate(k * sx, k * sy, tx = +_[0], ty = +_[1]), reset()) : [tx, ty];
},
reflectX: function(_) {
return arguments.length ? (transform = scaleTranslate(k * (sx = _ ? -1 : 1), k * sy, tx, ty), reset()) : sx < 0;
},
reflectY: function(_) {
return arguments.length ? (transform = scaleTranslate(k * sx, k * (sy = _ ? -1 : 1), tx, ty), reset()) : sy < 0;
},
fitExtent: function(extent, object) {
return fitExtent(projection, extent, object);
},
fitSize: function(size, object) {
return fitSize(projection, size, object);
}
};
}
function orthographicRaw(x, y) {
return [cos(y) * sin(x), sin(y)];
}
orthographicRaw.invert = azimuthalInvert(asin);
function orthographic() {
return projection(orthographicRaw)
.scale(249.5)
.clipAngle(90 + epsilon);
}
function stereographicRaw(x, y) {
var cy = cos(y), k = 1 + cos(x) * cy;
return [cy * sin(x) / k, sin(y) / k];
}
stereographicRaw.invert = azimuthalInvert(function(z) {
return 2 * atan(z);
});
function stereographic() {
return projection(stereographicRaw)
.scale(250)
.clipAngle(142);
}
function transverseMercatorRaw(lambda, phi) {
return [log(tan((halfPi + phi) / 2)), -lambda];
}
transverseMercatorRaw.invert = function(x, y) {
return [-y, 2 * atan(exp(x)) - halfPi];
};
function transverseMercator() {
var m = mercatorProjection(transverseMercatorRaw),
center = m.center,
rotate = m.rotate;
m.center = function(_) {
return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);
};
m.rotate = function(_) {
return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);
};
return rotate([0, 0, 90])
.scale(159.155);
}
exports.geoArea = area;
exports.geoBounds = bounds;
exports.geoCentroid = centroid;
exports.geoCircle = circle;
exports.geoClipExtent = extent;
exports.geoContains = contains;
exports.geoDistance = distance;
exports.geoGraticule = graticule;
exports.geoGraticule10 = graticule10;
exports.geoInterpolate = interpolate;
exports.geoLength = length;
exports.geoPath = index;
exports.geoAlbers = albers;
exports.geoAlbersUsa = albersUsa;
exports.geoAzimuthalEqualArea = azimuthalEqualArea;
exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw;
exports.geoAzimuthalEquidistant = azimuthalEquidistant;
exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw;
exports.geoConicConformal = conicConformal;
exports.geoConicConformalRaw = conicConformalRaw;
exports.geoConicEqualArea = conicEqualArea;
exports.geoConicEqualAreaRaw = conicEqualAreaRaw;
exports.geoConicEquidistant = conicEquidistant;
exports.geoConicEquidistantRaw = conicEquidistantRaw;
exports.geoEquirectangular = equirectangular;
exports.geoEquirectangularRaw = equirectangularRaw;
exports.geoGnomonic = gnomonic;
exports.geoGnomonicRaw = gnomonicRaw;
exports.geoIdentity = identity$1;
exports.geoProjection = projection;
exports.geoProjectionMutator = projectionMutator;
exports.geoMercator = mercator;
exports.geoMercatorRaw = mercatorRaw;
exports.geoOrthographic = orthographic;
exports.geoOrthographicRaw = orthographicRaw;
exports.geoStereographic = stereographic;
exports.geoStereographicRaw = stereographicRaw;
exports.geoTransverseMercator = transverseMercator;
exports.geoTransverseMercatorRaw = transverseMercatorRaw;
exports.geoRotation = rotation;
exports.geoStream = geoStream;
exports.geoTransform = transform;
Object.defineProperty(exports, '__esModule', { value: true });
}));
<!DOCTYPE html>
<head>
<meta charset="utf-8">
<script src="//d3js.org/d3.v4.min.js"></script>
<script src="d3-geo.js"></script>
<script src="//d3js.org/d3-geo-projection.v2.min.js"></script>
<script src="//d3js.org/topojson.v1.min.js"></script>
<style>
svg {
margin: 22px;
}
select {
margin-left: 20px;
}
path.foreground {
fill: none;
stroke: #333;
stroke-width: 1.5px;
}
path.graticule {
fill: none;
stroke: #aaa;
stroke-width: .5px;
}
#left {
cursor: move;
}
#left .land {
fill: #d7c7ad;
stroke: #a5967e;
}
#right .land {
fill: #cfcece;
stroke: #a5967e;
}
#left circle {
fill: #d8355e;
}
#right circle {
stroke: #d8355e;
fill: none;
}
</style>
</head>
<body>
<svg id="left"></svg>
<svg id="right"></svg>
<select></select>
<script>
// import from math
var sin = Math.sin, cos = Math.cos, pi = Math.PI;
// import from d3-geo-projection
var hammerRaw = d3.geoHammerRaw;
var visionscarto_bertin_1953_alpha3 = function (λ, φ) {
var fu = 1.4;
if (λ + φ < -fu) {
var u = (λ - φ + 1.6) * (λ + φ + fu) / 8;
λ += u;
φ -= 0.8 * u * sin(φ + pi/2);
}
var r = hammerRaw(1.68, 2)(λ, φ);
var k = 12,
d = (1 - cos(λ * φ)) / k;
if (r[1] < 0) {
r[0] *= 1 + d;
}
if (r[1] > 0) {
r[1] *= 1 + d / 1.5 * r[0] * r[0];
}
return r;
};
(d3.geoVisionscarto = (function () {
return d3.geoProjection(visionscarto_bertin_1953_alpha3)
.rotate([-16.5, -42]);
}));
function dot(a, b) {
for (var i = 0, n = a.length, s = 0; i < n; ++i) s += a[i] * b[i];
return s;
}
function cross(a, b) {
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
];
}
function norm(a){
return Math.sqrt(dot(a,a));
}
var epsilon = 1e-4;
function distortion(projection, point) {
var point1 = [point[0] + epsilon, point[1]],
point2 = [point[0], point[1] + epsilon],
p0 = projection(point),
p1 = projection(point1),
p2 = projection(point2),
d1 = [ p1[0] - p0[0], p1[1] - p0[1], 0 ],
d2 = [ p2[0] - p0[0], p2[1] - p0[1], 0 ];
// areal distorsion = norm(d1 x d2) / cos(lat)
var areal = norm(cross(d1, d2)) / Math.abs(Math.cos(point[1] * Math.PI/180)) / epsilon / epsilon;
// angular distorsion = (d1 . d2) / ( norm(d1) * norm(d2) )
var angular = Math.abs(dot(d1, d2) / norm(d1) / norm(d2));
//console.log(areal, angular)
return {
areal: areal,
angular: angular
};
}
var map_width = 400;
var map_height = 400;
var center = [-90, 37];
var scale0 = (map_width - 1) / 2 / Math.PI * 6
var scale1 = (map_width - 1) / 2 / Math.PI * 3
var zoom = d3.zoom()
.on("zoom", zoomed);
var projections = {
"Bertin1953": d3.geoVisionscarto(),
"Aitoff": d3.geoAitoff().scale(90),
"Boggs Eumorphic": d3.geoBoggs().scale(90),
"Craster Parabolic (Putnins P4)": d3.geoCraster().scale(90),
"Cylindrical Equal-Area": d3.geoCylindricalEqualArea().scale(120),
"Eckert I": d3.geoEckert1().scale(95),
"Eckert III": d3.geoEckert3().scale(105),
"Eckert IV": d3.geoEckert4().scale(105),
"Eckert V": d3.geoEckert5().scale(100),
"Equidistant Cylindrical (Plate Carrée)": d3.geoEquirectangular().scale(90),
"Fahey": d3.geoFahey().scale(75),
"Foucaut Sinusoidal": d3.geoFoucaut().scale(80),
"Gall (Gall Stereographic)": d3.geoCylindricalStereographic().scale(70),
"Ginzburg VIII (TsNIIGAiK 1944)": d3.geoGinzburg8().scale(75),
"Kavraisky VII": d3.geoKavrayskiy7().scale(90),
"Larrivée": d3.geoLarrivee().scale(55),
"McBryde-Thomas Flat-Pole Sine (No. 2)": d3.geoMtFlatPolarSinusoidal().scale(95),
"Mercator": d3.geoMercator().scale(50),
"Miller Cylindrical I": d3.geoMiller().scale(60),
"Mollweide": d3.geoMollweide().scale(100),
"Natural Earth": d3.geoNaturalEarth().scale(100),
"Nell-Hammer": d3.geoNellHammer().scale(120),
"Quartic Authalic": d3.geoHammer().coefficient(Infinity).scale(95),
"Robinson": d3.geoRobinson().scale(90),
"Sinusoidal": d3.geoSinusoidal().scale(90),
"van der Grinten (I)": d3.geoVanDerGrinten().scale(50),
"Wagner VI": d3.geoWagner6().scale(90),
"Wagner VII": d3.geoWagner7().scale(90),
"Winkel Tripel": d3.geoWinkel3().scale(90),
"Wiechel": d3.geoWiechel().scale(90)
};
var projectionLeft = projections["Bertin1953"].center(center);
var projectionRight = d3.geoRobinson()
.center(center)
.translate([map_width/5, map_height / 5])
.scale(scale1/2)
// .clipAngle(90)
var pathLeft = d3.geoPath()
.projection(projectionLeft);
var pathRight = d3.geoPath()
.projection(projectionRight);
function zoomed() {
projectionLeft
.translate([d3.event.transform.x, d3.event.transform.y])
.scale(d3.event.transform.k)
var newCenter = projectionLeft.invert([map_width/2,map_height/2]);
//projectionRight .rotate([-newCenter[0], -newCenter[1]])
update();
}
function update() {
d3.selectAll("#right path.distortion")
//.attr('stroke', d => fillScale(distortion(projectionLeft, d.coordinates).angular))
.attr('fill', d => strokeScale(distortion(projectionLeft, d.coordinates).areal))
.attr('opacity', 0.5)
.on('mouseover', d => console.log(distortion(projectionLeft, d.coordinates)));
d3.selectAll("#left path")
.attr("d", pathLeft);
d3.selectAll("#right path")
.attr("d", pathRight);
d3.selectAll("#left circle")
.attr('transform', function(d,i) {
return 'translate(' + [ d.x, d.y ] + ')';
})
d3.selectAll("#right circle")
.attr('transform', function(d,i) {
try {
var latlon = projectionLeft.invert([d.x, d.y])
return 'translate(' + projectionRight(latlon) + ')';
} catch(e) {
return 'translate(-100,-100)';
}
})
}
var strokeScale = d3.scaleLog()
.domain([1,37,300])
.range(['blue', 'white', 'orange']);
var fillScale = d3.scaleLinear()
.domain([0,0.6, 1])
.range(['white', 'green', 'black']);
var graticule = d3.geoGraticule();
var svgLeft = d3.select("#left")
.attr("width", map_width)
.attr("height", map_height);
var svgRight = d3.select("#right")
.attr("width", map_width + 40)
.attr("height", map_height);
svgLeft.append("path")
.datum(graticule)
.attr("class", "graticule")
.attr("d", pathLeft);
svgRight.append("path")
.datum(graticule)
.attr("class", "graticule")
.attr("d", pathRight);
d3.json("world-110m.json", function(error,world) {
if (error) throw error;
svgLeft.insert("path", ".graticule")
.datum(topojson.feature(world, world.objects.land))
.attr("class", "land")
.attr("d", pathLeft);
svgRight.insert("path", ".graticule")
.datum(topojson.feature(world, world.objects.land))
.attr("class", "land")
.attr("d", pathRight);
var points = generateRect(100, 25, 25, map_width - 50, map_height - 50);
var distortion = d3.merge(
d3.range(-89, 89, 4)
.map(lat => d3.range(-179, 180, 10 / Math.ceil(0.1 + 3 * Math.cos(lat * Math.PI / 180)))
.map((lon) => ({type:'Point', coordinates:[lon, lat]})))
);
svgLeft.selectAll("circle")
.data(points)
.enter().append("circle")
.attr('r', 3)
svgRight.selectAll("circle.points")
.data(points)
.enter().append("circle")
.attr('r', 2)
.attr('class', 'points')
svgRight.selectAll("path.distortion")
.data(distortion)
.enter().append("path")
.attr('class', 'distortion');
svgLeft
.call(zoom)
.call(
zoom.transform,
d3.zoomIdentity.translate(map_width/2,map_height/2)
.scale(scale0)
)
;
});
var selector = d3.select("select")
selector.selectAll("option")
.data(Object.keys(projections))
.enter().append("option")
.attr('value', function(d) { return d }).text(function(d) { return d })
selector.on("change", function(d) {
console.log("sup", d3.event)
var proj = d3.event.target.selectedOptions[0].value;
projectionLeft = projections[proj].center(center);
pathLeft = d3.geoPath()
.projection(projectionLeft);
svgLeft
.call(zoom)
.call(
zoom.transform,
d3.zoomIdentity.translate(map_width/2,map_height/2)
.scale(scale0)
)
;
})
function generateRect(num, x, y, width, height) {
var points = []
var sideNum = Math.floor(num/4) + 1;
// top
d3.range(sideNum).forEach(function(i) {
points.push({ x: x + i * width/sideNum, y: y })
})
// right
d3.range(sideNum).forEach(function(i) {
points.push({ x: x + width, y: y + i * height/sideNum })
})
// bottom
d3.range(sideNum).forEach(function(i) {
points.push({ x: x + width - i * width/sideNum, y: y + height })
})
// left
d3.range(sideNum).forEach(function(i) {
points.push({ x: x, y: y + height - i * height/sideNum })
})
return points;
}
</script>
</body>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-67666917-1', 'auto');
ga('send', 'pageview');
</script>
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment