Skip to content

Instantly share code, notes, and snippets.

@mundhradevang
Created September 1, 2011 08:25
Show Gist options
  • Save mundhradevang/1185705 to your computer and use it in GitHub Desktop.
Save mundhradevang/1185705 to your computer and use it in GitHub Desktop.
Rectangular Treemap SVG
{
"name": "flare",
"children": [
{
"name": "analytics",
"children": [
{
"name": "cluster",
"children": [
{"name": "AgglomerativeCluster", "size": 3938},
{"name": "CommunityStructure", "size": 3812},
{"name": "HierarchicalCluster", "size": 6714},
{"name": "MergeEdge", "size": 743}
]
},
{
"name": "graph",
"children": [
{"name": "BetweennessCentrality", "size": 3534},
{"name": "LinkDistance", "size": 5731},
{"name": "MaxFlowMinCut", "size": 7840},
{"name": "ShortestPaths", "size": 5914},
{"name": "SpanningTree", "size": 3416}
]
},
{
"name": "optimization",
"children": [
{"name": "AspectRatioBanker", "size": 7074}
]
}
]
},
{
"name": "animate",
"children": [
{"name": "Easing", "size": 17010},
{"name": "FunctionSequence", "size": 5842},
{
"name": "interpolate",
"children": [
{"name": "ArrayInterpolator", "size": 1983},
{"name": "ColorInterpolator", "size": 2047},
{"name": "DateInterpolator", "size": 1375},
{"name": "Interpolator", "size": 8746},
{"name": "MatrixInterpolator", "size": 2202},
{"name": "NumberInterpolator", "size": 1382},
{"name": "ObjectInterpolator", "size": 1629},
{"name": "PointInterpolator", "size": 1675},
{"name": "RectangleInterpolator", "size": 2042}
]
},
{"name": "ISchedulable", "size": 1041},
{"name": "Parallel", "size": 5176},
{"name": "Pause", "size": 449},
{"name": "Scheduler", "size": 5593},
{"name": "Sequence", "size": 5534},
{"name": "Transition", "size": 9201},
{"name": "Transitioner", "size": 19975},
{"name": "TransitionEvent", "size": 1116},
{"name": "Tween", "size": 6006}
]
},
{
"name": "data",
"children": [
{
"name": "converters",
"children": [
{"name": "Converters", "size": 721},
{"name": "DelimitedTextConverter", "size": 4294},
{"name": "GraphMLConverter", "size": 9800},
{"name": "IDataConverter", "size": 1314},
{"name": "JSONConverter", "size": 2220}
]
},
{"name": "DataField", "size": 1759},
{"name": "DataSchema", "size": 2165},
{"name": "DataSet", "size": 586},
{"name": "DataSource", "size": 3331},
{"name": "DataTable", "size": 772},
{"name": "DataUtil", "size": 3322}
]
},
{
"name": "display",
"children": [
{"name": "DirtySprite", "size": 8833},
{"name": "LineSprite", "size": 1732},
{"name": "RectSprite", "size": 3623},
{"name": "TextSprite", "size": 10066}
]
},
{
"name": "flex",
"children": [
{"name": "FlareVis", "size": 4116}
]
},
{
"name": "physics",
"children": [
{"name": "DragForce", "size": 1082},
{"name": "GravityForce", "size": 1336},
{"name": "IForce", "size": 319},
{"name": "NBodyForce", "size": 10498},
{"name": "Particle", "size": 2822},
{"name": "Simulation", "size": 9983},
{"name": "Spring", "size": 2213},
{"name": "SpringForce", "size": 1681}
]
},
{
"name": "query",
"children": [
{"name": "AggregateExpression", "size": 1616},
{"name": "And", "size": 1027},
{"name": "Arithmetic", "size": 3891},
{"name": "Average", "size": 891},
{"name": "BinaryExpression", "size": 2893},
{"name": "Comparison", "size": 5103},
{"name": "CompositeExpression", "size": 3677},
{"name": "Count", "size": 781},
{"name": "DateUtil", "size": 4141},
{"name": "Distinct", "size": 933},
{"name": "Expression", "size": 5130},
{"name": "ExpressionIterator", "size": 3617},
{"name": "Fn", "size": 3240},
{"name": "If", "size": 2732},
{"name": "IsA", "size": 2039},
{"name": "Literal", "size": 1214},
{"name": "Match", "size": 3748},
{"name": "Maximum", "size": 843},
{
"name": "methods",
"children": [
{"name": "add", "size": 593},
{"name": "and", "size": 330},
{"name": "average", "size": 287},
{"name": "count", "size": 277},
{"name": "distinct", "size": 292},
{"name": "div", "size": 595},
{"name": "eq", "size": 594},
{"name": "fn", "size": 460},
{"name": "gt", "size": 603},
{"name": "gte", "size": 625},
{"name": "iff", "size": 748},
{"name": "isa", "size": 461},
{"name": "lt", "size": 597},
{"name": "lte", "size": 619},
{"name": "max", "size": 283},
{"name": "min", "size": 283},
{"name": "mod", "size": 591},
{"name": "mul", "size": 603},
{"name": "neq", "size": 599},
{"name": "not", "size": 386},
{"name": "or", "size": 323},
{"name": "orderby", "size": 307},
{"name": "range", "size": 772},
{"name": "select", "size": 296},
{"name": "stddev", "size": 363},
{"name": "sub", "size": 600},
{"name": "sum", "size": 280},
{"name": "update", "size": 307},
{"name": "variance", "size": 335},
{"name": "where", "size": 299},
{"name": "xor", "size": 354},
{"name": "_", "size": 264}
]
},
{"name": "Minimum", "size": 843},
{"name": "Not", "size": 1554},
{"name": "Or", "size": 970},
{"name": "Query", "size": 13896},
{"name": "Range", "size": 1594},
{"name": "StringUtil", "size": 4130},
{"name": "Sum", "size": 791},
{"name": "Variable", "size": 1124},
{"name": "Variance", "size": 1876},
{"name": "Xor", "size": 1101}
]
},
{
"name": "scale",
"children": [
{"name": "IScaleMap", "size": 2105},
{"name": "LinearScale", "size": 1316},
{"name": "LogScale", "size": 3151},
{"name": "OrdinalScale", "size": 3770},
{"name": "QuantileScale", "size": 2435},
{"name": "QuantitativeScale", "size": 4839},
{"name": "RootScale", "size": 1756},
{"name": "Scale", "size": 4268},
{"name": "ScaleType", "size": 1821},
{"name": "TimeScale", "size": 5833}
]
},
{
"name": "util",
"children": [
{"name": "Arrays", "size": 8258},
{"name": "Colors", "size": 10001},
{"name": "Dates", "size": 8217},
{"name": "Displays", "size": 12555},
{"name": "Filter", "size": 2324},
{"name": "Geometry", "size": 10993},
{
"name": "heap",
"children": [
{"name": "FibonacciHeap", "size": 9354},
{"name": "HeapNode", "size": 1233}
]
},
{"name": "IEvaluable", "size": 335},
{"name": "IPredicate", "size": 383},
{"name": "IValueProxy", "size": 874},
{
"name": "math",
"children": [
{"name": "DenseMatrix", "size": 3165},
{"name": "IMatrix", "size": 2815},
{"name": "SparseMatrix", "size": 3366}
]
},
{"name": "Maths", "size": 17705},
{"name": "Orientation", "size": 1486},
{
"name": "palette",
"children": [
{"name": "ColorPalette", "size": 6367},
{"name": "Palette", "size": 1229},
{"name": "ShapePalette", "size": 2059},
{"name": "SizePalette", "size": 2291}
]
},
{"name": "Property", "size": 5559},
{"name": "Shapes", "size": 19118},
{"name": "Sort", "size": 6887},
{"name": "Stats", "size": 6557},
{"name": "Strings", "size": 22026}
]
},
{
"name": "vis",
"children": [
{
"name": "axis",
"children": [
{"name": "Axes", "size": 1302},
{"name": "Axis", "size": 24593},
{"name": "AxisGridLine", "size": 652},
{"name": "AxisLabel", "size": 636},
{"name": "CartesianAxes", "size": 6703}
]
},
{
"name": "controls",
"children": [
{"name": "AnchorControl", "size": 2138},
{"name": "ClickControl", "size": 3824},
{"name": "Control", "size": 1353},
{"name": "ControlList", "size": 4665},
{"name": "DragControl", "size": 2649},
{"name": "ExpandControl", "size": 2832},
{"name": "HoverControl", "size": 4896},
{"name": "IControl", "size": 763},
{"name": "PanZoomControl", "size": 5222},
{"name": "SelectionControl", "size": 7862},
{"name": "TooltipControl", "size": 8435}
]
},
{
"name": "data",
"children": [
{"name": "Data", "size": 20544},
{"name": "DataList", "size": 19788},
{"name": "DataSprite", "size": 10349},
{"name": "EdgeSprite", "size": 3301},
{"name": "NodeSprite", "size": 19382},
{
"name": "render",
"children": [
{"name": "ArrowType", "size": 698},
{"name": "EdgeRenderer", "size": 5569},
{"name": "IRenderer", "size": 353},
{"name": "ShapeRenderer", "size": 2247}
]
},
{"name": "ScaleBinding", "size": 11275},
{"name": "Tree", "size": 7147},
{"name": "TreeBuilder", "size": 9930}
]
},
{
"name": "events",
"children": [
{"name": "DataEvent", "size": 2313},
{"name": "SelectionEvent", "size": 1880},
{"name": "TooltipEvent", "size": 1701},
{"name": "VisualizationEvent", "size": 1117}
]
},
{
"name": "legend",
"children": [
{"name": "Legend", "size": 20859},
{"name": "LegendItem", "size": 4614},
{"name": "LegendRange", "size": 10530}
]
},
{
"name": "operator",
"children": [
{
"name": "distortion",
"children": [
{"name": "BifocalDistortion", "size": 4461},
{"name": "Distortion", "size": 6314},
{"name": "FisheyeDistortion", "size": 3444}
]
},
{
"name": "encoder",
"children": [
{"name": "ColorEncoder", "size": 3179},
{"name": "Encoder", "size": 4060},
{"name": "PropertyEncoder", "size": 4138},
{"name": "ShapeEncoder", "size": 1690},
{"name": "SizeEncoder", "size": 1830}
]
},
{
"name": "filter",
"children": [
{"name": "FisheyeTreeFilter", "size": 5219},
{"name": "GraphDistanceFilter", "size": 3165},
{"name": "VisibilityFilter", "size": 3509}
]
},
{"name": "IOperator", "size": 1286},
{
"name": "label",
"children": [
{"name": "Labeler", "size": 9956},
{"name": "RadialLabeler", "size": 3899},
{"name": "StackedAreaLabeler", "size": 3202}
]
},
{
"name": "layout",
"children": [
{"name": "AxisLayout", "size": 6725},
{"name": "BundledEdgeRouter", "size": 3727},
{"name": "CircleLayout", "size": 9317},
{"name": "CirclePackingLayout", "size": 12003},
{"name": "DendrogramLayout", "size": 4853},
{"name": "ForceDirectedLayout", "size": 8411},
{"name": "IcicleTreeLayout", "size": 4864},
{"name": "IndentedTreeLayout", "size": 3174},
{"name": "Layout", "size": 7881},
{"name": "NodeLinkTreeLayout", "size": 12870},
{"name": "PieLayout", "size": 2728},
{"name": "RadialTreeLayout", "size": 12348},
{"name": "RandomLayout", "size": 870},
{"name": "StackedAreaLayout", "size": 9121},
{"name": "TreeMapLayout", "size": 9191}
]
},
{"name": "Operator", "size": 2490},
{"name": "OperatorList", "size": 5248},
{"name": "OperatorSequence", "size": 4190},
{"name": "OperatorSwitch", "size": 2581},
{"name": "SortOperator", "size": 2023}
]
},
{"name": "Visualization", "size": 16540}
]
}
]
}
(function(){d3.layout = {};
// Implements hierarchical edge bundling using Holten's algorithm. For each
// input link, a path is computed that travels through the tree, up the parent
// hierarchy to the least common ancestor, and then back down to the destination
// node. Each path is simply an array of nodes.
d3.layout.bundle = function() {
return function(links) {
var paths = [],
i = -1,
n = links.length;
while (++i < n) paths.push(d3_layout_bundlePath(links[i]));
return paths;
};
};
function d3_layout_bundlePath(link) {
var start = link.source,
end = link.target,
lca = d3_layout_bundleLeastCommonAncestor(start, end),
points = [start];
while (start !== lca) {
start = start.parent;
points.push(start);
}
var k = points.length;
while (end !== lca) {
points.splice(k, 0, end);
end = end.parent;
}
return points;
}
function d3_layout_bundleAncestors(node) {
var ancestors = [],
parent = node.parent;
while (parent != null) {
ancestors.push(node);
node = parent;
parent = parent.parent;
}
ancestors.push(node);
return ancestors;
}
function d3_layout_bundleLeastCommonAncestor(a, b) {
if (a === b) return a;
var aNodes = d3_layout_bundleAncestors(a),
bNodes = d3_layout_bundleAncestors(b),
aNode = aNodes.pop(),
bNode = bNodes.pop(),
sharedNode = null;
while (aNode === bNode) {
sharedNode = aNode;
aNode = aNodes.pop();
bNode = bNodes.pop();
}
return sharedNode;
}
d3.layout.chord = function() {
var chord = {},
chords,
groups,
matrix,
n,
padding = 0,
sortGroups,
sortSubgroups,
sortChords;
function relayout() {
var subgroups = {},
groupSums = [],
groupIndex = d3.range(n),
subgroupIndex = [],
k,
x,
x0,
i,
j;
chords = [];
groups = [];
// Compute the sum.
k = 0, i = -1; while (++i < n) {
x = 0, j = -1; while (++j < n) {
x += matrix[i][j];
}
groupSums.push(x);
subgroupIndex.push(d3.range(n));
k += x;
}
// Sort groups…
if (sortGroups) {
groupIndex.sort(function(a, b) {
return sortGroups(groupSums[a], groupSums[b]);
});
}
// Sort subgroups…
if (sortSubgroups) {
subgroupIndex.forEach(function(d, i) {
d.sort(function(a, b) {
return sortSubgroups(matrix[i][a], matrix[i][b]);
});
});
}
// Convert the sum to scaling factor for [0, 2pi].
// TODO Allow start and end angle to be specified.
// TODO Allow padding to be specified as percentage?
k = (2 * Math.PI - padding * n) / k;
// Compute the start and end angle for each group and subgroup.
x = 0, i = -1; while (++i < n) {
x0 = x, j = -1; while (++j < n) {
var di = groupIndex[i],
dj = subgroupIndex[i][j],
v = matrix[di][dj];
subgroups[di + "-" + dj] = {
index: di,
subindex: dj,
startAngle: x,
endAngle: x += v * k,
value: v
};
}
groups.push({
index: di,
startAngle: x0,
endAngle: x,
value: (x - x0) / k
});
x += padding;
}
// Generate chords for each (non-empty) subgroup-subgroup link.
i = -1; while (++i < n) {
j = i - 1; while (++j < n) {
var source = subgroups[i + "-" + j],
target = subgroups[j + "-" + i];
if (source.value || target.value) {
chords.push(source.value < target.value
? {source: target, target: source}
: {source: source, target: target})
}
}
}
if (sortChords) resort();
}
function resort() {
chords.sort(function(a, b) {
return sortChords(a.target.value, b.target.value);
});
}
chord.matrix = function(x) {
if (!arguments.length) return matrix;
n = (matrix = x) && matrix.length;
chords = groups = null;
return chord;
};
chord.padding = function(x) {
if (!arguments.length) return padding;
padding = x;
chords = groups = null;
return chord;
};
chord.sortGroups = function(x) {
if (!arguments.length) return sortGroups;
sortGroups = x;
chords = groups = null;
return chord;
};
chord.sortSubgroups = function(x) {
if (!arguments.length) return sortSubgroups;
sortSubgroups = x;
chords = null;
return chord;
};
chord.sortChords = function(x) {
if (!arguments.length) return sortChords;
sortChords = x;
if (chords) resort();
return chord;
};
chord.chords = function() {
if (!chords) relayout();
return chords;
};
chord.groups = function() {
if (!groups) relayout();
return groups;
};
return chord;
};
// A rudimentary force layout using Gauss-Seidel.
d3.layout.force = function() {
var force = {},
event = d3.dispatch("tick"),
size = [1, 1],
alpha,
friction = .9,
linkDistance = d3_layout_forceLinkDistance,
linkStrength = d3_layout_forceLinkStrength,
charge = -30,
gravity = .1,
theta = .8,
interval,
nodes = [],
links = [],
distances,
strengths;
function repulse(node, kc) {
return function(quad, x1, y1, x2, y2) {
if (quad.point !== node) {
var dx = quad.cx - node.x,
dy = quad.cy - node.y,
dn = 1 / Math.sqrt(dx * dx + dy * dy);
/* Barnes-Hut criterion. */
if ((x2 - x1) * dn < theta) {
var k = kc * quad.count * dn * dn;
node.x += dx * k;
node.y += dy * k;
return true;
}
if (quad.point && isFinite(dn)) {
var k = kc * dn * dn;
node.x += dx * k;
node.y += dy * k;
}
}
};
}
function tick() {
var n = nodes.length,
m = links.length,
q = d3.geom.quadtree(nodes),
i, // current index
o, // current object
s, // current source
t, // current target
l, // current distance
x, // x-distance
y; // y-distance
// gauss-seidel relaxation for links
for (i = 0; i < m; ++i) {
o = links[i];
s = o.source;
t = o.target;
x = t.x - s.x;
y = t.y - s.y;
if (l = (x * x + y * y)) {
l = alpha * strengths[i] * ((l = Math.sqrt(l)) - distances[i]) / l;
x *= l;
y *= l;
t.x -= x;
t.y -= y;
s.x += x;
s.y += y;
}
}
// apply gravity forces
var kg = alpha * gravity;
x = size[0] / 2;
y = size[1] / 2;
i = -1; while (++i < n) {
o = nodes[i];
o.x += (x - o.x) * kg;
o.y += (y - o.y) * kg;
}
// compute quadtree center of mass
d3_layout_forceAccumulate(q);
// apply charge forces
var kc = alpha * charge;
i = -1; while (++i < n) {
q.visit(repulse(nodes[i], kc));
}
// position verlet integration
i = -1; while (++i < n) {
o = nodes[i];
if (o.fixed) {
o.x = o.px;
o.y = o.py;
} else {
o.x -= (o.px - (o.px = o.x)) * friction;
o.y -= (o.py - (o.py = o.y)) * friction;
}
}
event.tick.dispatch({type: "tick", alpha: alpha});
// simulated annealing, basically
return (alpha *= .99) < .005;
}
force.on = function(type, listener) {
event[type].add(listener);
return force;
};
force.nodes = function(x) {
if (!arguments.length) return nodes;
nodes = x;
return force;
};
force.links = function(x) {
if (!arguments.length) return links;
links = x;
return force;
};
force.size = function(x) {
if (!arguments.length) return size;
size = x;
return force;
};
force.linkDistance = function(x) {
if (!arguments.length) return linkDistance;
linkDistance = d3.functor(x);
return force;
};
// For backwards-compatibility.
force.distance = force.linkDistance;
force.linkStrength = function(x) {
if (!arguments.length) return linkStrength;
linkStrength = d3.functor(x);
return force;
};
force.friction = function(x) {
if (!arguments.length) return friction;
friction = x;
return force;
};
force.charge = function(x) {
if (!arguments.length) return charge;
charge = x;
return force;
};
force.gravity = function(x) {
if (!arguments.length) return gravity;
gravity = x;
return force;
};
force.theta = function(x) {
if (!arguments.length) return theta;
theta = x;
return force;
};
force.start = function() {
var i,
j,
n = nodes.length,
m = links.length,
w = size[0],
h = size[1],
neighbors,
o;
for (i = 0; i < n; ++i) {
(o = nodes[i]).index = i;
}
distances = [];
strengths = [];
for (i = 0; i < m; ++i) {
o = links[i];
if (typeof o.source == "number") o.source = nodes[o.source];
if (typeof o.target == "number") o.target = nodes[o.target];
distances[i] = linkDistance.call(this, o, i);
strengths[i] = linkStrength.call(this, o, i);
}
for (i = 0; i < n; ++i) {
o = nodes[i];
if (isNaN(o.x)) o.x = position("x", w);
if (isNaN(o.y)) o.y = position("y", h);
if (isNaN(o.px)) o.px = o.x;
if (isNaN(o.py)) o.py = o.y;
}
// initialize node position based on first neighbor
function position(dimension, size) {
var neighbors = neighbor(i),
j = -1,
m = neighbors.length,
x;
while (++j < m) if (!isNaN(x = neighbors[j][dimension])) return x;
return Math.random() * size;
}
// initialize neighbors lazily
function neighbor() {
if (!neighbors) {
neighbors = [];
for (j = 0; j < n; ++j) {
neighbors[j] = [];
}
for (j = 0; j < m; ++j) {
var o = links[j];
neighbors[o.source.index].push(o.target);
neighbors[o.target.index].push(o.source);
}
}
return neighbors[i];
}
return force.resume();
};
force.resume = function() {
alpha = .1;
d3.timer(tick);
return force;
};
force.stop = function() {
alpha = 0;
return force;
};
// use `node.call(force.drag)` to make nodes draggable
force.drag = function() {
this
.on("mouseover.force", d3_layout_forceDragOver)
.on("mouseout.force", d3_layout_forceDragOut)
.on("mousedown.force", dragdown)
.on("touchstart.force", dragdown);
d3.select(window)
.on("mousemove.force", d3_layout_forceDragMove)
.on("touchmove.force", d3_layout_forceDragMove)
.on("mouseup.force", d3_layout_forceDragUp, true)
.on("touchend.force", d3_layout_forceDragUp, true)
.on("click.force", d3_layout_forceDragClick, true);
return force;
};
function dragdown(d, i) {
var m = d3_layout_forcePoint(this.parentNode);
(d3_layout_forceDragNode = d).fixed = true;
d3_layout_forceDragMoved = false;
d3_layout_forceDragElement = this;
d3_layout_forceDragForce = force;
d3_layout_forceDragOffset = [m[0] - d.x, m[1] - d.y];
d3_layout_forceCancel();
}
return force;
};
var d3_layout_forceDragForce,
d3_layout_forceDragNode,
d3_layout_forceDragMoved,
d3_layout_forceDragOffset,
d3_layout_forceStopClick,
d3_layout_forceDragElement;
function d3_layout_forceDragOver(d) {
d.fixed = true;
}
function d3_layout_forceDragOut(d) {
if (d !== d3_layout_forceDragNode) {
d.fixed = false;
}
}
function d3_layout_forcePoint(container) {
return d3.event.touches
? d3.svg.touches(container)[0]
: d3.svg.mouse(container);
}
function d3_layout_forceDragMove() {
if (!d3_layout_forceDragNode) return;
var parent = d3_layout_forceDragElement.parentNode;
// O NOES! The drag element was removed from the DOM.
if (!parent) {
d3_layout_forceDragNode.fixed = false;
d3_layout_forceDragOffset = d3_layout_forceDragNode = d3_layout_forceDragElement = null;
return;
}
var m = d3_layout_forcePoint(parent);
d3_layout_forceDragMoved = true;
d3_layout_forceDragNode.px = m[0] - d3_layout_forceDragOffset[0];
d3_layout_forceDragNode.py = m[1] - d3_layout_forceDragOffset[1];
d3_layout_forceCancel();
d3_layout_forceDragForce.resume(); // restart annealing
}
function d3_layout_forceDragUp() {
if (!d3_layout_forceDragNode) return;
// If the node was moved, prevent the mouseup from propagating.
// Also prevent the subsequent click from propagating (e.g., for anchors).
if (d3_layout_forceDragMoved) {
d3_layout_forceStopClick = true;
d3_layout_forceCancel();
// Don't trigger mousemove for touchend.
if (d3.event.type === "mouseup") d3_layout_forceDragMove();
}
d3_layout_forceDragNode.fixed = false;
d3_layout_forceDragForce =
d3_layout_forceDragOffset =
d3_layout_forceDragNode =
d3_layout_forceDragElement = null;
}
function d3_layout_forceDragClick() {
if (d3_layout_forceStopClick) {
d3_layout_forceCancel();
d3_layout_forceStopClick = false;
}
}
function d3_layout_forceCancel() {
d3.event.stopPropagation();
d3.event.preventDefault();
}
function d3_layout_forceAccumulate(quad) {
var cx = 0,
cy = 0;
quad.count = 0;
if (!quad.leaf) {
var nodes = quad.nodes,
n = nodes.length,
i = -1,
c;
while (++i < n) {
c = nodes[i];
if (c == null) continue;
d3_layout_forceAccumulate(c);
quad.count += c.count;
cx += c.count * c.cx;
cy += c.count * c.cy;
}
}
if (quad.point) {
// jitter internal nodes that are coincident
if (!quad.leaf) {
quad.point.x += Math.random() - .5;
quad.point.y += Math.random() - .5;
}
quad.count++;
cx += quad.point.x;
cy += quad.point.y;
}
quad.cx = cx / quad.count;
quad.cy = cy / quad.count;
}
function d3_layout_forceLinkDistance(link) {
return 20;
}
function d3_layout_forceLinkStrength(link) {
return 1;
}
d3.layout.partition = function() {
var hierarchy = d3.layout.hierarchy(),
size = [1, 1]; // width, height
function position(node, x, dx, dy) {
var children = node.children;
node.x = x;
node.y = node.depth * dy;
node.dx = dx;
node.dy = dy;
if (children) {
var i = -1,
n = children.length,
c,
d;
dx = node.value ? dx / node.value : 0;
while (++i < n) {
position(c = children[i], x, d = c.value * dx, dy);
x += d;
}
}
}
function depth(node) {
var children = node.children,
d = 0;
if (children) {
var i = -1,
n = children.length;
while (++i < n) d = Math.max(d, depth(children[i]));
}
return 1 + d;
}
function partition(d, i) {
var nodes = hierarchy.call(this, d, i);
position(nodes[0], 0, size[0], size[1] / depth(nodes[0]));
return nodes;
}
partition.size = function(x) {
if (!arguments.length) return size;
size = x;
return partition;
};
return d3_layout_hierarchyRebind(partition, hierarchy);
};
d3.layout.pie = function() {
var value = Number,
sort = null,
startAngle = 0,
endAngle = 2 * Math.PI;
function pie(data, i) {
// Compute the start angle.
var a = +(typeof startAngle === "function"
? startAngle.apply(this, arguments)
: startAngle);
// Compute the angular range (end - start).
var k = (typeof endAngle === "function"
? endAngle.apply(this, arguments)
: endAngle) - startAngle;
// Optionally sort the data.
var index = d3.range(data.length);
if (sort != null) index.sort(function(i, j) {
return sort(data[i], data[j]);
});
// Compute the numeric values for each data element.
var values = data.map(value);
// Convert k into a scale factor from value to angle, using the sum.
k /= values.reduce(function(p, d) { return p + d; }, 0);
// Compute the arcs!
var arcs = index.map(function(i) {
return {
data: data[i],
value: d = values[i],
startAngle: a,
endAngle: a += d * k
};
});
// Return the arcs in the original data's order.
return data.map(function(d, i) {
return arcs[index[i]];
});
}
/**
* Specifies the value function *x*, which returns a nonnegative numeric value
* for each datum. The default value function is `Number`. The value function
* is passed two arguments: the current datum and the current index.
*/
pie.value = function(x) {
if (!arguments.length) return value;
value = x;
return pie;
};
/**
* Specifies a sort comparison operator *x*. The comparator is passed two data
* elements from the data array, a and b; it returns a negative value if a is
* less than b, a positive value if a is greater than b, and zero if a equals
* b.
*/
pie.sort = function(x) {
if (!arguments.length) return sort;
sort = x;
return pie;
};
/**
* Specifies the overall start angle of the pie chart. Defaults to 0. The
* start angle can be specified either as a constant or as a function; in the
* case of a function, it is evaluated once per array (as opposed to per
* element).
*/
pie.startAngle = function(x) {
if (!arguments.length) return startAngle;
startAngle = x;
return pie;
};
/**
* Specifies the overall end angle of the pie chart. Defaults to 2π. The
* end angle can be specified either as a constant or as a function; in the
* case of a function, it is evaluated once per array (as opposed to per
* element).
*/
pie.endAngle = function(x) {
if (!arguments.length) return endAngle;
endAngle = x;
return pie;
};
return pie;
};
// data is two-dimensional array of x,y; we populate y0
d3.layout.stack = function() {
var values = Object,
order = d3_layout_stackOrders["default"],
offset = d3_layout_stackOffsets["zero"],
out = d3_layout_stackOut,
x = d3_layout_stackX,
y = d3_layout_stackY;
function stack(data, index) {
// Convert series to canonical two-dimensional representation.
var series = data.map(function(d, i) {
return values.call(stack, d, i);
});
// Convert each series to canonical [[x,y]] representation.
var points = series.map(function(d, i) {
return d.map(function(v, i) {
return [x.call(stack, v, i), y.call(stack, v, i)];
});
});
// Compute the order of series, and permute them.
var orders = order.call(stack, points, index);
series = d3.permute(series, orders);
points = d3.permute(points, orders);
// Compute the baseline…
var offsets = offset.call(stack, points, index);
// And propagate it to other series.
var n = series.length,
m = series[0].length,
i,
j,
o;
for (j = 0; j < m; ++j) {
out.call(stack, series[0][j], o = offsets[j], points[0][j][1]);
for (i = 1; i < n; ++i) {
out.call(stack, series[i][j], o += points[i - 1][j][1], points[i][j][1]);
}
}
return data;
}
stack.values = function(x) {
if (!arguments.length) return values;
values = x;
return stack;
};
stack.order = function(x) {
if (!arguments.length) return order;
order = typeof x === "function" ? x : d3_layout_stackOrders[x];
return stack;
};
stack.offset = function(x) {
if (!arguments.length) return offset;
offset = typeof x === "function" ? x : d3_layout_stackOffsets[x];
return stack;
};
stack.x = function(z) {
if (!arguments.length) return x;
x = z;
return stack;
};
stack.y = function(z) {
if (!arguments.length) return y;
y = z;
return stack;
};
stack.out = function(z) {
if (!arguments.length) return out;
out = z;
return stack;
};
return stack;
}
function d3_layout_stackX(d) {
return d.x;
}
function d3_layout_stackY(d) {
return d.y;
}
function d3_layout_stackOut(d, y0, y) {
d.y0 = y0;
d.y = y;
}
var d3_layout_stackOrders = {
"inside-out": function(data) {
var n = data.length,
i,
j,
max = data.map(d3_layout_stackMaxIndex),
sums = data.map(d3_layout_stackReduceSum),
index = d3.range(n).sort(function(a, b) { return max[a] - max[b]; }),
top = 0,
bottom = 0,
tops = [],
bottoms = [];
for (i = 0; i < n; ++i) {
j = index[i];
if (top < bottom) {
top += sums[j];
tops.push(j);
} else {
bottom += sums[j];
bottoms.push(j);
}
}
return bottoms.reverse().concat(tops);
},
"reverse": function(data) {
return d3.range(data.length).reverse();
},
"default": function(data) {
return d3.range(data.length);
}
};
var d3_layout_stackOffsets = {
"silhouette": function(data) {
var n = data.length,
m = data[0].length,
sums = [],
max = 0,
i,
j,
o,
y0 = [];
for (j = 0; j < m; ++j) {
for (i = 0, o = 0; i < n; i++) o += data[i][j][1];
if (o > max) max = o;
sums.push(o);
}
for (j = 0; j < m; ++j) {
y0[j] = (max - sums[j]) / 2;
}
return y0;
},
"wiggle": function(data) {
var n = data.length,
x = data[0],
m = x.length,
max = 0,
i,
j,
k,
s1,
s2,
s3,
dx,
o,
o0,
y0 = [];
y0[0] = o = o0 = 0;
for (j = 1; j < m; ++j) {
for (i = 0, s1 = 0; i < n; ++i) s1 += data[i][j][1];
for (i = 0, s2 = 0, dx = x[j][0] - x[j - 1][0]; i < n; ++i) {
for (k = 0, s3 = (data[i][j][1] - data[i][j - 1][1]) / (2 * dx); k < i; ++k) {
s3 += (data[k][j][1] - data[k][j - 1][1]) / dx;
}
s2 += s3 * data[i][j][1];
}
y0[j] = o -= s1 ? s2 / s1 * dx : 0;
if (o < o0) o0 = o;
}
for (j = 0; j < m; ++j) y0[j] -= o0;
return y0;
},
"expand": function(data) {
var n = data.length,
m = data[0].length,
k = 1 / n,
i,
j,
o,
y0 = [];
for (j = 0; j < m; ++j) {
for (i = 0, o = 0; i < n; i++) o += data[i][j][1];
if (o) for (i = 0; i < n; i++) data[i][j][1] /= o;
else for (i = 0; i < n; i++) data[i][j][1] = k;
}
for (j = 0; j < m; ++j) y0[j] = 0;
return y0;
},
"zero": function(data) {
var j = -1,
m = data[0].length,
y0 = [];
while (++j < m) y0[j] = 0;
return y0;
}
};
function d3_layout_stackMaxIndex(array) {
var i = 1,
j = 0,
v = array[0][1],
k,
n = array.length;
for (; i < n; ++i) {
if ((k = array[i][1]) > v) {
j = i;
v = k;
}
}
return j;
}
function d3_layout_stackReduceSum(d) {
return d.reduce(d3_layout_stackSum, 0);
}
function d3_layout_stackSum(p, d) {
return p + d[1];
}
d3.layout.histogram = function() {
var frequency = true,
valuer = Number,
ranger = d3_layout_histogramRange,
binner = d3_layout_histogramBinSturges;
function histogram(data, i) {
var bins = [],
values = data.map(valuer, this),
range = ranger.call(this, values, i),
thresholds = binner.call(this, range, values, i),
bin,
i = -1,
n = values.length,
m = thresholds.length - 1,
k = frequency ? 1 : 1 / n,
x;
// Initialize the bins.
while (++i < m) {
bin = bins[i] = [];
bin.dx = thresholds[i + 1] - (bin.x = thresholds[i]);
bin.y = 0;
}
// Fill the bins, ignoring values outside the range.
i = -1; while(++i < n) {
x = values[i];
if ((x >= range[0]) && (x <= range[1])) {
bin = bins[d3.bisect(thresholds, x, 1, m) - 1];
bin.y += k;
bin.push(data[i]);
}
}
return bins;
}
// Specifies how to extract a value from the associated data. The default
// value function is `Number`, which is equivalent to the identity function.
histogram.value = function(x) {
if (!arguments.length) return valuer;
valuer = x;
return histogram;
};
// Specifies the range of the histogram. Values outside the specified range
// will be ignored. The argument `x` may be specified either as a two-element
// array representing the minimum and maximum value of the range, or as a
// function that returns the range given the array of values and the current
// index `i`. The default range is the extent (minimum and maximum) of the
// values.
histogram.range = function(x) {
if (!arguments.length) return ranger;
ranger = d3.functor(x);
return histogram;
};
// Specifies how to bin values in the histogram. The argument `x` may be
// specified as a number, in which case the range of values will be split
// uniformly into the given number of bins. Or, `x` may be an array of
// threshold values, defining the bins; the specified array must contain the
// rightmost (upper) value, thus specifying n + 1 values for n bins. Or, `x`
// may be a function which is evaluated, being passed the range, the array of
// values, and the current index `i`, returning an array of thresholds. The
// default bin function will divide the values into uniform bins using
// Sturges' formula.
histogram.bins = function(x) {
if (!arguments.length) return binner;
binner = typeof x === "number"
? function(range) { return d3_layout_histogramBinFixed(range, x); }
: d3.functor(x);
return histogram;
};
// Specifies whether the histogram's `y` value is a count (frequency) or a
// probability (density). The default value is true.
histogram.frequency = function(x) {
if (!arguments.length) return frequency;
frequency = !!x;
return histogram;
};
return histogram;
};
function d3_layout_histogramBinSturges(range, values) {
return d3_layout_histogramBinFixed(range, Math.ceil(Math.log(values.length) / Math.LN2 + 1));
}
function d3_layout_histogramBinFixed(range, n) {
var x = -1,
b = +range[0],
m = (range[1] - b) / n,
f = [];
while (++x <= n) f[x] = m * x + b;
return f;
}
function d3_layout_histogramRange(values) {
return [d3.min(values), d3.max(values)];
}
d3.layout.hierarchy = function() {
var sort = d3_layout_hierarchySort,
children = d3_layout_hierarchyChildren,
value = d3_layout_hierarchyValue;
// Recursively compute the node depth and value.
// Also converts the data representation into a standard hierarchy structure.
function recurse(data, depth, nodes) {
var childs = children.call(hierarchy, data, depth),
node = d3_layout_hierarchyInline ? data : {data: data};
node.depth = depth;
nodes.push(node);
if (childs) {
var i = -1,
n = childs.length,
c = node.children = [],
v = 0,
j = depth + 1;
while (++i < n) {
d = recurse(childs[i], j, nodes);
d.parent = node;
c.push(d);
v += d.value;
}
if (sort) c.sort(sort);
if (value) node.value = v;
} else if (value) {
node.value = +value.call(hierarchy, data, depth) || 0;
}
return node;
}
// Recursively re-evaluates the node value.
function revalue(node, depth) {
var children = node.children,
v = 0;
if (children) {
var i = -1,
n = children.length,
j = depth + 1;
while (++i < n) v += revalue(children[i], j);
} else if (value) {
v = +value.call(hierarchy, d3_layout_hierarchyInline ? node : node.data, depth) || 0;
}
if (value) node.value = v;
return v;
}
function hierarchy(d) {
var nodes = [];
recurse(d, 0, nodes);
return nodes;
}
hierarchy.sort = function(x) {
if (!arguments.length) return sort;
sort = x;
return hierarchy;
};
hierarchy.children = function(x) {
if (!arguments.length) return children;
children = x;
return hierarchy;
};
hierarchy.value = function(x) {
if (!arguments.length) return value;
value = x;
return hierarchy;
};
// Re-evaluates the `value` property for the specified hierarchy.
hierarchy.revalue = function(root) {
revalue(root, 0);
return root;
};
return hierarchy;
};
// A method assignment helper for hierarchy subclasses.
function d3_layout_hierarchyRebind(object, hierarchy) {
object.sort = d3.rebind(object, hierarchy.sort);
object.children = d3.rebind(object, hierarchy.children);
object.links = d3_layout_hierarchyLinks;
object.value = d3.rebind(object, hierarchy.value);
// If the new API is used, enabling inlining.
object.nodes = function(d) {
d3_layout_hierarchyInline = true;
return (object.nodes = object)(d);
};
return object;
}
function d3_layout_hierarchyChildren(d) {
return d.children;
}
function d3_layout_hierarchyValue(d) {
return d.value;
}
function d3_layout_hierarchySort(a, b) {
return b.value - a.value;
}
// Returns an array source+target objects for the specified nodes.
function d3_layout_hierarchyLinks(nodes) {
return d3.merge(nodes.map(function(parent) {
return (parent.children || []).map(function(child) {
return {source: parent, target: child};
});
}));
}
// For backwards-compatibility, don't enable inlining by default.
var d3_layout_hierarchyInline = false;
d3.layout.pack = function() {
var hierarchy = d3.layout.hierarchy().sort(d3_layout_packSort),
size = [1, 1];
function pack(d, i) {
var nodes = hierarchy.call(this, d, i),
root = nodes[0];
// Recursively compute the layout.
root.x = 0;
root.y = 0;
d3_layout_packTree(root);
// Scale the layout to fit the requested size.
var w = size[0],
h = size[1],
k = 1 / Math.max(2 * root.r / w, 2 * root.r / h);
d3_layout_packTransform(root, w / 2, h / 2, k);
return nodes;
}
pack.size = function(x) {
if (!arguments.length) return size;
size = x;
return pack;
};
return d3_layout_hierarchyRebind(pack, hierarchy);
};
function d3_layout_packSort(a, b) {
return a.value - b.value;
}
function d3_layout_packInsert(a, b) {
var c = a._pack_next;
a._pack_next = b;
b._pack_prev = a;
b._pack_next = c;
c._pack_prev = b;
}
function d3_layout_packSplice(a, b) {
a._pack_next = b;
b._pack_prev = a;
}
function d3_layout_packIntersects(a, b) {
var dx = b.x - a.x,
dy = b.y - a.y,
dr = a.r + b.r;
return (dr * dr - dx * dx - dy * dy) > .001; // within epsilon
}
function d3_layout_packCircle(nodes) {
var xMin = Infinity,
xMax = -Infinity,
yMin = Infinity,
yMax = -Infinity,
n = nodes.length,
a, b, c, j, k;
function bound(node) {
xMin = Math.min(node.x - node.r, xMin);
xMax = Math.max(node.x + node.r, xMax);
yMin = Math.min(node.y - node.r, yMin);
yMax = Math.max(node.y + node.r, yMax);
}
// Create node links.
nodes.forEach(d3_layout_packLink);
// Create first node.
a = nodes[0];
a.x = -a.r;
a.y = 0;
bound(a);
// Create second node.
if (n > 1) {
b = nodes[1];
b.x = b.r;
b.y = 0;
bound(b);
// Create third node and build chain.
if (n > 2) {
c = nodes[2];
d3_layout_packPlace(a, b, c);
bound(c);
d3_layout_packInsert(a, c);
a._pack_prev = c;
d3_layout_packInsert(c, b);
b = a._pack_next;
// Now iterate through the rest.
for (var i = 3; i < n; i++) {
d3_layout_packPlace(a, b, c = nodes[i]);
// Search for the closest intersection.
var isect = 0, s1 = 1, s2 = 1;
for (j = b._pack_next; j !== b; j = j._pack_next, s1++) {
if (d3_layout_packIntersects(j, c)) {
isect = 1;
break;
}
}
if (isect == 1) {
for (k = a._pack_prev; k !== j._pack_prev; k = k._pack_prev, s2++) {
if (d3_layout_packIntersects(k, c)) {
if (s2 < s1) {
isect = -1;
j = k;
}
break;
}
}
}
// Update node chain.
if (isect == 0) {
d3_layout_packInsert(a, c);
b = c;
bound(c);
} else if (isect > 0) {
d3_layout_packSplice(a, j);
b = j;
i--;
} else { // isect < 0
d3_layout_packSplice(j, b);
a = j;
i--;
}
}
}
}
// Re-center the circles and return the encompassing radius.
var cx = (xMin + xMax) / 2,
cy = (yMin + yMax) / 2,
cr = 0;
for (var i = 0; i < n; i++) {
var node = nodes[i];
node.x -= cx;
node.y -= cy;
cr = Math.max(cr, node.r + Math.sqrt(node.x * node.x + node.y * node.y));
}
// Remove node links.
nodes.forEach(d3_layout_packUnlink);
return cr;
}
function d3_layout_packLink(node) {
node._pack_next = node._pack_prev = node;
}
function d3_layout_packUnlink(node) {
delete node._pack_next;
delete node._pack_prev;
}
function d3_layout_packTree(node) {
var children = node.children;
if (children) {
children.forEach(d3_layout_packTree);
node.r = d3_layout_packCircle(children);
} else {
node.r = Math.sqrt(node.value);
}
}
function d3_layout_packTransform(node, x, y, k) {
var children = node.children;
node.x = (x += k * node.x);
node.y = (y += k * node.y);
node.r *= k;
if (children) {
var i = -1, n = children.length;
while (++i < n) d3_layout_packTransform(children[i], x, y, k);
}
}
function d3_layout_packPlace(a, b, c) {
var da = b.r + c.r,
db = a.r + c.r,
dx = b.x - a.x,
dy = b.y - a.y,
dc = Math.sqrt(dx * dx + dy * dy),
cos = (db * db + dc * dc - da * da) / (2 * db * dc),
theta = Math.acos(cos),
x = cos * db,
h = Math.sin(theta) * db;
dx /= dc;
dy /= dc;
c.x = a.x + x * dx + h * dy;
c.y = a.y + x * dy - h * dx;
}
// Implements a hierarchical layout using the cluster (or dendogram) algorithm.
d3.layout.cluster = function() {
var hierarchy = d3.layout.hierarchy().sort(null).value(null),
separation = d3_layout_treeSeparation,
size = [1, 1]; // width, height
function cluster(d, i) {
var nodes = hierarchy.call(this, d, i),
root = nodes[0],
previousNode,
x = 0,
kx,
ky;
// First walk, computing the initial x & y values.
d3_layout_treeVisitAfter(root, function(node) {
if (node.children) {
node.x = d3_layout_clusterX(node.children);
node.y = d3_layout_clusterY(node.children);
} else {
node.x = previousNode ? x += separation(node, previousNode) : 0;
node.y = 0;
previousNode = node;
}
});
// Compute the left-most, right-most, and depth-most nodes for extents.
var left = d3_layout_clusterLeft(root),
right = d3_layout_clusterRight(root),
x0 = left.x - separation(left, right) / 2,
x1 = right.x + separation(right, left) / 2;
// Second walk, normalizing x & y to the desired size.
d3_layout_treeVisitAfter(root, function(node) {
node.x = (node.x - x0) / (x1 - x0) * size[0];
node.y = (1 - node.y / root.y) * size[1];
});
return nodes;
}
cluster.separation = function(x) {
if (!arguments.length) return separation;
separation = x;
return cluster;
};
cluster.size = function(x) {
if (!arguments.length) return size;
size = x;
return cluster;
};
return d3_layout_hierarchyRebind(cluster, hierarchy);
};
function d3_layout_clusterY(children) {
return 1 + d3.max(children, function(child) {
return child.y;
});
}
function d3_layout_clusterX(children) {
return children.reduce(function(x, child) {
return x + child.x;
}, 0) / children.length;
}
function d3_layout_clusterLeft(node) {
var children = node.children;
return children ? d3_layout_clusterLeft(children[0]) : node;
}
function d3_layout_clusterRight(node) {
var children = node.children;
return children ? d3_layout_clusterRight(children[children.length - 1]) : node;
}
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
d3.layout.tree = function() {
var hierarchy = d3.layout.hierarchy().sort(null).value(null),
separation = d3_layout_treeSeparation,
size = [1, 1]; // width, height
function tree(d, i) {
var nodes = hierarchy.call(this, d, i),
root = nodes[0];
function firstWalk(node, previousSibling) {
var children = node.children,
layout = node._tree;
if (children && (n = children.length)) {
var n,
firstChild = children[0],
previousChild,
ancestor = firstChild,
child,
i = -1;
while (++i < n) {
child = children[i];
firstWalk(child, previousChild);
ancestor = apportion(child, previousChild, ancestor);
previousChild = child;
}
d3_layout_treeShift(node);
var midpoint = .5 * (firstChild._tree.prelim + child._tree.prelim);
if (previousSibling) {
layout.prelim = previousSibling._tree.prelim + separation(node, previousSibling);
layout.mod = layout.prelim - midpoint;
} else {
layout.prelim = midpoint;
}
} else {
if (previousSibling) {
layout.prelim = previousSibling._tree.prelim + separation(node, previousSibling);
}
}
}
function secondWalk(node, x) {
node.x = node._tree.prelim + x;
var children = node.children;
if (children) {
var i = -1,
n = children.length;
x += node._tree.mod;
while (++i < n) {
secondWalk(children[i], x);
}
}
}
function apportion(node, previousSibling, ancestor) {
if (previousSibling) {
var vip = node,
vop = node,
vim = previousSibling,
vom = node.parent.children[0],
sip = vip._tree.mod,
sop = vop._tree.mod,
sim = vim._tree.mod,
som = vom._tree.mod,
shift;
while (vim = d3_layout_treeRight(vim), vip = d3_layout_treeLeft(vip), vim && vip) {
vom = d3_layout_treeLeft(vom);
vop = d3_layout_treeRight(vop);
vop._tree.ancestor = node;
shift = vim._tree.prelim + sim - vip._tree.prelim - sip + separation(vim, vip);
if (shift > 0) {
d3_layout_treeMove(d3_layout_treeAncestor(vim, node, ancestor), node, shift);
sip += shift;
sop += shift;
}
sim += vim._tree.mod;
sip += vip._tree.mod;
som += vom._tree.mod;
sop += vop._tree.mod;
}
if (vim && !d3_layout_treeRight(vop)) {
vop._tree.thread = vim;
vop._tree.mod += sim - sop;
}
if (vip && !d3_layout_treeLeft(vom)) {
vom._tree.thread = vip;
vom._tree.mod += sip - som;
ancestor = node;
}
}
return ancestor;
}
// Initialize temporary layout variables.
d3_layout_treeVisitAfter(root, function(node, previousSibling) {
node._tree = {
ancestor: node,
prelim: 0,
mod: 0,
change: 0,
shift: 0,
number: previousSibling ? previousSibling._tree.number + 1 : 0
};
});
// Compute the layout using Buchheim et al.'s algorithm.
firstWalk(root);
secondWalk(root, -root._tree.prelim);
// Compute the left-most, right-most, and depth-most nodes for extents.
var left = d3_layout_treeSearch(root, d3_layout_treeLeftmost),
right = d3_layout_treeSearch(root, d3_layout_treeRightmost),
deep = d3_layout_treeSearch(root, d3_layout_treeDeepest),
x0 = left.x - separation(left, right) / 2,
x1 = right.x + separation(right, left) / 2,
y1 = deep.depth || 1;
// Clear temporary layout variables; transform x and y.
d3_layout_treeVisitAfter(root, function(node) {
node.x = (node.x - x0) / (x1 - x0) * size[0];
node.y = node.depth / y1 * size[1];
delete node._tree;
});
return nodes;
}
tree.separation = function(x) {
if (!arguments.length) return separation;
separation = x;
return tree;
};
tree.size = function(x) {
if (!arguments.length) return size;
size = x;
return tree;
};
return d3_layout_hierarchyRebind(tree, hierarchy);
};
function d3_layout_treeSeparation(a, b) {
return a.parent == b.parent ? 1 : 2;
}
// function d3_layout_treeSeparationRadial(a, b) {
// return (a.parent == b.parent ? 1 : 2) / a.depth;
// }
function d3_layout_treeLeft(node) {
return node.children ? node.children[0] : node._tree.thread;
}
function d3_layout_treeRight(node) {
return node.children ? node.children[node.children.length - 1] : node._tree.thread;
}
function d3_layout_treeSearch(node, compare) {
var children = node.children;
if (children) {
var child,
n = children.length,
i = -1;
while (++i < n) {
if (compare(child = d3_layout_treeSearch(children[i], compare), node) > 0) {
node = child;
}
}
}
return node;
}
function d3_layout_treeRightmost(a, b) {
return a.x - b.x;
}
function d3_layout_treeLeftmost(a, b) {
return b.x - a.x;
}
function d3_layout_treeDeepest(a, b) {
return a.depth - b.depth;
}
function d3_layout_treeVisitAfter(node, callback) {
function visit(node, previousSibling) {
var children = node.children;
if (children) {
var child,
previousChild = null,
i = -1,
n = children.length;
while (++i < n) {
child = children[i];
visit(child, previousChild);
previousChild = child;
}
}
callback(node, previousSibling);
}
visit(node, null);
}
function d3_layout_treeShift(node) {
var shift = 0,
change = 0,
children = node.children,
i = children.length,
child;
while (--i >= 0) {
child = children[i]._tree;
child.prelim += shift;
child.mod += shift;
shift += child.shift + (change += child.change);
}
}
function d3_layout_treeMove(ancestor, node, shift) {
ancestor = ancestor._tree;
node = node._tree;
var change = shift / (node.number - ancestor.number);
ancestor.change += change;
node.change -= change;
node.shift += shift;
node.prelim += shift;
node.mod += shift;
}
function d3_layout_treeAncestor(vim, node, ancestor) {
return vim._tree.ancestor.parent == node.parent
? vim._tree.ancestor
: ancestor;
}
// Squarified Treemaps by Mark Bruls, Kees Huizing, and Jarke J. van Wijk
// Modified to support a target aspect ratio by Jeff Heer
d3.layout.treemap = function() {
var hierarchy = d3.layout.hierarchy(),
round = Math.round,
size = [1, 1], // width, height
padding = null,
pad = d3_layout_treemapPadNull,
sticky = false,
stickies,
ratio = 0.5 * (1 + Math.sqrt(5)); // golden ratio
// Compute the area for each child based on value & scale.
function scale(children, k) {
var i = -1,
n = children.length,
child,
area;
while (++i < n) {
area = (child = children[i]).value * (k < 0 ? 0 : k);
child.area = isNaN(area) || area <= 0 ? 0 : area;
}
}
// Recursively arranges the specified node's children into squarified rows.
function squarify(node) {
if (!node.children) return;
var rect = pad(node),
row = [],
children = node.children.slice(), // copy-on-write
child,
best = Infinity, // the best row score so far
score, // the current row score
u = Math.min(rect.dx, rect.dy), // initial orientation
n,
horizontal;
scale(children, rect.dx * rect.dy / node.value);
if (u==rect.dx)
horizontal = true;
else
horizontal = false;
row.area = 0;
while ((n = children.length) > 0) {
row.push(child = children[n - 1]);
row.area += child.area;
if ((score = worst(row, u, horizontal)) <= best) { // continue with this orientation
children.pop();
best = score;
} else { // abort, and try a different orientation
row.area -= row.pop().area;
position(row, u, rect, false);
u = Math.min(rect.dx, rect.dy);
row.length = row.area = 0;
best = Infinity;
}
}
if (row.length) {
position(row, u, rect, true);
row.length = row.area = 0;
}
node.children.forEach(squarify);
}
// Recursively resizes the specified node's children into existing rows.
// Preserves the existing layout!
function stickify(node) {
if (!node.children) return;
var rect = pad(node),
children = node.children.slice(), // copy-on-write
child,
row = [];
scale(children, rect.dx * rect.dy / node.value);
row.area = 0;
while (child = children.pop()) {
row.push(child);
row.area += child.area;
if (child.z != null) {
position(row, child.z ? rect.dx : rect.dy, rect, !children.length);
row.length = row.area = 0;
}
}
node.children.forEach(stickify);
}
// Computes the score for the specified row, as combination of the worst aspect ratio and not close to a horizontal rectangle.
function worst(row, u, horizontal){
// var weight = 1;
var hor_aspect_corr = 0;
var s = row.area, r, rmax = 0, rmin = Infinity, i = -1, n = row.length
hor_aspect_min = Infinity, hor_aspect_max = 0;
if (horizontal == true) { // that means the u sent was dx
while (++i < n) {
r = row[i].area;
if (r < rmin)
rmin = r;
if (r > rmax)
rmax = r;
if (((u * u * r) / (s * s)) <= hor_aspect_min) {//u*u/r
hor_aspect_min = (u * u * r) / (s * s);
}
if (((u * u * r) / (s * s)) >= hor_aspect_max) {
hor_aspect_max = (u * u * r) / (s * s);
}
}
}
else {
while (++i < n) {
r = row[i].area;
if (r < rmin)
rmin = r;
if (r > rmax)
rmax = r;
if (((s * s) / (u * u * r)) <= hor_aspect_min) {//r/(u*u)
hor_aspect_min = (s * s) / (u * u * r);
}
if (((s * s) / (u * u * r)) >= hor_aspect_max) {
hor_aspect_max = (s * s) / (u * u * r);
}
}
}
s *= s;
u *= u;
hor_aspect_corr = 1 * pc_ws_lnr(hor_aspect_min) + 10 * pc_ws_lnr(hor_aspect_max);
return hor_aspect_corr + 3 * Math.max((u * rmax) / s, s / (u * rmin));
}
// Function to get the value from the piece-wise-linear function with slope changing points
// with values (0, 200), (1,100), (1.5, 1), (4.5, 100), (6,200)
function pc_ws_lnr(x){
if (x <= 1)
y = 600 - 200 * x;
else
if (x > 1 && x <= 1.25)
y = -1200 * x + 1600;
else
if (x > 1.25 && x <= 2)
y = -133.33 * x + 266.66;
else
if (x > 2 && x <= 3)
y = 10 * x - 20;
else
if (x > 3 && x <= 4)
y = 50 * x - 100;
else
y = 100 * x - 300;
return y / 4;
}
// Computes the score for the specified row, as the worst aspect ratio.
function worst_original(row, u) {
var s = row.area,
r,
rmax = 0,
rmin = Infinity,
i = -1,
n = row.length;
while (++i < n) {
if (!(r = row[i].area)) continue;
if (r < rmin) rmin = r;
if (r > rmax) rmax = r;
}
s *= s;
u *= u;
return s
? Math.max((u * rmax * ratio) / s, s / (u * rmin * ratio))
: Infinity;
}
// Positions the specified row of nodes. Modifies `rect`.
function position(row, u, rect, flush) {
var i = -1,
n = row.length,
x = rect.x,
y = rect.y,
v = u ? round(row.area / u) : 0,
o;
if (u == rect.dx) { // horizontal subdivision
if (flush || v > rect.dy) v = rect.dy; // over+underflow
while (++i < n) {
o = row[i];
o.x = x;
o.y = y;
o.dy = v;
x += o.dx = v ? round(o.area / v) : 0;
}
o.z = true;
o.dx += rect.x + rect.dx - x; // rounding error
rect.y += v;
rect.dy -= v;
} else { // vertical subdivision
if (flush || v > rect.dx) v = rect.dx; // over+underflow
while (++i < n) {
o = row[i];
o.x = x;
o.y = y;
o.dx = v;
y += o.dy = v ? round(o.area / v) : 0;
}
o.z = false;
o.dy += rect.y + rect.dy - y; // rounding error
rect.x += v;
rect.dx -= v;
}
}
function treemap(d) {
var nodes = stickies || hierarchy(d),
root = nodes[0];
root.x = 0;
root.y = 0;
root.dx = size[0];
root.dy = size[1];
if (stickies) hierarchy.revalue(root);
scale([root], root.dx * root.dy / root.value);
(stickies ? stickify : squarify)(root);
if (sticky) stickies = nodes;
return nodes;
}
treemap.size = function(x) {
if (!arguments.length) return size;
size = x;
return treemap;
};
treemap.padding = function(x) {
if (!arguments.length) return padding;
function padFunction(node) {
var p = x.call(treemap, node, node.depth);
return p == null
? d3_layout_treemapPadNull(node)
: d3_layout_treemapPad(node, typeof p === "number" ? [p, p, p, p] : p);
}
function padConstant(node) {
return d3_layout_treemapPad(node, x);
}
var type;
pad = (padding = x) == null ? d3_layout_treemapPadNull
: (type = typeof x) === "function" ? padFunction
: type === "number" ? (x = [x, x, x, x], padConstant)
: padConstant;
return treemap;
};
treemap.round = function(x) {
if (!arguments.length) return round != Number;
round = x ? Math.round : Number;
return treemap;
};
treemap.sticky = function(x) {
if (!arguments.length) return sticky;
sticky = x;
stickies = null;
return treemap;
};
treemap.ratio = function(x) {
if (!arguments.length) return ratio;
ratio = x;
return treemap;
};
return d3_layout_hierarchyRebind(treemap, hierarchy);
};
function d3_layout_treemapPadNull(node) {
return {x: node.x, y: node.y, dx: node.dx, dy: node.dy};
}
function d3_layout_treemapPad(node, padding) {
var x = node.x + padding[3],
y = node.y + padding[0],
dx = node.dx - padding[1] - padding[3],
dy = node.dy - padding[0] - padding[2];
if (dx < 0) { x += dx / 2; dx = 0; }
if (dy < 0) { y += dy / 2; dy = 0; }
return {x: x, y: y, dx: dx, dy: dy};
}
})();
<!DOCTYPE html>
<html>
<head>
<script type="text/javascript" src="http://mbostock.github.com/d3/d3.js"></script>
<script type="text/javascript" src="d3.layout.js"></script>
<style type="text/css">
rect {
fill: none;
stroke: #fff;
}
text {
font: 10px sans-serif;
}
</style>
</head>
<body>
<script type="text/javascript" src="treemap.js"></script>
</body>
</html>
var w = 960,
h = 500,
color = d3.scale.category20c();
var treemap = d3.layout.treemap()
.padding(4)
.size([w, h])
.value(function(d) { return d.size; });
var svg = d3.select("body").append("svg:svg")
.style("width", w)
.style("height", h)
.append("svg:g")
.attr("transform", "translate(-.5,-.5)");
d3.json("readme.json", function(json) {
var cell = svg.data([json]).selectAll("g")
.data(treemap)
.enter().append("svg:g")
.attr("class", "cell")
.attr("transform", function(d) { return "translate(" + d.x + "," + d.y + ")"; });
cell.append("svg:rect")
.attr("width", function(d) { return d.dx; })
.attr("height", function(d) { return d.dy; })
.style("fill", function(d) { return d.children ? color(d.data.name) : null; });
cell.append("svg:text")
.attr("x", function(d) { return d.dx / 2; })
.attr("y", function(d) { return d.dy / 2; })
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.text(function(d) { return d.children ? null : d.data.name; });
});
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment