Skip to content

Instantly share code, notes, and snippets.

@nitaku
Last active December 20, 2015 18:09
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save nitaku/6173659 to your computer and use it in GitHub Desktop.
Save nitaku/6173659 to your computer and use it in GitHub Desktop.
Hex coordinates

Forked from Mike Bostock's example.

For each hex, its hexagonal coordinates are drawn.

This kind of coordinate system makes it possible to interpret the position vectors of the six hexes around the origin as direction vectors. Therefore, it is possible to sum one of them to the position vector of an hex to "move" to an adjacent one. These are the values for the six directions:

E   (+1,-1,0)
SE  (+1,0,-1)
SW  (0,+1,-1)
W   (-1,+1,0)
NW  (-1,0,+1)
NE  (0,-1,+1)

Possible use cases are: computing the shortest path on a connectivity graph based on the hexagonal tiling (Stojmenovic 2007), walking on the hexagonal cells by following a space-filling curve.

Two example hexagons are also highlighted, to show the possibility of addressing an hexagon by using its coordinates.

global = {
registry: {}
}
register = (hexes) ->
hexes.each (d) ->
if d.x not of global.registry
global.registry[d.x] = {}
if d.y not of global.registry[d.x]
global.registry[d.x][d.y] = {}
if d.z not of global.registry[d.x][d.y]
global.registry[d.x][d.y][d.z] = this
window.main = () ->
width = 960
height = 500
radius = 40
coord_format = d3.format(' 03d')
global.hex_topology = hexTopology(radius, width, height)
global.path_generator = d3.geo.path()
.projection(hexProjection(radius))
svg = d3.select('body').append('svg')
.attr('width', width)
.attr('height', height)
### draw the axes ###
svg.append('line')
.attr('class', 'x axis')
.attr('x1', 450)
.attr('y1', 300)
.attr('x2', 550)
.attr('y2', 357)
svg.append('line')
.attr('class', 'y axis')
.attr('x1', 450)
.attr('y1', 300)
.attr('x2', 350)
.attr('y2', 357)
svg.append('line')
.attr('class', 'z axis')
.attr('x1', 450)
.attr('y1', 300)
.attr('x2', 450)
.attr('y2', 177)
### draw the hexagons ###
svg.append('g')
.attr('class', 'hexagon')
.selectAll('path')
.data(global.hex_topology.objects.hexagons.geometries)
.enter().append('path')
.attr('d', (d) -> global.path_generator(topojson.feature(global.hex_topology, d)) )
.style('stroke', (d) -> if d.x is 0 and d.y is 0 and d.z is 0 then 'black' else 'none')
.call(register)
### draw the coordinates ###
new_label = svg.append('g')
.attr('class', 'label')
.selectAll('text')
.data(global.hex_topology.objects.hexagons.geometries)
.enter().append('text')
.attr('transform', (d) -> "translate(#{global.path_generator.centroid(topojson.feature(global.hex_topology, d))})")
new_label.append('tspan')
.text((d) -> coord_format(d.x))
.attr('x', '0.6em')
.attr('y', '-1em')
new_label.append('tspan')
.text((d) -> coord_format(d.y))
.attr('x', '0.6em')
.attr('y', '.35em')
new_label.append('tspan')
.text((d) -> coord_format(d.z))
.attr('x', '0.6em')
.attr('y', '1.65em')
svg.append('path')
.datum(topojson.mesh(global.hex_topology, global.hex_topology.objects.hexagons))
.attr('class', 'mesh')
.attr('d', global.path_generator)
### select a few example hexagons by using their coordinates ###
d3.select(global.registry[-4][2][2]).attr('fill', 'yellow')
d3.select(global.registry[1][-2][1]).attr('fill', 'yellow')
### create the hex mesh TopoJSON ###
hexTopology = (radius, width, height) ->
dx = radius * 2 * Math.sin(Math.PI / 3)
dy = radius * 1.5
m = Math.ceil((height + radius) / dy) + 1
n = Math.ceil(width / dx) + 1
geometries = []
arcs = []
for j in [-1..m]
for i in [-1..n]
y = j * 2
x = (i + (j & 1) / 2) * 2
arcs.push([[x, y - 1], [1, 1]], [[x + 1, y], [0, 1]], [[x + 1, y + 1], [-1, 1]])
q = 3
for j in [0...m]
for i in [0...n]
geometries.push({
type: 'Polygon',
arcs: [[q, q + 1, q + 2, ~(q + (n + 2 - (j & 1)) * 3), ~(q - 2), ~(q - (n + 2 + (j & 1)) * 3 + 2)]],
x: i-6+Math.floor((j-6)/2),
y: -(i-6)+Math.ceil((j-6)/2),
z: Math.floor(-j+6)
})
q += 3
q += 6
return {
transform: {translate: [0, 0], scale: [1, 1]},
objects: {hexagons: {type: 'GeometryCollection', geometries: geometries}},
arcs: arcs
}
### define a custom projection to make hexagons appear regular ###
hexProjection = (radius) ->
dx = radius * 2 * Math.sin(Math.PI / 3)
dy = radius * 1.5
return {
stream: (stream) -> {
point: ((x, y) -> stream.point(x * dx / 2, (y - (2 - (y & 1)) / 3) * dy / 2) ),
lineStart: (() -> stream.lineStart() ),
lineEnd: (() -> stream.lineEnd() ),
polygonStart: (() -> stream.polygonStart() ),
polygonEnd: (() -> stream.polygonEnd() )
}
}
.hexagon {
fill: none;
pointer-events: all;
stroke-width: 2;
}
.label text {
font-family: sans-serif;
font-size: 9pt;
font-weight: bold;
text-anchor: end;
}
.label text *:nth-child(1) {
fill: red;
}
.label text *:nth-child(2) {
fill: green;
}
.label text *:nth-child(3) {
fill: blue;
}
.mesh {
fill: none;
stroke: black;
stroke-width: 2;
stroke-opacity: 0.2;
pointer-events: none;
}
.axis {
stroke-width: 4;
opacity: 0.5;
}
.x {
stroke: red;
}
.y {
stroke: green;
}
.z {
stroke: blue;
}
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Hex coordinates</title>
<link type="text/css" href="index.css" rel="stylesheet"/>
<script src="http://d3js.org/d3.v3.min.js"></script>
<script src="http://d3js.org/topojson.v1.min.js"></script>
<script src="index.js"></script>
</head>
<body onload="main()"></body>
</html>
(function() {
var global, hexProjection, hexTopology, register;
global = {
registry: {}
};
register = function(hexes) {
return hexes.each(function(d) {
if (!(d.x in global.registry)) global.registry[d.x] = {};
if (!(d.y in global.registry[d.x])) global.registry[d.x][d.y] = {};
if (!(d.z in global.registry[d.x][d.y])) {
return global.registry[d.x][d.y][d.z] = this;
}
});
};
window.main = function() {
var coord_format, height, new_label, radius, svg, width;
width = 960;
height = 500;
radius = 40;
coord_format = d3.format(' 03d');
global.hex_topology = hexTopology(radius, width, height);
global.path_generator = d3.geo.path().projection(hexProjection(radius));
svg = d3.select('body').append('svg').attr('width', width).attr('height', height);
/* draw the axes
*/
svg.append('line').attr('class', 'x axis').attr('x1', 450).attr('y1', 300).attr('x2', 550).attr('y2', 357);
svg.append('line').attr('class', 'y axis').attr('x1', 450).attr('y1', 300).attr('x2', 350).attr('y2', 357);
svg.append('line').attr('class', 'z axis').attr('x1', 450).attr('y1', 300).attr('x2', 450).attr('y2', 177);
/* draw the hexagons
*/
svg.append('g').attr('class', 'hexagon').selectAll('path').data(global.hex_topology.objects.hexagons.geometries).enter().append('path').attr('d', function(d) {
return global.path_generator(topojson.feature(global.hex_topology, d));
}).style('stroke', function(d) {
if (d.x === 0 && d.y === 0 && d.z === 0) {
return 'black';
} else {
return 'none';
}
}).call(register);
/* draw the coordinates
*/
new_label = svg.append('g').attr('class', 'label').selectAll('text').data(global.hex_topology.objects.hexagons.geometries).enter().append('text').attr('transform', function(d) {
return "translate(" + (global.path_generator.centroid(topojson.feature(global.hex_topology, d))) + ")";
});
new_label.append('tspan').text(function(d) {
return coord_format(d.x);
}).attr('x', '0.6em').attr('y', '-1em');
new_label.append('tspan').text(function(d) {
return coord_format(d.y);
}).attr('x', '0.6em').attr('y', '.35em');
new_label.append('tspan').text(function(d) {
return coord_format(d.z);
}).attr('x', '0.6em').attr('y', '1.65em');
svg.append('path').datum(topojson.mesh(global.hex_topology, global.hex_topology.objects.hexagons)).attr('class', 'mesh').attr('d', global.path_generator);
/* select a few example hexagons by using their coordinates
*/
d3.select(global.registry[-4][2][2]).attr('fill', 'yellow');
return d3.select(global.registry[1][-2][1]).attr('fill', 'yellow');
};
/* create the hex mesh TopoJSON
*/
hexTopology = function(radius, width, height) {
var arcs, dx, dy, geometries, i, j, m, n, q, x, y;
dx = radius * 2 * Math.sin(Math.PI / 3);
dy = radius * 1.5;
m = Math.ceil((height + radius) / dy) + 1;
n = Math.ceil(width / dx) + 1;
geometries = [];
arcs = [];
for (j = -1; -1 <= m ? j <= m : j >= m; -1 <= m ? j++ : j--) {
for (i = -1; -1 <= n ? i <= n : i >= n; -1 <= n ? i++ : i--) {
y = j * 2;
x = (i + (j & 1) / 2) * 2;
arcs.push([[x, y - 1], [1, 1]], [[x + 1, y], [0, 1]], [[x + 1, y + 1], [-1, 1]]);
}
}
q = 3;
for (j = 0; 0 <= m ? j < m : j > m; 0 <= m ? j++ : j--) {
for (i = 0; 0 <= n ? i < n : i > n; 0 <= n ? i++ : i--) {
geometries.push({
type: 'Polygon',
arcs: [[q, q + 1, q + 2, ~(q + (n + 2 - (j & 1)) * 3), ~(q - 2), ~(q - (n + 2 + (j & 1)) * 3 + 2)]],
x: i - 6 + Math.floor((j - 6) / 2),
y: -(i - 6) + Math.ceil((j - 6) / 2),
z: Math.floor(-j + 6)
});
q += 3;
}
q += 6;
}
return {
transform: {
translate: [0, 0],
scale: [1, 1]
},
objects: {
hexagons: {
type: 'GeometryCollection',
geometries: geometries
}
},
arcs: arcs
};
};
/* define a custom projection to make hexagons appear regular
*/
hexProjection = function(radius) {
var dx, dy;
dx = radius * 2 * Math.sin(Math.PI / 3);
dy = radius * 1.5;
return {
stream: function(stream) {
return {
point: (function(x, y) {
return stream.point(x * dx / 2, (y - (2 - (y & 1)) / 3) * dy / 2);
}),
lineStart: (function() {
return stream.lineStart();
}),
lineEnd: (function() {
return stream.lineEnd();
}),
polygonStart: (function() {
return stream.polygonStart();
}),
polygonEnd: (function() {
return stream.polygonEnd();
})
};
}
};
};
}).call(this);
.hexagon
fill: none
pointer-events: all
stroke-width: 2
.label text
font-family: sans-serif
font-size: 9pt
font-weight: bold
text-anchor: end
*:nth-child(1)
fill: red
*:nth-child(2)
fill: green
*:nth-child(3)
fill: blue
.mesh
fill: none
stroke: black
stroke-width: 2
stroke-opacity: .2
pointer-events: none
.axis
stroke-width: 4
opacity: 0.5
.x
stroke: red
.y
stroke: green
.z
stroke: blue
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment