K-Means Unsupervised Learning Algorithm. Also see K-Means Equilibria here.
Last active
January 19, 2016 15:15
K-Means Algorithm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function randomPoints(_num, _dist, _xR, _yR) { | |
if(arguments.length<2) _dist = 'irwinHall' | |
if(!_xR||!_yR) { | |
var xRange = yRange = [0,1] | |
}else{ | |
var xRange = d3.range(_xR[0],_xR[1]) | |
var yRange = d3.range(_yR[0],_yR[1]) | |
} | |
if(_dist == 'uniform'){ | |
x = d3.range(0,_num).map(function () { | |
return d3.shuffle(xRange)[0] | |
}) | |
y = d3.range(0,_num).map(function () { | |
return d3.shuffle(yRange)[0] | |
}) | |
}else{ | |
x = d3.range(0,_num).map(function () { | |
if(['bates','irwinHall'].indexOf(_dist)>-1){ | |
rnd = d3.random[_dist](_dist=='bates'?8:1)() | |
rnd = Math.round(rnd*d3.max(xRange)) | |
}else if(_dist=='normal'){ | |
rnd = d3.random[_dist](d3.mean(xRange),d3.mean(xRange)/6)() | |
}else if(_dist=='logNormal'){ | |
rnd = d3.random[_dist]()() | |
rnd = Math.round(rnd*d3.mean(xRange)/6) | |
} | |
return rnd | |
}).map(function (d) {return Math.abs(d)}) | |
y = d3.range(0,_num).map(function () { | |
if(['bates','irwinHall'].indexOf(_dist)>-1){ | |
rnd = d3.random[_dist](_dist=='bates'?8:1)() | |
rnd = Math.round(rnd*d3.max(yRange)) | |
}else if(_dist=='normal'){ | |
rnd = d3.random[_dist](d3.mean(yRange),d3.mean(yRange)/6)() | |
}else if(_dist=='logNormal'){ | |
rnd = d3.random[_dist]()() | |
rnd = Math.round(rnd*d3.mean(yRange)/6) | |
} | |
return rnd | |
}).map(function (d) {return Math.abs(d)}) | |
} | |
return d3.zip(x,y).map(function(d){return {x:d[0],y:d[1]}}) | |
} | |
function clusterPoints(numC,numPts,_dist,_xR,_yR){ | |
var clusters = [] | |
d3.range(0,numC).forEach(function (i) { | |
cPts = randomPoints(4,'uniform',_xR,_yR) | |
c={} | |
c.dist = _dist | |
c.xRange = d3.extent(cPts.map(function(p){return p.x})) | |
c.yRange = d3.extent(cPts.map(function(p){return p.y})) | |
c.points = randomPoints(numPts,c.dist,c.xRange,c.yRange) | |
clusters.push(c) | |
}) | |
// clusters.reduce(function (prev,curr) {return prev.concat(curr)}) | |
return clusters | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!DOCTYPE html> | |
<html> | |
<head> | |
<meta charset="utf-8"> | |
<title>K-means</title> | |
<style media="screen"> | |
body{ | |
margin: 0; | |
} | |
.point circle{ | |
fill:rgba(255, 255, 255, 1); | |
stroke:#aaa; | |
stroke-width:1px; | |
} | |
.lines line{ | |
stroke:#aaa; | |
stroke-width:1px; | |
stroke-opacity:.25; | |
} | |
.mean{ | |
opacity: 0; | |
fill:rgba(255, 255, 255, .7); | |
stroke-width:3px; | |
} | |
</style> | |
</head> | |
<body> | |
<svg></svg> | |
</body> | |
<script src="lodash.min.js"></script> | |
<script src="/blacki/raw/b83b3d4139257a353b8a/d3.min.js"></script> | |
<script src="/blacki/raw/b83b3d4139257a353b8a/dat.gui.min.js"></script> | |
<script src="/blacki/raw/b83b3d4139257a353b8a/d3-jetpack.js"></script> | |
<script src="/blacki/raw/b83b3d4139257a353b8a/d3-starterkit.js"></script> | |
<script src="d3-randompoints.js"></script> | |
<script> | |
var c24 =d3.shuffle(['#33cc33','#ff0000','#3366ff','#00e7b4','#a6cee3','#fb9a99','#b15928','#b4002f','#bcbc34','#393d77','#ff8200','#7800a8','#ff00d7','#ffc100','#b2df8a','#fdb56d','#cab2d6','#c39c95','#29bece','#cc70bc','#669c95','#ff7a9a','#e3026f','#006d33']) | |
distributions = ['uniform','bates', 'irwinHall', 'normal', 'logNormal'] | |
o = {} | |
o.actualClusters = 2 | |
o.guessClusters = 2 | |
o.ptsPerCluster = 1000/o.actualClusters | |
o.objFuncThreshold = .5 | |
o.loop = true | |
colors = c24.slice(-o.guessClusters) | |
w = window.innerWidth | |
h = window.innerHeight | |
r = .005*d3.min([w,h]) | |
xRange = [r,w-r] | |
yRange = [r,h-r] | |
var lines,test,means,interval | |
var distances = diff = d3.range(1,o.guessClusters+1).map(function (d) {return d*d3.max([w,h])}) | |
var data = clusterPoints(o.actualClusters,o.ptsPerCluster,'normal',xRange,yRange) | |
var testPts = data.map(ƒ('points')).reduce(function (prev,curr) {return prev.concat(curr)}) | |
var meanPts = d3.shuffle(testPts).slice(-o.guessClusters) | |
draw(data) | |
interval = setInterval(stepK,400) | |
function distance(p1,p2){ | |
return Math.sqrt(Math.pow((p1.x - p2.x),2) + Math.pow((p1.y - p2.y),2)); | |
} | |
function stop () { | |
} | |
function stepK(){ | |
if(!d3.sum(diff)||d3.sum(diff)<o.objFuncThreshold) return (o.loop)?o.restart():stop() | |
means.data(meanPts) | |
.transition().duration(400).delay(function(d,i) {return i*50}) | |
.attr('cx',ƒ('x')).attr('cy',ƒ('y')) | |
.style('opacity',1) | |
test.each(function (p,i) { | |
var dists = meanPts.map(function(m) { return distance(m,p) }) | |
p.curDist = d3.min(dists) | |
p.curMean = dists.indexOf(p.curDist) | |
d3.select(this) | |
.style('stroke', function () {return colors[p.curMean]}) | |
d3.select('#line-'+i) | |
.transition().duration(400).delay(function(d,i) {return i*100}) | |
.attr('x2',meanPts[p.curMean].x) | |
.attr('y2',meanPts[p.curMean].y) | |
.style('stroke', function () {return colors[p.curMean]}) | |
}) | |
var newMeans = [] | |
var curDistances = [] | |
meanPts.forEach(function (m,i) { | |
_p = test.filter(function (p) { return p.curMean == i }).data() | |
_x = d3.mean(_p.map(ƒ('x'))) | |
_y = d3.mean(_p.map(ƒ('y'))) | |
_dist = d3.mean(_p.map(ƒ('curDist'))) | |
newMeans.push({x:_x,y:_y}) | |
curDistances.push(_dist) | |
}) | |
meanPts = newMeans | |
diff = distances.map(function (d,i) { return Math.abs(d-curDistances[i]) }) | |
distances = curDistances | |
} | |
function draw(data) { | |
svg = d3.select('svg').attr({ | |
width:w, | |
height:h, | |
}).html('') | |
lines = svg.append('g.lines').dataAppend(testPts,'line') | |
.attr('id',function (l,i) {return 'line-'+i}) | |
.attr('x1',ƒ('x')) | |
.attr('y1',ƒ('y')) | |
.attr('x2',ƒ('x')) | |
.attr('y2',ƒ('y')) | |
test = svg.append('g.test').dataAppend(testPts,'g.point') | |
test.append('circle').attr('r',r) | |
.attr('cx',ƒ('x')) | |
.attr('cy',ƒ('y')) | |
means = svg.append('g.means').dataAppend(meanPts,'circle.mean') | |
.attr('r',r+2) | |
.attr('cx',ƒ('x')) | |
.attr('cy',ƒ('y')) | |
.style('stroke', function (d,i) {return colors[i]}) | |
.style('fill', function (d,i) {return '#fff'}) | |
var clusters = svg.append('g.actual').dataAppend(data,'g.cluster') | |
clusters.dataAppend(ƒ('points'),'circle.point.ans') | |
.attr('r',r) | |
.attr('cx',ƒ('x')) | |
.attr('cy',ƒ('y')) | |
clusters.each(function (c,i) { | |
d3.select(this) | |
.selectAll('.point') | |
.style('fill', function () {return colors[i]}) | |
.style('opacity',0) | |
// .style('stroke', function (p) {return colors[i]}) | |
}) | |
} | |
o.restart = function () { | |
if(o.loop){ | |
o.objFuncThreshold = Math.random() * 3 | |
o.guessClusters = d3.shuffle(d3.range(2,5))[0] | |
o.ptsPerCluster = d3.shuffle(d3.range(500,1500))[0]/o.actualClusters | |
} | |
colors = d3.shuffle(c24).slice(-o.guessClusters) | |
distances = diff = d3.range(1,o.guessClusters+1).map(function (d) {return d*d3.max([w,h])}) | |
data = clusterPoints(o.actualClusters,o.ptsPerCluster,'normal',xRange,yRange) | |
testPts = data.map(ƒ('points')).reduce(function (prev,curr) {return prev.concat(curr)}) | |
meanPts = d3.shuffle(testPts).slice(-o.guessClusters) | |
draw(data) | |
clearInterval(interval) | |
interval = setInterval(stepK,400) | |
} | |
var gui = new dat.GUI({width:300}) | |
gui.add(o, 'ptsPerCluster', 0, 1000).listen() | |
.onChange(function (num) { | |
data = [] | |
d3.selectAll('.cluster').each(function (d,i) { | |
if(num>d.points.length-1){ | |
curData = _.extend({},d) | |
rnd = randomPoints((num-d.points.length),'normal',d.xRange,d.yRange) | |
curData.points = curData.points.concat(rnd) | |
data.push(curData) | |
}else{ | |
curData = _.extend({},d) | |
curData.points = curData.points.slice(0,num) | |
data.push(curData) | |
} | |
}) | |
o.restart() | |
}) | |
gui.add(o, 'actualClusters').min(1).max(o.guessClusters+3).step(1).listen() | |
.onChange(function() { | |
o.ptsPerCluster = 1000/o.actualClusters | |
o.restart() | |
}) | |
gui.add(o, 'guessClusters').min(1).max(o.guessClusters+3).step(1).listen() | |
.onChange(function() {o.restart()}) | |
gui.add(o, 'objFuncThreshold').min(0).max(o.guessClusters+3).step(.1).listen() | |
gui.add(o, 'loop') | |
gui.add(o, 'restart') | |
gui.close() | |
</script> | |
</html> |
View raw
(Sorry about that, but we can’t show files that are this big right now.)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment