Skip to content

Instantly share code, notes, and snippets.

@EfratVil
Last active November 30, 2016 08:24
Normal Distributions

Compering 2 normal distributions.

<!DOCTYPE html>
<meta charset="utf-8">
<style>
body {
font: 10px sans-serif;
}
.line {
stroke: #000;
stroke-width: 1.5px;
}
.axis path,
.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;
}
</style>
<body>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="https://cdn.jsdelivr.net/jstat/latest/jstat.min.js"></script>
<script>
var margin = {top: 20, right: 30, bottom: 30, left: 40},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;
var array1 = Random_normal_Dist(30, 15);
var array2 = Random_normal_Dist(30, 10);
var x = d3.scaleLinear()
.rangeRound([0, width]);
//Min q
var d1 = d3.min(array1, function (d) { return d.q; });
var d2 = d3.min(array2, function (d) { return d.q; });
var min_d = d3.min([d1, d2]);
//Max q
d1 = d3.max(array1, function (d) { return d.q; });
d2 = d3.max(array2, function (d) { return d.q; });
var max_d = d3.max([d1, d2]);
//Max p
d1 = d3.max(array1, function (d) { return d.p; });
d2 = d3.max(array2, function (d) { return d.p; });
var max_p = d3.max([d1, d2]);
x.domain([min_d, max_d]).nice;
var y = d3.scaleLinear()
.domain([0, max_p])
.range([height, 0]);
var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
var gX = svg.append("g")
.attr("class", "x axis")
.attr("transform", "translate(0," + height + ")")
.call(d3.axisBottom(x));
//var gY = svg.append("g")
// .attr("class", "y axis")
// .call(d3.axisLeft(y));
var line = d3.line()
.x(function (d) { return x(d.q); })
.y(function (d) { return y(d.p); });
svg.append("path")
.datum(array1)
.attr("class", "line")
.attr("d", line)
.style("fill", "#fdae61")
.style("opacity", "0.5");
svg.append("path")
.datum(array2)
.attr("class", "line")
.attr("d", line)
.style("fill", "#4393c3")
.style("opacity", "0.5");
function Random_normal_Dist(mean, sd) {
data = [];
for (var i = mean - 4 * sd; i < mean + 4 * sd; i += 1) {
q = i
p = jStat.normal.pdf(i, mean, sd);
arr = {
"q": q,
"p": p
}
data.push(arr);
};
return data;
}
</script>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment