Skip to content

Instantly share code, notes, and snippets.

@bherr2
Last active October 14, 2019 20:52
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save bherr2/2e3e6c999575fe0fcd6cfaab42020e1b to your computer and use it in GitHub Desktop.
Save bherr2/2e3e6c999575fe0fcd6cfaab42020e1b to your computer and use it in GitHub Desktop.
mav-embed example: simple integration
license: MIT
height: 500
scrolling: no
border: yes
FN ISI Export Format
VR 1.0
PT J
AU Wuchty, S
Barabasi, AL
Ferdig, MT
TI Stable evolutionary signal in a Yeast protein interaction network
SO BMC EVOLUTIONARY BIOLOGY
LA English
DT Article
ID SACCHAROMYCES-CEREVISIAE; FUNCTIONAL MODULES; INTERACTION MAP; CELLULAR
NETWORKS; COMPLEX NETWORKS; IDENTIFICATION; ORGANIZATION; ORTHOLOGS;
PATTERNS; DATABASE
AB Background: The recently emerged protein interaction network paradigm
can provide novel and important insights into the innerworkings of a
cell. Yet, the heavy burden of both false positive and false negative
protein-protein interaction data casts doubt on the broader usefulness
of these interaction sets. Approaches focusing on one-protein-at-a-time
have been powerfully employed to demonstrate the high degree of
conservation of proteins participating in numerous interactions; here,
we expand his 'node' focused paradigm to investigate the relative
persistence of 'link' based evolutionary signals in a protein
interaction network of S. cerevisiae and point out the value of this
relatively untapped source of information.
Results: The trend for highly connected proteins to be preferably
conserved in evolution is stable, even in the context of tremendous
noise in the underlying protein interactions as well as in the
assignment of orthology among five higher eukaryotes. We find that
local clustering around interactions correlates with preferred
evolutionary conservation of the participating proteins; furthermore
the correlation between high local clustering and evolutionary
conservation is accompanied by a stable elevated degree of coexpression
of the interacting proteins. We use this conserved interaction data,
combined with P. falciparum /Yeast orthologs, as proof-of-principle
that high-order network topology can be used comparatively to deduce
local network structure in non-model organisms.
Conclusion: High local clustering is a criterion for the reliability of
an interaction and coincides with preferred evolutionary conservation
and significant coexpression. These strong and stable correlations
indicate that evolutionary units go beyond a single protein to include
the interactions among them. In particular, the stability of these
signals in the face of extreme noise suggests that empirical protein
interaction data can be integrated with orthologous clustering around
these protein interactions to reliably infer local network structures
in non-model organisms.
C1 Northwestern Univ, NW Inst Complex, Evanston, IL 60202 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Biol, Notre Dame, IN 46556 USA.
RP Wuchty, S, Northwestern Univ, NW Inst Complex, Chambers Hall,600 Foster
St, Evanston, IL 60202 USA.
EM s-wuchty@northwestern.edu
alb@nd.edu
mferdig@nd.edu
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
BABU MM, 2004, CURR OPIN STRUC BIOL, V14, P283
BARABAI A, 2004, NATURE REV GEN, P101
BARABASI AL, 1999, SCIENCE, V286, P509
BORK P, 2004, CURR OPIN STRUC BIOL, V14, P292
BOZDECH Z, 2003, PLOS BIOL, V1, P1
BUTLAND G, 2005, NATURE, V433, P531
EISEN MB, 1998, P NATL ACAD SCI USA, V95, P14863
FRASER HB, 2002, SCIENCE, V296, P750
FRASER HB, 2003, BMC EVOL BIOL, V3
GAVIN AC, 2002, NATURE, V415, P141
GE H, 2001, NAT GENET, V29, P482
GIOT L, 2003, SCIENCE, V302, P1727
GOLDBERG DS, 2003, P NATL ACAD SCI USA, V100, P4372
GOLDSTEIN M, 2004, FITTING POWER LAW DI
HAN JDJ, 2004, NATURE, V430, P88
HO Y, 2002, NATURE, V415, P180
ITO T, 2000, P NATL ACAD SCI USA, V97, P1143
JEONG H, 2001, NATURE, V411, P41
JORDAN I, 2003, BMC EVOL BIOL, V3
OBRIEN KP, 2005, NUCLEIC ACIDS RES, V33, D476
RAIN JC, 2001, NATURE, V409, P211
REMM M, 2001, J MOL BIOL, V314, P1041
RIVES AW, 2003, P NATL ACAD SCI USA, V100, P1128
SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
SHARAN R, 2005, P NATL ACAD SCI USA, V102, P1974
SNEL B, 2002, P NATL ACAD SCI USA, V99, P5890
SPIRIN V, 2003, P NATL ACAD SCI USA, V100, P12123
UETZ P, 2000, NATURE, V403, P623
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
VESPIGNANI A, 2003, NAT GENET, V35, P118
VIDAL M, 2005, FEBS LETT, V579, P1834
VONMERING C, 2002, NATURE, V417, P399
VONMERING C, 2003, P NATL ACAD SCI USA, V100, P15428
WALHOUT AJM, 2000, SCIENCE, V287, P116
WILLIAMS EJB, 2000, NATURE, V407, P900
WUCHTY S, 2002, PROTEOMICS, V2, P1715
WUCHTY S, 2003, NAT GENET, V35, P176
WUCHTY S, 2004, GENOME RES, V14, P1310
WUCHTY S, 2005, PROTEOMICS, V5, P444
XENARIOS I, 2002, NUCLEIC ACIDS RES, V30, P303
NR 42
TC 7
PU BIOMED CENTRAL LTD
PI LONDON
PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND
SN 1471-2148
J9 BMC EVOL BIOL
JI BMC Evol. Biol.
PD JAN 30
PY 2006
VL 6
AR 8
DI ARTN 8
PG 10
SC Evolutionary Biology; Genetics & Heredity
GA 019ZP
UT ISI:000235877800001
ER
PT J
AU Balazsi, G
Barabasi, AL
Oltvai, ZN
TI Functional organization of transcriptional-regulatory networks
SO FEBS JOURNAL
LA English
DT Meeting Abstract
C1 Univ Pittsburgh, Dept Pathol, Pittsburgh, PA USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM oltvai@pitt.edu
NR 0
TC 0
PU BLACKWELL PUBLISHING
PI OXFORD
PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND
SN 1742-464X
J9 FEBS J
JI FEBS J.
PD JUL
PY 2005
VL 272
SU Suppl. 1
BP 103
EP 103
PG 1
SC Biochemistry & Molecular Biology
GA 005MG
UT ISI:000234826100349
ER
PT J
AU Barabasi, AL
TI Network biology: from the metabolism to protein interactions
SO FEBS JOURNAL
LA English
DT Meeting Abstract
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
NR 0
TC 0
PU BLACKWELL PUBLISHING
PI OXFORD
PA 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND
SN 1742-464X
J9 FEBS J
JI FEBS J.
PD JUL
PY 2005
VL 272
SU Suppl. 1
BP 433
EP 433
PG 1
SC Biochemistry & Molecular Biology
GA 005MG
UT ISI:000234826102297
ER
PT J
AU Barabasi, AL
TI Taming complexity
SO NATURE PHYSICS
LA English
DT Editorial Material
ID SMALL-WORLD NETWORKS; COMMUNITY STRUCTURE; METABOLIC NETWORKS; INTERNET
C1 Harvard Univ, Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA.
Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Harvard Univ, Dana Farber Canc Inst, Ctr Canc Syst Biol,
Boston, MA 02115 USA.
EM alb@nd.edu
CR *NAT RES COUNC, 2005, NETW SCI
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BIANCONI G, 2001, PHYS REV LETT, V86, P5632
BOLLOBAS B, 2001, RANDOM GRAPHS
CALDARELLI G, 2002, PHYS REV LETT, V89
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
EBEL H, 2002, PHYS REV E 2A, V66
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
EUBANK S, 2004, NATURE, V429, P180
FALOUTSOS M, 1999, COMP COMM R, V29, P251
GIRVAN M, 2002, P NATL ACAD SCI USA, V99, P7821
JEONG H, 2000, NATURE, V407, P651
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
MILO R, 2002, SCIENCE, V298, P824
PALLA G, 2005, NATURE, V435, P814
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WATTS DJ, 1998, NATURE, V393, P440
NR 22
TC 2
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD NOV
PY 2005
VL 1
IS 2
BP 68
EP 70
PG 3
SC Physics, Multidisciplinary
GA 006HJ
UT ISI:000234888300002
ER
PT J
AU Macdonald, PJ
Almaas, E
Barabasi, AL
TI Minimum spanning trees of weighted scale-free networks
SO EUROPHYSICS LETTERS
LA English
DT Article
ID COMPLEX NETWORKS; PERCOLATION; OPTIMIZATION; INTERNET
AB A complete characterization of real networks requires us to understand
the consequences of the uneven interaction strengths between a system's
components. Here we use minimum spanning trees (MSTs) to explore the
effect of correlations between link weights and network topology on
scale-free networks. Solely by changing the nature of the correlations
between weights and network topology, the structure of the MSTs can
change from scale-free to exponential. Additionally, for some choices
of weight correlations, the efficiency of the MSTs increases with
increasing network size, a result with potential implications for the
design and scalability of communication networks.
C1 Univ Notre Dame, Ctr Network Res, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Macdonald, PJ, Univ Notre Dame, Ctr Network Res, Notre Dame, IN 46556
USA.
EM alb@nd.edu
CR ABDELWAHAB H, 1997, INFORM SCIENCES, V101, P47
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALMAAS E, 2004, NATURE, V427, P839
AMARAL LAN, 2004, EUR PHYS J B, V38, P143
BARABASI AL, 1996, PHYS REV LETT, V76, P3750
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BARRAT A, 2004, PHYS REV E 2, V70
BERLOW EL, 1999, NATURE, V398, P330
BRAUNSTEIN LA, 2003, PHYS REV LETT, V91
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CLAUSET A, 2005, PHYS REV LETT, V94
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOBRIN R, 2001, PHYS REV LETT, V86, P5076
GOH KI, 2001, PHYS REV LETT, V87
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
HOGG RV, 1995, INTRO MATH STAT
KILPATRICK AM, 2003, NATURE, V422, P65
KIM DH, 2004, PHYS REV E 2, V70
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
NEWMAN MEJ, 2003, SIAM REV, V45, P167
NEWMAN MEJ, 2005, STRUCTURE GROWTH NET
OLIVEIRA CAS, 2005, COMPUT OPER RES, V32, P1953
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PRIM RC, 1957, BELL SYST TECH J, V36, P1389
SCHMITTBUHL J, 1993, J PHYS A-MATH GEN, V26, P6115
SREENIVASAN S, 2004, PHYS REV E 2, V70
STAUFFER D, 1994, INTRO PERCOLATION TH
STROGATZ SH, 2001, NATURE, V410, P268
SZABO GJ, 2003, PHYSICA A, V330, P31
TOROCZKAI Z, 2004, NATURE, V428, P716
VICSEK T, 1992, GROWTH PHENOMENA
WAN PJ, 2002, WIREL NETW, V8, P607
YOOK SH, 2001, PHYS REV LETT, V86, P5835
NR 35
TC 14
PU EDP SCIENCES S A
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD OCT
PY 2005
VL 72
IS 2
BP 308
EP 314
PG 7
SC Physics, Multidisciplinary
GA 983NF
UT ISI:000233238500024
ER
PT J
AU Oliveira, JG
Barabasi, AL
TI Human dynamics: Darwin and Einstein correspondence patterns
SO NATURE
LA English
DT Editorial Material
C1 Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal.
Harvard Univ, Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA.
RP Oliveira, JG, Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN
46556 USA.
EM alb@nd.edu
CR 1984, CORRES C DARWIN, V1
1993, COLLECTED PAPERS A E, V1
1993, COLLECTED PAPERS A E, V5
1993, COLLECTED PAPERS A E, V8
1993, COLLECTED PAPERS A E, V9
ABATE J, 1997, QUEUEING SYST, V25, P173
BARABASI AL, 2005, NATURE, V435, P207
BUNDE A, 2004, PHYSICA A, V342, P308
COBHAM A, 1954, OPER RES, V2, P70
KALUZA T, 1921, SITZUNGSBERICHTE PRE, V54, P966
NR 10
TC 15
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD OCT 27
PY 2005
VL 437
IS 7063
BP 1251
EP 1251
PG 1
SC Multidisciplinary Sciences
GA 977UQ
UT ISI:000232829100032
ER
PT J
AU Balazsi, G
Barabasi, AL
Oltvai, ZN
TI Topological units of environmental signal processing in the
transcriptional regulatory network of Escherichia coli
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE cellular networks; regulation; transcription
ID SINGULAR-VALUE DECOMPOSITION; COMPLEX NETWORKS; GENOME; BINDING;
MOTIFS; OPERON; DYNAMICS; PATTERNS; MODEL; FNR
AB Recent evidence indicates that potential interactions within metabolic,
protein-protein interaction, and transcriptional regulatory networks
are used differentially according to the environmental conditions in
which a cell exists. However, the topological units underlying such
differential utilization are not understood. Here we use the
transcriptional regulatory network of Escherichia coli to identify such
units, called origons, representing regulatory sub-networks that
originate at a distinct class of sensor transcription factors. Using
microarray data, we find that specific environmental signals affect
mRNA expression levels significantly only within the origons
responsible for their detection and processing. We also show that small
regulatory interaction patterns, called subgraphs and motifs, occupy
distinct positions in and between origons, offering insights into their
dynamical role in information processing. The identified features are
likely to represent a general framework for environmental signal
processing in prokaryotes.
C1 Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Ctr Complex Networks Res, Notre Dame, IN 46556 USA.
Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15261 USA.
RP Oltvai, ZN, Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
EM oltvai@pitt.edu
CR ALLEN TE, 2003, J BACTERIOL, V185, P6392
ALTER O, 2000, P NATL ACAD SCI USA, V97, P10101
BOLOURI H, 2002, BIOESSAYS, V24, P1118
BUCHLER NE, 2003, P NATL ACAD SCI USA, V100, P5136
CHANG DE, 2002, MOL MICROBIOL, V45, P289
CONANT GC, 2004, NAT GENET, V34, P264
CRACK J, 2004, J BIOL CHEM, V279, P9278
DOBRIN R, 2004, BMC BIOINFORMATICS, V5
GUELZIM N, 2002, NAT GENET, V31, P60
HARBISON CT, 2004, NATURE, V431, P99
HOLTER NS, 2000, P NATL ACAD SCI USA, V97, P8409
KALIR S, 2004, CELL, V117, P713
KILEY PJ, 1998, FEMS MICROBIOL REV, V22, P341
LIAO JC, 2003, P NATL ACAD SCI USA, V100, P15522
LIEB JD, 2001, NAT GENET, V28, P327
LUSCOMBE NM, 2004, NATURE, V431, P308
MA HW, 2004, BMC BIOINFORMATICS, V5
MANGAN S, 2003, J MOL BIOL, V334, P197
MANGAN S, 2003, P NATL ACAD SCI USA, V100, P11980
MARTINEZANTONIO A, 2003, CURR OPIN MICROBIOL, V6, P482
MIDDENDORF M, 2005, P NATL ACAD SCI USA, V102, P3192
MILO R, 2002, SCIENCE, V298, P824
MUKHERJEE S, 2004, NAT GENET, V36, P1331
NEIDHARDT FC, 1990, PHYSL BACTERIAL CELL
NEIDHARDT FC, 1996, ESCHERICHIA COLI SAL
PRITSKER M, 2004, GENOME RES, V14, P99
REN B, 2000, SCIENCE, V290, P2306
SALGADO H, 2004, NUCLEIC ACIDS RES, V32, D303
SANTILLAN M, 2001, P NATL ACAD SCI USA, V98, P1364
SANTILLAN M, 2004, BIOPHYS J, V86, P1282
SETTY Y, 2003, P NATL ACAD SCI USA, V100, P7702
SHENORR SS, 2002, NAT GENET, V31, P64
SIMPSON ML, 2004, J THEOR BIOL, V229, P383
THIEFFRY D, 1998, BIOESSAYS, V20, P433
VAZQUEZ A, 2004, P NATL ACAD SCI USA, V101, P17940
YEUNG MKS, 2002, P NATL ACAD SCI USA, V99, P6163
ZEITLINGER J, 2003, CELL, V113, P395
NR 37
TC 29
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 PROC NAT ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD MAY 31
PY 2005
VL 102
IS 22
BP 7841
EP 7846
PG 6
SC Multidisciplinary Sciences
GA 932CE
UT ISI:000229531000013
ER
PT J
AU Barabasi, AL
TI The origin of bursts and heavy tails in human dynamics
SO NATURE
LA English
DT Article
ID MODEL
AB The dynamics of many social, technological and economic phenomena are
driven by individual human actions, turning the quantitative
understanding of human behaviour into a central question of modern
science. Current models of human dynamics, used from risk assessment to
communications, assume that human actions are randomly distributed in
time and thus well approximated by Poisson processes(1-3). In contrast,
there is increasing evidence that the timing of many human activities,
ranging from communication to entertainment and work patterns, follow
non-Poisson statistics, characterized by bursts of rapidly occurring
events separated by long periods of inactivity(4-8). Here I show that
the bursty nature of human behaviour is a consequence of a
decision-based queuing process(9,10): when individuals execute tasks
based on some perceived priority, the timing of the tasks will be heavy
tailed, with most tasks being rapidly executed, whereas a few
experience very long waiting times. In contrast, random or priority
blind execution is well approximated by uniform inter-event statistics.
These finding have important implications, ranging from resource
management to service allocation, in both communications and retail.
C1 Univ Notre Dame, Ctr Complex Networks Res, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Ctr Complex Networks Res, Notre Dame, IN
46556 USA.
EM alb@nd.edu
CR ANDERSON HR, 2003, FIXED BROADBAND WIRE
BAK P, 1993, PHYS REV LETT, V71, P4083
CALDARELLI G, 1997, EUROPHYS LETT, V40, P479
COBHAM A, 1954, OPER RES, V2, P70
COHEN JW, 1969, SINGLE SERVER QUEUE
CROVELLA ME, 1997, IEEE ACM T NETWORK, V5, P835
DEWES C, 2003, P 2003 ACM SIGCOMM C
EBEL H, 2002, PHYS REV E, V66, P35103
ECKMANN JP, 2004, P NATL ACAD SCI USA, V101, P14333
EUBANK S, 2004, NATURE, V429, P180
GREENE JH, 1997, PRODUCTION INVENTORY
HAIGHT FA, 1967, HDB POISSON DISTRIBU
HARDER U, 2004, CORRELATED DYNAMICS
HARRIS CM, 2000, INFORMS J COMPUT, V12, P261
HELBING D, 2000, NATURE, V407, P487
HENDERSON T, 2001, P ACM MULT 2001 OTT, P212
JENSEN HJ, 1998, SELF ORG CRITICALITY
KLEBAN SD, 2003, P SC2003
KLEINBERG J, 2002, P 8 ACM SIGKDD INT C, P91
LEIGHTON FT, 1994, COMBINATORICA, V14, P167
MANRUBIA SC, 1999, FRACTALS, V7, P1
MASOLIVER J, 2003, PHYS REV E 1, V67
MILLER GA, 1956, PSYCHOL REV, V63, P8197
MITZENMACHER M, 2004, INTERNET MATH, V1, P226
PARK K, 2000, SELF SIMILAR NETWORK
PAXSON V, 1995, IEEE ACM T NETWORK, V3, P226
REYNOLDS P, 2003, CALL CTR STAFFING
VISWANATHAN GM, 1999, NATURE, V401, P911
NR 28
TC 32
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD MAY 12
PY 2005
VL 435
IS 7039
BP 207
EP 211
PG 5
SC Multidisciplinary Sciences
GA 924ZO
UT ISI:000229021100041
ER
PT J
AU Barabasi, AL
TI Network theory - The emergence of the creative enterprise
SO SCIENCE
LA English
DT Editorial Material
ID COMPLEX NETWORKS
C1 Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN
46556 USA.
EM alb@nd.edu
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ASIMOV I, 1991, FDN EMPIRE
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, PHYSICA A, V311, P590
BARABASI AL, 2004, NAT REV GENET, V5, P101
BENNAIM E, 2004, COMPLEX NETWORKS
BOLLOBAS B, 2001, RANDOM GRAPHS
BORNHOLDT S, 2003, HDB GRAPHS NETWORKS
COLLINS R, 1998, SOCIOLOGY PHILOS
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
GUIMERA R, 2005, SCIENCE, V308, P697
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS A, 2004, EVOLUTION STRUCTURE
STROGATZ SH, 2001, NATURE, V410, P268
NR 14
TC 7
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD APR 29
PY 2005
VL 308
IS 5722
BP 639
EP 641
PG 3
SC Multidisciplinary Sciences
GA 922BO
UT ISI:000228810900032
ER
PT J
AU Vazquez, A
Oliveira, JG
Barabasi, AL
TI Inhomogeneous evolution of subgraphs and cycles in complex networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID MOTIFS
AB Subgraphs and cycles are often used to characterize the local
properties of complex networks. Here we show that the subgraph
structure of real networks is highly time dependent: as the network
grows, the density of some subgraphs remains unchanged, while the
density of others increase at a rate that is determined by the
network's degree distribution and clustering properties. This
inhomogeneous evolution process, supported by direct measurements on
several real networks, leads to systematic shifts in the overall
subgraph spectrum and to an inevitable overrepresentation of some
subgraphs and cycles.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA.
Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal.
RP Vazquez, A, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 2002, PHYSICA A, V311, P590
BEARMAN P, 1997, AM J SOCIOL, V102, P1383
BERNSTEIN M, 1999, ACM COMPUT SURV, V31, P19
BIANCONI G, CONDMAT0310339
BIANCONI G, CONDMAT0408349
BIANCONI G, 2003, PHYS REV LETT, V90
DOROGOVTSEV SN, 2002, PHYS REV E 2, V65
MARINARI E, CONDMAT0407253
MILO R, 2002, SCIENCE, V298, P824
PASTORSATORRAS P, 2001, PHYS REV LETT, V87
PETERMANN T, 2004, PHYS REV E 2, V69
ROZENFELD HD, CONDMAT0403536
SERGI D, CONDMAT0412472
SHENORR SS, 2002, NAT GENET, V31, P64
TOROCZKAI Z, 2004, NATURE, V428, P716
ULANOWICZ RE, 1983, MATH BIOSCI, V65, P219
VAZQUEZ A, 2002, PHYS REV E 2, V65
VAZQUEZ A, 2004, P NATL ACAD SCI USA, V101, P17940
WUCHTY S, 2003, NAT GENET, V35, P118
YOOK SH, UNPUB
NR 21
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD FEB
PY 2005
VL 71
IS 2
PN Part 2
AR 025103
DI ARTN 025103
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 914RV
UT ISI:000228246200003
ER
PT J
AU Makeev, MA
Derenyi, I
Barabasi, AL
TI Emergence of large-scale vorticity during diffusion in a random
potential under an alternating bias
SO PHYSICAL REVIEW E
LA English
DT Article
ID DISORDERED MEDIA; MOLECULAR MOTORS; FIELD; RATCHETS; SYSTEMS; DRIVEN;
MOTION
AB Conventional wisdom indicates that the presence of an alternating
driving force will not change the long-term behavior of a Brownian
particle moving in a random potential. Although this is true in one
dimension, here we offer direct evidence that the inevitable local
symmetry breaking present in a two-dimensional random potential leads
to the emergence of a local ratchet effect that generates large-scale
vorticity patterns consisting of steady-state net diffusive currents.
For small fields the spatial correlation function of the current
follows a logarithmic distance dependence, while for large external
fields both the vorticity and the correlations gradually disappear. We
uncover the scaling laws characterizing this unique pattern formation
process, and discuss their potential relevance to real systems.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46566 USA.
Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
RP Makeev, MA, Univ Notre Dame, Dept Phys, Notre Dame, IN 46566 USA.
EM makeev@usc.edu
derenyi@elte.hu
alb@nd.edu
CR AJDARI A, 1992, CR ACAD SCI II-MEC P, V315, P1635
ALEXANDER S, 1981, REV MOD PHYS, V53, P175
ANDRADE JS, 2001, PHYS REV E 1, V63
ASTUMIAN RD, 1994, PHYS REV LETT, V72, P1766
ASTUMIAN RD, 1997, SCIENCE, V276, P917
BOUCHAUD JP, 1990, PHYS REP, V195, P127
CECCONI F, 2002, PHYS REV LETT, V89
CILIBERTI S, 2000, PHYS REV LETT, V85, P4848
HASTINGS MB, 2003, PHYS REV LETT, V90
HAVLIN S, 1987, ADV PHYS, V36, P695
HIRTH JP, 1968, THEORY DISLOCATIONS
JULICHER F, 1997, REV MOD PHYS, V69, P1269
KEHR KW, 1997, PHYS REV E A, V56, R2351
LEE CS, 1999, NATURE, V400, P337
LOPEZ E, 2003, PHYS REV E 2, V67
MAGNASCO MO, 1993, PHYS REV LETT, V71, P1477
MAKEEV MA, UNPUB
NATTERMANN T, 1988, PHASE TRANSIT, V11, P5
NITTMANN J, 1985, NATURE, V314, P141
PRESS WH, 1992, NUMERICAL RECIPES
RICHARDSON LF, 1926, P R SOC LOND A-CONTA, V110, P709
ROBERTSON B, 1991, J CHEM PHYS, V94, P7414
VILLEGAS JE, 2003, SCIENCE, V302, P1188
ZHANG KQ, 2004, NATURE, V429, P739
NR 24
TC 2
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD FEB
PY 2005
VL 71
IS 2
PN Part 2
AR 026112
DI ARTN 026112
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 914RV
UT ISI:000228246200021
ER
PT J
AU Eisler, Z
Kertesz, J
Yook, SH
Barabasi, AL
TI Multiscaling and non-universality in fluctuations of driven complex
systems
SO EUROPHYSICS LETTERS
LA English
DT Article
ID STOCK-PRICES; MARKETS
AB For many externally driven complex systems neither the noisy driving
force, nor the internal dynamics are a priori known. Here we focus on
systems for which the time-dependent activity of a large number of
components can be monitored, allowing us to separate each signal into a
component attributed to the external driving force and one to the
internal dynamics. We propose a formalism to capture the potential
multiscaling in the fluctuations and apply it to the high-frequency
trading records of the New York Stock Exchange. We find that on the
time scale of minutes the dynamics is governed by internal processes,
while on a daily or longer scale the external factors dominate. This
transition from internal to external dynamics induces systematic
changes in the scaling exponents, offering direct evidence of
non-universality in the system.
C1 Budapest Univ Technol & Econ, Dept Theoret Phys, H-1111 Budapest, Hungary.
Helsinki Univ Technol, Lab Computat Engn, FIN-02150 Espoo, Finland.
Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Eisler, Z, Budapest Univ Technol & Econ, Dept Theoret Phys, H-1111
Budapest, Hungary.
EM eisier@maxwell.phy.bme.hu
CR 2003, TRADES QUOTES DATABA
BARABASI AL, 2003, LINKED
BARYAM Y, 2000, UNIFYING THEMES COMP
BONANNO G, 2001, QUANTITATIVE FINANCE, V1, P96
BONANNO G, 2004, EUR PHYS J B, V38, P363
BOUCHAUD JP, 2000, THEORY FINANCIAL RIS
COWAN G, 1999, COMPLEXITY METAPHORS
CUTLER DM, 1989, J PORTFOLIO MANAGE, V15, P4
DEMENEZES MA, UNPUB
DEMENEZES MA, 2004, PHYS REV LETT, V92, P28701
DEMENEZES MA, 2004, PHYS REV LETT, V93, P68701
EILSER Z, IN PRESS
EPPS TW, 1979, J AM STAT ASSOC, V74, P291
GOPIKRISHNAN P, 2000, PHYS REV E, V62, P4493
KADANOFF LP, 1991, CHINESE J PHYS, V29, P613
KULLMANN L, 1999, PHYSICA A, V269, P98
MANTEGNA RN, 1999, INTRO ECONOPHYSICS
MATIA K, 2003, EUROPHYS LETT, V61, P422
SORNETTE D, 2003, PHYSICA A, V318, P577
STANLEY HE, 1971, INTRO PHASE TRANSITI
VICSEK T, 1992, FRACTAL GROWTH PHENO
ZAWADOWSK AG, 2002, PHYSICA A, V316, P403
NR 22
TC 10
PU E D P SCIENCES
PI LES ULIS CEDEX A
PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD FEB
PY 2005
VL 69
IS 4
BP 664
EP 670
PG 7
SC Physics, Multidisciplinary
GA 900LS
UT ISI:000227217000027
ER
PT J
AU Vazquez, A
Dobrin, R
Sergi, D
Eckmann, JP
Oltvai, ZN
Barabasi, AL
TI The topological relationship between the large-scale attributes and
local interaction patterns of complex networks
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE aggregation; subgraphs
ID TRANSCRIPTIONAL REGULATORY NETWORK; METABOLIC NETWORKS;
ESCHERICHIA-COLI; GENE-EXPRESSION; SMALL-WORLD; ORGANIZATION; MOTIFS;
DUPLICATION; DYNAMICS; GROWTH
AB Recent evidence indicates that the abundance of recurring elementary
interaction patterns in complex networks, often called subgraphs or
motifs, carry significant information about their function and overall
organization. Yet, the underlying reasons for the variable quantity of
different subgraph types, their propensity to form clusters, and their
relationship with the networks' global organization remain poorly
understood. Here we show that a network's large-scale topological
organization and its local subgraph structure mutually define and
predict each other, as confirmed by direct measurements in five well
studied cellular networks. We also demonstrate the inherent existence
of two distinct classes of subgraphs, and show that, in contrast to the
low-density type II subgraphs, the highly abundant type I subgraphs
cannot exist in isolation but must naturally aggregate into subgraph
clusters. The identified topological framework may have important
implications for our understanding of the origin and function of
subgraphs in all complex networks.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Ctr Complex Network Res, Notre Dame, IN 46556 USA.
Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland.
Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2004, NAT REV GENET, V5, P101
BASU S, 2004, P NATL ACAD SCI USA, V101, P6355
BHAN A, 2002, BIOINFORMATICS, V18, P1486
BIANCONI G, 2003, PHYS REV LETT, V90
COHEN R, 2004, ARXIVCONDMAT0305582
DOBRIN R, 2004, BMC BIOINFORMATICS, V5
DOROGOVTSEV SN, 2002, PHYS REV E 2, V65
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
ECHMANN JP, 2002, P NATL ACAD SCI USA, V99, P5825
FUKUDA K, 2003, EUROPHYS LETT, V62, P189
GLEISS PM, 2001, ADV COMPLEX SYST, V1, P1
GUELZIM N, 2002, NAT GENET, V31, P60
HINMAN VF, 2003, P NATL ACAD SCI USA, V100, P13356
ITZKOVITZ S, 2003, PHYS REV E 2, V68
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, NATURE, V411, P41
LEE TI, 2002, SCIENCE, V298, P799
MANGAN S, 2003, J MOL BIOL, V334, P197
MANGAN S, 2003, P NATL ACAD SCI USA, V100, P11980
MILO R, 2002, SCIENCE, V298, P824
MILO R, 2004, SCIENCE, V303, P1538
NEWMAN MEJ, 2003, SIAM REV, V45, P167
OVERBEEK R, 2003, NUCLEIC ACIDS RES, V31, P164
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PAUL G, 2004, EUR PHYS J B, V38, P187
QIAN J, 2001, J MOL BIOL, V313, P673
RAVASZ E, 2002, SCIENCE, V297, P1551
RZHETSKY A, 2001, BIOINFORMATICS, V17, P988
SALWINSKI L, 2004, NUCLEIC ACIDS RES, V32, D449
SHENORR SS, 2002, NAT GENET, V31, P64
SOLE RV, 2002, ADV COMPLEX SYST, V5, P43
TEICHMANN SA, 2004, NAT GENET, V36, P492
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WATTS DJ, 1998, NATURE, V393, P440
NR 38
TC 44
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 PROC NAT ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD DEC 28
PY 2004
VL 101
IS 52
BP 17940
EP 17945
PG 6
SC Multidisciplinary Sciences
GA 884RD
UT ISI:000226102700013
ER
PT J
AU Palla, G
Farkas, I
Derenyi, I
Barabasi, AL
Vicsek, T
TI Reverse engineering of linking preferences from network restructuring
SO PHYSICAL REVIEW E
LA English
DT Article
ID STATISTICAL-MECHANICS
AB We provide a method to deduce the preferences governing the
restructuring dynamics of a network from the observed rewiring of the
edges. Our approach is applicable for systems in which the preferences
can be formulated in terms of a single-vertex energy function with f(k)
being the contribution of a node of degree k to the total energy, and
the dynamics obeys the detailed balance. The method is first tested by
Monte Carlo simulations of restructuring graphs with known energies;
then it is used to study variations of real network systems ranging
from the coauthorship network of scientific publications to the asset
graphs of the New York Stock Exchange. The empirical energies obtained
from the restructuring can be described by a universal function f(k)
similar to-k In k, which is consistent with and justifies the validity
of the preferential attachment rule proposed for growing networks.
C1 HAS, Biol Phys Res Grp, H-1117 Budapest, Hungary.
Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46566 USA.
RP Palla, G, HAS, Biol Phys Res Grp, Pazmany P Setany 1A, H-1117 Budapest,
Hungary.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ARKAS I, 2004, LECT NOTE PHYS, V650, P163
BAIESI M, 2003, PHYS REV E 2, V68
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, PHYSICA A, V311, P590
BERG J, 2002, PHYS REV LETT, V89
BURDA Z, 2001, PHYS REV E 2, V64
BURDA Z, 2003, PHYS REV E 2, V67
DERENYI I, 2004, PHYSICA A, V334, P583
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
DOROGOVTSEV SN, 2003, NUCL PHYS B, V666, P396
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FARKAS I, CONDMAT0401640
JEONG H, 2003, EUROPHYS LETT, V61, P567
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E, V64
ONNELA JP, COMMUNICATION
ONNELA JP, 2003, PHYS SCRIPTA T, V106, P48
PALLA G, 2004, PHYS REV E 2, V69
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
WARNER S, COMMUNICATION
WARNER S, 2003, LIB HI TECH, V21, P151
WATTS DJ, 1998, NATURE, V393, P440
NR 26
TC 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD OCT
PY 2004
VL 70
IS 4
PN Part 2
AR 046115
DI ARTN 046115
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 879AU
UT ISI:000225689600023
ER
PT J
AU de Menezes, MA
Barabasi, AL
TI Separating internal and external dynamics of complex systems
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID WORLD-WIDE-WEB; TIME-SERIES; NETWORKS
AB The observable behavior of a complex system reflects the mechanisms
governing the internal interactions between the system's components and
the effect of external perturbations. Here we show that by capturing
the simultaneous activity of several of the system's components we can
separate the internal dynamics from the external fluctuations. The
method allows us to systematically determine the origin of fluctuations
in various real systems, finding that while the Internet and the
computer chip have robust internal dynamics, highway and Web traffic
are driven by external demand. As multichannel measurements are
becoming the norm in most fields, the method could help uncover the
collective dynamics of a wide array of complex systems.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP de Menezes, MA, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ABARBANEL HDI, 1993, REV MOD PHYS, V65, P1331
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2002, REV MOD PHYS, V74, P47
BANAVAR JR, 1999, NATURE, V399, P130
CALDARELLI G, 2001, PHYS REV E, V63, P21118
CANCHO RFI, 2001, PHYS REV E 2, V64
CHOWDHURY D, 2000, PHYS REP, V329, P199
CIEPLAK M, 1998, J STAT PHYS, V91, P1
DEMENEZES MA, 2004, PHYS REV LETT, V92
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
HASTY J, 2002, NAT GENET, V31, P13
HOLTER NS, 2001, P NATL ACAD SCI USA, V98, P1693
KANTELHARDT JW, 2002, PHYSICA A, V316, P87
KAUTZ H, 1997, NONLINEAR TIME SERIE
KORNISS G, 2003, SCIENCE, V299, P677
LAWRENCE S, 1998, SCIENCE, V280, P98
LIVINA VN, 2003, PHYS REV E 1, V67
MAHER MP, 1999, J NEUROSCI METH, V87, P45
MANTEGNA RN, 2000, INTRO ECONOPHYSICS C
NOH JD, 2004, PHYS REV LETT, V92
PENG CK, 1994, PHYS REV E, V49, P1685
PENG CK, 1995, CHAOS, V5, P82
SIMON G, 2002, PHYSICA A, V307, P516
VAZQUEZ A, 2002, PHYS REV E 2, V65
YOOK SH, 2002, P NATL ACAD SCI USA, V99, P13382
NR 25
TC 19
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 6
PY 2004
VL 93
IS 6
AR 068701
DI ARTN 068701
PG 4
SC Physics, Multidisciplinary
GA 844DS
UT ISI:000223138200058
ER
PT J
AU Makeev, MA
Barabasi, AL
TI Effect of surface morphology on the sputtering yields. I. Ion
sputtering from self-affine surfaces
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
ID KURAMOTO-SIVASHINSKY EQUATION; AUGER-ELECTRON-SPECTROSCOPY;
KARDAR-PARISI-ZHANG; LONG-WAVELENGTH PROPERTIES; AMORPHOUS-CARBON
SURFACES; SCALE INVARIANT SOLUTIONS; BOMBARDED SOLID-SURFACES; SAMPLE
ROTATION; RIPPLE FORMATION; UNIVERSAL PROPERTIES
AB As extensive experimental studies have shown, under certain conditions,
ion bombardment of solid targets induces a random (self-affine)
morphology on the ion-eroded surfaces. The rough morphology development
is known to cause substantial variations in the sputtering yields. In
this article, we present a theoretical model describing the sputter
yields from random, self-affine surfaces subject to energetic ion
bombardment. We employ the Sigmund's theory of ion sputtering, modified
for the case of self-affine surfaces, to compute the sputter yields. We
find that the changes in the sputtering yield, associated with the
non-planar surface morphology, are strongly dependent on the parameters
characterizing the surface roughness (such as the saturation width and
the correlation length) and the incident ion beam (such as the incident
ion energy and the deposited energy widths). It is shown that, for
certain ranges of the parameters variations, surface roughness leads to
substantial enhancements in the yield, with magnitude of the effect
being more than 100%, as compared to the flat surface value.
Furthermore, we find that, depending on the interplay between these
parameters, the surface roughness can both enhance and suppress the
sputter yields. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46566 USA.
RP Makeev, MA, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
Simulat, VHE 608,3651 Watt Way, Los Angeles, CA 90089 USA.
EM makeev@usc.edu
alb@nd.edu
CR ALANISSILA T, 1993, J STAT PHYS, V72, P207
AMAR JG, 1990, PHYS REV A, V41, P3399
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BEHRISH R, 1981, SPUTTERING PARTICLE, V1
BEHRISH R, 1983, SPUTTERING PARTICLE, V2
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
BRADLEY RM, 1996, APPL PHYS LETT, V68, P3722
BRADLEY RM, 1996, PHYS REV E, V54, P6149
BRUINSMA R, 1992, SURFACE DISORDERING
CARTER G, 1997, APPL PHYS LETT, V71, P3067
CHAN ACT, 1998, SURF SCI, V414, P17
CIRLIN EH, 1990, J VAC SCI TECHNOL A, V8, P4101
CIRLIN EH, 1991, J VAC SCI TECHNOL 2, V9, P1395
CIRLIN EH, 1992, THIN SOLID FILMS, V220, P197
CSAHOK Z, 1996, SURF SCI, V364, L600
CUERNO R, 1995, PHYS REV E, V52, P4853
DASSARMA S, 1991, PHYS REV LETT, V66, P325
ECKSTEIN W, 1991, SPRINGER SERIES MAT, V10
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FORREST BM, 1990, J STAT PHYS, V60, P181
GOLUBOVIC L, 1991, PHYS REV LETT, V66, P321
GOLUBOVIC L, 1991, PHYS REV LETT, V67, P2747
HALPINHEALY T, 1995, PHYS REP, V254, P215
HAYOT F, 1993, PHYS REV E, V47, P911
JAYAPRAKASH C, 1993, PHYS REV LETT, V71, P12
JAYAPRAKASH C, 1994, PHYS REV LETT, V72, P308
KARDAR M, 1986, PHYS REV LETT, V56, P889
KAREN A, 1990, SECONDARY ION MASS S, V8
KAREN A, 1991, J VAC SCI TECHNOL A, V9, P2247
KAREN A, 1995, SURF INTERFACE ANAL, V23, P506
KELLY R, 1980, SURF SCI, V100, P85
KIM JM, 1989, PHYS REV LETT, V62, P2289
KONARSKI P, 1996, VACUUM, V47, P1111
KOPONEN I, 1996, PHYS REV B, V54, P13502
KOPONEN I, 1997, NUCL INSTRUM METH B, V127, P230
KOPONEN I, 1997, NUCL INSTRUM METH B, V129, P349
KOPONEN I, 1997, PHYS REV LETT, V78, P2612
KRIM J, 1993, PHYS REV LETT, V70, P57
KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356
KUSTNER M, 1998, NUCL INSTRUM METH B, V145, P320
LVOV V, 1994, PHYS REV LETT, V72, P307
LVOV VS, 1992, PHYS REV LETT, V69, P3543
LVOV VS, 1993, NONLINEARITY, V6, P25
MAKEEV MA, COMPANION PAPER
MAKEEV MA, 1998, APPL PHYS LETT, V72, P906
MAKEEV MA, 1998, APPL PHYS LETT, V73, P1445
MEAKIN P, 1993, PHYS REP, V235, P189
MOSER K, 1991, PHYSICA A, V178, P215
PROCACCIA I, 1992, PHYS REV A, V46, P3220
SANDER LM, 1990, SOLIDS FAR EQUILIBRI
SHAHEEN MA, 1993, J VAC SCI TECHNOL A, V11, P3085
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
SINGER IL, 1981, J VAC SCI TECHNOL, V18, P161
SIVASHINSKY GI, 1979, ACTA ASTRONAUT, V6, P569
SMILGIES DM, 1997, SURF SCI, V377, P1038
SMITH SP, 1990, SECONDARY ION MASS S, V7
SNEPPEN K, 1992, PHYS REV A, V46, P7352
STEVIE FA, 1988, J VAC SCI TECHNOL A, V6, P76
TOWNSEND PD, 1976, ION IMPLANTATION SPU
VAJO JJ, 1996, J VAC SCI TECHNOL A, V14, P2709
VILLAIN J, 1991, J PHYS I, V1, P19
WANG XS, 1996, SURF SCI, V364, L511
WINTERBON KB, 1972, RADIAT EFF, V13, P215
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
WITTMAACK K, 1992, PRACTICAL SURFACE AN, V2, P105
WOLF DE, 1990, EUROPHYS LETT, V13, P389
WOLF DE, 1991, PHYS REV LETT, V67, P1783
YAMAMURA Y, 1987, RADIAT EFF, V103, P25
YANG HN, 1994, PHYS REV B, V50, P7635
ZALAR A, 1985, THIN SOLID FILMS, V124, P223
ZALAR A, 1987, J VAC SCI TECHNOL A, V5, P2979
ZALESKI S, 1989, PHYSICA D, V34, P427
ZEIGLER JF, 1986, STOPPING RANGES IONS, V1
NR 77
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH PHYS RES B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD AUG
PY 2004
VL 222
IS 3-4
BP 316
EP 334
PG 19
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
GA 843XY
UT ISI:000223121800002
ER
PT J
AU Makeev, MA
Barabasi, AL
TI Effect of surface morphology on the sputtering yields. II. Ion
sputtering from rippled surfaces
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Article
ID AUGER-ELECTRON-SPECTROSCOPY; SAMPLE ROTATION; TOPOGRAPHY CHANGES; DEPTH
RESOLUTION; BOMBARDMENT; GAAS; SI; ROUGHNESS; DIFFUSION; GROWTH
AB Off-normal ion bombardment of solid targets with energetic particles
often leads to development of periodically modulated structures on the
surfaces of eroded materials. Ion-induced surface roughening, in its
turn, causes sputtering yield changes. We report on a comprehensive
theoretical study of the effect of rippled surface morphology on the
sputtering yields. The yield is computed as a function of the
parameters characterizing the surface morphology and the incident ion
beam, using the Sigmund's theory of ion sputtering. We find that the
surface morphology development may cause substantial variations in the
sputter yields, depending on a complex interplay between the parameters
characterizing the ripple structure and the incident ion beam. For
certain realizations of the ripple structure, the surface morphology is
found to induce enhanced, relative to the flat surface value,
sputtering yields. On the other hand, there exist regimes in which the
sputtering yield is suppressed by the surface roughness below the flat
surface result. We confront the obtained theoretical results with
available experimental data and find that our model provides an
excellent qualitative and, in some cases, quantitative agreement with
the results of experimental studies. (C) 2004 Elsevier B.V. All rights
reserved.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46566 USA.
RP Makeev, MA, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
Simulat, VHE 608,3651 Watt Way, Los Angeles, CA 90089 USA.
EM makeev@usc.edu
alb@nd.edu
CR BARBER DJ, 1973, J MATER SCI, V8, P1030
BEHRISH R, 1981, SPUTTERING PARTICLE, V1
BEHRISH R, 1983, SPUTTERING PARTICLE, V2
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
BRADLEY RM, 1996, APPL PHYS LETT, V68, P3722
CARTER G, 1996, PHYS REV B, V54, P17647
CARTER G, 1997, APPL PHYS LETT, V71, P3066
CIRLIN EH, 1990, J VAC SCI TECHNOL A, V8, P4101
CIRLIN EH, 1991, J VAC SCI TECHNOL 2, V9, P1395
CIRLIN EH, 1992, THIN SOLID FILMS, V220, P197
CUERNO R, 1995, PHYS REV LETT, V74, P4746
DASSARMA S, 1991, PHYS REV LETT, V66, P325
ECKSTEIN W, 1991, SPRINGER SERIES MAT, V10
ELST K, 1993, J VAC SCI TECHNOL B, V11, P1968
ELST K, 1994, J VAC SCI TECHNOL A, V12, P3205
ERLEBACHER J, 1999, PHYS REV LETT, V82, P2330
HERRING C, 1950, J APPL PHYS, V21, P301
KAREN A, 1990, SECONDARY ION MASS S, V7, P107
KAREN A, 1991, J VAC SCI TECHNOL A, V9, P2247
KAREN A, 1995, SURF INTERFACE ANAL, V23, P506
KUSTNER M, 1998, NUCL INSTRUM METH B, V145, P320
MACLAREN SW, 1992, J VAC SCI TECHNOL A, V10, P468
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAKEEV MA, 1998, APPL PHYS LETT, V72, P906
MAKEEV MA, 1998, APPL PHYS LETT, V73, P1445
MAKEEV MA, 2002, NUCL INSTRUM METH B, V197, P185
MAKEEV MA, 2004, NUCL INSTRUM METH B, V222, P316
MAYER TM, 1994, J APPL PHYS, V76, P1633
MULLINS WW, 1957, J APPL PHYS, V28, P333
OECHSNER H, 1975, APPL PHYS, V8, P185
SHICHI H, 1991, JPN J APPL PHYS 2, V30, L927
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
SIGMUND P, 1981, SPUTTERING PARTICLE, V1
SMITH SP, 1990, SIMS, V7, P107
STEVIE FA, 1988, J VAC SCI TECHNOL A, V6, P76
TOWNSEND PD, 1976, ION IMPLATATION SPUT
VAJO JJ, 1996, J VAC SCI TECHNOL A, V14, P2709
VASILIU F, 1975, J MATER SCI, V10, P399
WINTERBON KB, 1972, RADIAT EFF, V13, P215
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
WITTMAACK K, 1992, PRACTICAL SURFACE AN, V2, P105
WOLF DE, 1990, EUROPHYS LETT, V13, P389
YAMAMURA Y, 1987, RADIAT EFF, V103, P25
ZALAR A, 1985, THIN SOLID FILMS, V124, P223
ZALAR A, 1987, J VAC SCI TECHNOL A, V5, P2979
ZEIGLER JF, 1986, STOPPING RANGES IONS, V1
NR 47
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH PHYS RES B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD AUG
PY 2004
VL 222
IS 3-4
BP 335
EP 354
PG 20
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
GA 843XY
UT ISI:000223121800003
ER
PT J
AU Barabasi, AL
de Menezes, MA
Balensiefer, S
Brockman, J
TI Hot spots and universality in network dynamics
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID WORLD-WIDE-WEB; GENE-EXPRESSION; METABOLIC NETWORKS; COMPLEX NETWORKS;
RANDOM RESISTOR; ORGANIZATION; BEHAVIOR; NOISE
AB Most complex networks serve as conduits for various dynamical
processes, ranging from mass transfer by chemical reactions in the cell
to packet transfer on the Internet. We collected data on the time
dependent activity of five natural and technological networks, finding
evidence of orders of magnitude differences in the fluxes of individual
nodes. This dynamical inhomogeneity reflects the emergence of localized
high flux regions or "hot spots", carrying an overwhelming fraction of
the network's activity. We find that each system is characterized by a
unique scaling law, coupling the flux fluctuations with the total flux
on individual nodes, a result of the competition between the system's
internal collective dynamics and changes in the external environment.
We propose a method to separate these two components, allowing us to
predict the relevant scaling exponents. As high fluctuations can lead
to dynamical bottlenecks and jamming, these findings have a strong
impact on the predictability and failure prevention of complex
transportation networks.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM mdemenez@nd.edu
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALMAAS E, IN PRESS NATURE
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 2000, PHYS REV E A, V61, R3283
BARTHELEMY M, 2002, PHYS REV E, V66
BORNHOLDT S, 2002, HDB GRAPHS NETWORKS
BOUCHAUD JP, 2000, THEORY FINANCIAL RIS
BUNDE A, 1994, FRACTALS SCI
CROVELLA ME, 1997, IEEE ACM T NETWORK, V5, P835
CSABAI I, 1994, J PHYS A, V27, P417
DEARCANGELIS L, 1986, PHYS REV B, V34, P4656
DEMENEZES MA, IN PRESS PHYS REV LE
DEMENEZES MA, UNPUB
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
ELOWITZ MB, 2002, SCIENCE, V297, P1183
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
ERIKSEN KA, 2003, PHYS REV LETT, V90
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FERRER R, 2001, PHYS REV E, V63, P32767
FUKUDA K, 2000, PHYSICA A, V287, P289
GARLASCHELLI D, CONDMAT0310503
GILLEMOT L, 2000, PHYSICA A, V282, P304
GOH KI, 2001, PHYS REV LETT, V87
GOH KI, 2002, P NATL ACAD SCI USA, V99, P12583
GOLDBERGER AL, 2002, P NATL ACAD SCI U S1, V99, P2466
HASTY J, 2000, P NATL ACAD SCI USA, V97, P2075
HASTY J, 2002, NAT GENET, V31, P13
HAVLIN S, 1987, ADV PHYS, V36, P695
HELSING J, 1989, PHYS REV B, V39, P9231
HOLTER NS, 2001, P NATL ACAD SCI USA, V98, P1693
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, NATURE, V411, P41
KAHNG B, 2002, PHYS REV E 2, V66
LAWRENCE S, 1999, NATURE, V400, P107
LELAND WE, 1994, IEEE ACM T NETWORK, V2, P1
MANTEGNA RN, 1995, NATURE, V376, P46
MANTEGNA RN, 2000, INTRO ECONOPHYSICS C
MORENO Y, CONDMAT0209474
NOH JD, 2003, CONDMAT0307719
RAVASZ E, 2002, SCIENCE, V297, P1551
REDNER S, 2001, GUIDE 1 PASSAGE PROC
STROGATZ SH, 2001, NATURE, V410, P268
TADIC B, 2001, PHYSICA A, V293, P273
UHLIG S, 2001, INFONETTR10 U NAM
VAZQUEZ A, 2002, PHYS REV E 2, V65
YOOK SH, 2002, P NATL ACAD SCI USA, V99, P13382
NR 48
TC 3
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD MAR
PY 2004
VL 38
IS 2
BP 169
EP 175
PG 7
SC Physics, Condensed Matter
GA 821GB
UT ISI:000221447300005
ER
PT J
AU Yook, SH
Oltvai, ZN
Barabasi, AL
TI Functional and topological characterization of protein interaction
networks
SO PROTEOMICS
LA English
DT Article
DE bioinformatics; protein interaction networks; scale-free networks
ID SACCHAROMYCES-CEREVISIAE; METABOLIC NETWORKS; COMPLEX NETWORKS; YEAST;
ORGANIZATION; IDENTIFICATION; EVOLUTION; BEHAVIOR; DATABASE; GENOMES
AB The elucidation of the cell's large-scale organization is a primary
challenge for post-genomic biology, and understanding the structure of
protein interaction networks offers an important starting point for
such studies. We compare four available databases that approximate the
protein interaction network of the yeast, Saccharomyces cerevisiae,
aiming to uncover the network's generic large-scale properties and the
impact of the proteins' function and cellular localization on the
network topology. We show how each database supports a scale-free,
topology with hierarchical modularity, indicating that these features
represent a robust and generic property of the protein interactions
network. We also find strong correlations between the network's
structure and the functional role and subcellular localization of its
protein constituents, concluding that most functional and/or
localization classes appear as relatively segregated subnetworks of the
full protein interaction network. The uncovered systematic differences
between the four protein interaction databases reflect their relative
coverage for different functional and localization classes and provide
a guide for their utility in various bioinformatics studies.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALOY P, 2002, P NATL ACAD SCI USA, V99, P5896
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2001, PHYSICA A, V299, P559
BOCK JR, 2001, BIOINFORMATICS, V17, P455
BOLLOBAS B, 1985, RANDOM GRAPHS
CHUNG F, 2003, J COMPUT BIOL, V10, P677
DEZSO Z, 2003, GENOME RES, V13, P2450
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
DOROGOVTSEV SN, 2002, PHYS REV E 2, V65
DRESS BL, 2001, J CELL BIOL, V154, P549
FEATHERSTONE DE, 2002, BIOESSAYS, V24, P267
GAVIN AC, 2002, NATURE, V415, P141
GOMEZ SM, 2002, PAC S BIOC, V7, P413
HARTWELL LH, 1999, NATURE, V402, P47
HAZBUN TR, 2001, P NATL ACAD SCI USA, V98, P4277
HO Y, 2002, NATURE, V415, P180
HOLME P, 2003, BIOINFORMATICS, V19, P532
IHMELS J, 2002, NAT GENET, V31, P370
ITO T, 2000, P NATL ACAD SCI USA, V97, P1143
JACKSON BB, 1983, MULTIVARIATE DATA AN
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, NATURE, V411, P41
KIM J, 2002, PHYS REV E, V66
KOONIN EV, 2002, NATURE, V420, P218
MATTHEWS LR, 2001, GENOME RES, V11, P2120
MEWES HW, 2002, NUCLEIC ACIDS RES, V30, P31
PARK J, 2001, J MOL BIOL, V307, P929
QIAN J, 2001, J MOL BIOL, V313, P673
RAVASZ E, 2002, SCIENCE, V297, P1551
RAVASZ E, 2003, PHYS REV E 2, V67
SCHUSTER S, 2002, BIOINFORMATICS, V18, P351
SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
SOLE RV, 2003, IN PRESS ADV COMPLEX
SZABO G, 2002, PHYS REV E, V6705, P6102
TONG AHY, 2002, SCIENCE, V295, P321
UETZ P, 2000, NATURE, V403, P623
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
VONMERING C, 2002, NATURE, V417, P399
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WUCHTY S, 2001, MOL BIOL EVOL, V18, P1694
XENARIOS I, 2000, NUCLEIC ACIDS RES, V28, P289
NR 45
TC 94
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1615-9853
J9 PROTEOMICS
JI Proteomics
PD APR
PY 2004
VL 4
IS 4
BP 928
EP 942
PG 15
SC Biochemical Research Methods; Biochemistry & Molecular Biology
GA 811HV
UT ISI:000220763900004
ER
PT J
AU Dobrin, R
Beg, QK
Barabasi, AL
Oltvai, ZN
TI Aggregation of topological motifs in the Escherichia coli
transcriptional regulatory network
SO BMC BIOINFORMATICS
LA English
DT Article
ID COMPLEX NETWORKS; GENE NETWORKS; AUTOREGULATION; ORGANIZATION;
STABILITY; EVOLUTION; FEEDBACK; OPERON
AB Background: Transcriptional regulation of cellular functions is carried
out through a complex network of interactions among transcription
factors and the promoter regions of genes and operons regulated by
them. To better understand the system-level function of such networks
simplification of their architecture was previously achieved by
identifying the motifs present in the network, which are small,
overrepresented, topologically distinct regulatory interaction patterns
(subgraphs). However, the interaction of such motifs with each other,
and their form of integration into the full network has not been
previously examined.
<LF>Results: By studying the transcriptional regulatory network of the
bacterium, Escherichia coli, we demonstrate that the two previously
identified motif types in the network (i.e., feed-forward loops and
bi-fan motifs) do not exist in isolation, but rather aggregate into
homologous motif clusters that largely overlap with known biological
functions. Moreover, these clusters further coalesce into a
supercluster, thus establishing distinct topological hierarchies that
show global statistical properties similar to the whole network.
Targeted removal of motif links disintegrates the network into small,
isolated clusters, while random disruptions of equal number of links do
not cause such an effect.
Conclusion: Individual motifs aggregate into homologous motif clusters
and a supercluster forming the backbone of the E. coli transcriptional
regulatory network and play a central role in defining its global
topological organization.
C1 Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Oltvai, ZN, Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
EM r-dobrin@northwestern.edu
qasimbeg@northwestern.edu
alb@nd.edu
zno008@northwestern.edu
CR ALBERT R, 2000, NATURE, V406, P378
BARABASI AL, 1999, SCIENCE, V286, P509
BECSKEI A, 2000, NATURE, V405, P590
BECSKEI A, 2001, EMBO J, V20, P2528
BUCHLER NE, 2003, P NATL ACAD SCI USA, V100, P5136
CONANT GC, 2003, NAT GENET, V34, P264
GUELZIM N, 2002, NAT GENET, V31, P60
HARTWELL LH, 1999, NATURE, V402, P47
HINMAN VF, 2003, P NATL ACAD SCI USA, V100, P13356
LEE TI, 2002, SCIENCE, V298, P799
MANGAN S, 2003, J MOL BIOL, V334, P197
MANGAN S, 2003, P NATL ACAD SCI USA, V100, P11980
MASLOV S, 2002, SCIENCE, V296, P910
MILO R, 2002, SCIENCE, V298, P824
RAVASZ E, 2002, SCIENCE, V297, P1551
ROSENFELD N, 2002, J MOL BIOL, V323, P785
SALGADO H, 2001, NUCLEIC ACIDS RES, V29, P72
SETTY Y, 2003, P NATL ACAD SCI USA, V100, P7702
SHENORR SS, 2002, NAT GENET, V31, P64
SIMON I, 2001, CELL, V106, P697
THIEFFRY D, 1998, BIOESSAYS, V20, P433
WOLF DM, 2003, CURR OPIN MICROBIOL, V6, P125
WUCHTY S, 2003, NAT GENET, V35, P176
WYRICK JJ, 2002, CURR OPIN GENET DEV, V12, P130
YILDIRIM N, 2003, BIOPHYS J, V84, P2841
ZEITLINGER J, 2003, CELL, V113, P395
NR 26
TC 41
PU BIOMED CENTRAL LTD
PI LONDON
PA MIDDLESEX HOUSE, 34-42 CLEVELAND ST, LONDON W1T 4LB, ENGLAND
SN 1471-2105
J9 BMC BIOINFORMATICS
JI BMC Bioinformatics
PD JAN 30
PY 2004
VL 5
AR 10
DI ARTN 10
PG 7
SC Biochemical Research Methods; Biotechnology & Applied Microbiology
GA 801RK
UT ISI:000220112800001
ER
PT J
AU Almaas, E
Kovacs, B
Vicsek, T
Oltvai, ZN
Barabasi, AL
TI Global organization of metabolic fluxes in the bacterium Escherichia
coli
SO NATURE
LA English
DT Article
ID CENTRAL CARBON METABOLISM; NETWORKS; CAPABILITIES; DEFINITION;
PATHWAYS; MG1655
AB Cellular metabolism, the integrated interconversion of thousands of
metabolic substrates through enzyme-catalysed biochemical reactions, is
the most investigated complex intracellular web of molecular
interactions. Although the topological organization of individual
reactions into metabolic networks is well understood(1-4), the
principles that govern their global functional use under different
growth conditions raise many unanswered questions(5-7). By implementing
a flux balance analysis(8-12) of the metabolism of Escherichia coli
strain MG1655, here we show that network use is highly uneven. Whereas
most metabolic reactions have low fluxes, the overall activity of the
metabolism is dominated by several reactions with very high fluxes. E.
coli responds to changes in growth conditions by reorganizing the rates
of selected fluxes predominantly within this high-flux backbone. This
behaviour probably represents a universal feature of metabolic activity
in all cells, with potential implications for metabolic engineering.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Lorand Eotvos Univ, Biol Phys Dept, H-1117 Budapest, Hungary.
Lorand Eotvos Univ, Res Grp HAS, H-1117 Budapest, Hungary.
Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 2003, PHYSICA A, V319, P633
BLATTNER FR, 1997, SCIENCE, V277, P1453
CANONACO F, 2001, FEMS MICROBIOL LETT, V204, P247
DANDEKAR T, 1999, BIOCHEM J 1, V343, P115
EDWARDS JS, 2000, P NATL ACAD SCI USA, V97, P5528
EDWARDS JS, 2001, NAT BIOTECHNOL, V19, P125
EDWARDS JS, 2002, BIOTECHNOL BIOENG, V77, P27
EMMERLING M, 2002, J BACTERIOL, V184, P152
FISCHER E, 2003, EUR J BIOCHEM, V270, P880
GERDES SY, 2003, J BACTERIOL, V185, P5673
GOH KI, 2001, PHYS REV LETT, V87
GOLDBETER A, 1996, BIOCH OSCILLATIONS C
HARTWELL LH, 1999, NATURE, V402, P47
HEINRICH R, 1996, REGULATION CELLULAR
HOLME P, 2003, BIOINFORMATICS, V19, P532
IBARRA RU, 2002, NATURE, V420, P186
JEONG H, 2000, NATURE, V407, P651
LOVASZ L, 1999, MATH PROGRAM, V86, P443
MA HW, 2003, BIOINFORMATICS, V19, P1423
RAVASZ E, 2002, SCIENCE, V297, P1551
SAUER U, 1999, J BACTERIOL, V181, P6679
SAVAGEAU MA, 1976, BIOCH SYSTEMS ANAL S
SCHUSTER S, 2000, NAT BIOTECHNOL, V18, P326
SEGRE D, 2002, P NATL ACAD SCI USA, V99, P15112
SMITH RL, 1984, OPER RES, V32, P1296
STELLING J, 2002, NATURE, V420, P190
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WOLF DM, 2003, CURR OPIN MICROBIOL, V6, P125
NR 29
TC 121
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 26
PY 2004
VL 427
IS 6977
BP 839
EP 843
PG 5
SC Multidisciplinary Sciences
GA 777WU
UT ISI:000189207500040
ER
PT J
AU Barabasi, AL
Oltvai, ZN
TI Network biology: Understanding the cell's functional organization
SO NATURE REVIEWS GENETICS
LA English
DT Review
ID PROTEIN-PROTEIN INTERACTIONS; SACCHAROMYCES-CEREVISIAE GENOME;
ESCHERICHIA-COLI GENOME; GENE-EXPRESSION; METABOLIC NETWORKS; COMPLEX
NETWORKS; MOLECULAR NETWORKS; REGULATORY NETWORK;
DROSOPHILA-MELANOGASTER; MODULAR ORGANIZATION
AB A key aim of postgenomic biomedical research is to systematically
catalogue all molecules and their interactions within a living cell.
There is a clear need to understand how these molecules and the
interactions between them determine the function this enormously
complex machinery, both in isolation and when surrounded by other
cells. Rapid advances in network biology indicate that cellular
networks are governed by universal laws and offer a new conceptual
framework that could potentially revolutionize our view of biology and
disease pathologies in the twenty-first century.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
zno008@northwestern.edu
CR AGRAWAL H, 2002, PHYS REV LETT, V89
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALBERT R, 2003, J THEOR BIOL, V223, P1
ALBERTS B, 1998, CELL, V92, P291
ALIZADEH AA, 2000, NATURE, V403, P503
ALMAAS E, IN PRESS NATURE
ALON U, 1999, NATURE, V397, P168
ALON U, 2003, SCIENCE, V301, P1866
APIC G, 2001, BIOINFORMATICS S1, V17, S83
BADER GD, 2002, NAT BIOTECHNOL, V20, P991
BARABASI AL, 1999, SCIENCE, V286, P509
BARJOSEPH Z, 2003, NAT BIOTECHNOL, V21, P1337
BARKAI N, 1997, NATURE, V387, P913
BHALLA US, 2002, SCIENCE, V297, P1018
BHAN A, 2002, BIOINFORMATICS, V18, P1486
BOLLOBAS B, 1985, RANDOM GRAPHS
BORNHOLDT S, 2003, HDB GRAPHS NETWORKS
BRAUNSTEIN LA, 2003, PHYS REV LETT, V91
BRAY D, 2003, SCIENCE, V301, P1864
CHUNG F, 2002, P NATL ACAD SCI USA, V99, P15879
COHEN R, 2003, PHYS REV LETT, V90
CONANT GC, 2003, NAT GENET, V34, P264
DANIAL NN, 2003, NATURE, V424, P952
DELAFUENTE A, 2002, TRENDS GENET, V18, P395
DEZSO Z, 2003, GENOME RES, V13, P2450
DOROGOVTSEV SN, 2002, PHYS REV E 2, V65
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
EDWARDS JS, 2001, NAT BIOTECHNOL, V19, P125
EISENBERG E, 2003, PHYS REV LETT, V91
ELOWITZ MB, 2002, SCIENCE, V297, P1183
EMMERLING M, 2002, J BACTERIOL, V184, P152
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FARKAS I, 2003, PHYSICA A, V318, P601
FEATHERSTONE DE, 2002, BIOESSAYS, V24, P267
FELL DA, 1997, UNDERSTANDING CONTRO
FRASER HB, 2002, SCIENCE, V296, P750
GE H, 2001, NAT GENET, V29, P482
GERDES SY, 2003, J BACTERIOL, V185, P5673
GIAEVER G, 2002, NATURE, V418, P387
GIOT L, 2003, SCIENCE, V302, P1727
GIRVAN M, 2002, P NATL ACAD SCI USA, V99, P7821
GOH KI, 2002, PHYS REV LETT, V88
GRIGORIEV A, 2001, NUCLEIC ACIDS RES, V29, P3513
HARTWELL LH, 1999, NATURE, V402, P47
HASTY J, 2002, NATURE, V420, P224
HINMAN VF, 2003, P NATL ACAD SCI USA, V100, P13356
HOLME P, 2003, BIOINFORMATICS, V19, P532
IBARRA RU, 2002, NATURE, V420, P186
IDEKER T, 2001, SCIENCE, V292, P929
IHMELS J, 2002, NAT GENET, V31, P370
ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
ITZKOVITZ S, 2003, PHYS REV E 2, V68
JANSEN R, 2002, GENOME RES, V12, P37
JANSEN R, 2003, SCIENCE, V302, P449
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, NATURE, V411, P41
KIM J, 2002, PHYS REV E, V66
KIRSCHNER M, 1998, P NATL ACAD SCI USA, V95, P8420
KITANO H, 2002, NATURE, V420, P206
KOLISNYCHENKO V, 2002, GENOME RES, V12, P640
KOONIN EV, 2002, NATURE, V420, P218
KRYLOV DM, 2003, GENOME RES, V13, P2229
KUZNETSOV VA, 2002, GENETICS, V161, P1321
LI S, 2004, SCIENCE 0102
MASLOV S, 2002, SCIENCE, V296, P910
MCADAMS HH, 2003, SCIENCE, V301, P1874
MENEZES MA, IN PRESS PHYS REV LE
MILGRAM S, 1967, PSYCHOL TODAY, V2, P60
MILO R, 2002, SCIENCE, V298, P824
NEWMAN MEJ, 2002, PHYS REV LETT, V89
OLTVAI ZN, 2002, SCIENCE, V298, P763
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2003, J THEOR BIOL, V222, P199
QIAN J, 2001, J MOL BIOL, V313, P673
RAVASZ E, 2002, SCIENCE, V297, P1551
RAVASZ E, 2003, PHYS REV E 2, V67
RIVES AW, 2003, P NATL ACAD SCI USA, V100, P1128
RZHETSKY A, 2001, BIOINFORMATICS, V17, P988
SAVAGEAU M, 1976, BIOCH SYSTEMS ANAL S
SCHILLING CH, 1998, P NATL ACAD SCI USA, V95, P4193
SCHUSTER S, 2002, BIOINFORMATICS, V18, P351
SEGRE D, 2002, P NATL ACAD SCI USA, V99, P15112
SHENORR SS, 2002, NAT GENET, V31, P64
SIMON I, 2001, CELL, V106, P697
SNEL B, 2002, P NATL ACAD SCI USA, V99, P5890
SPIRIN V, 2003, P NATL ACAD SCI USA, V100, P12123
STROGATZ SH, 2001, NATURE, V410, P268
STUART JM, 2003, SCIENCE, V302, P249
TOMOW S, 2003, NUCLEIC ACIDS RES, V31, P6283
TYSON JJ, 2002, BIOESSAYS, V24, P1095
UETZ P, 2000, NATURE, V403, P623
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
VOGELSTEIN B, 2000, NATURE, V408, P307
VONDASSOW G, 2000, NATURE, V406, P188
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WAGNER A, 2003, P ROY SOC LOND B BIO, V270, P457
WALL ME, 2004, NAT REV GENET, V5, P34
WATTS DJ, 1998, NATURE, V393, P440
WINZELER EA, 1999, SCIENCE, V285, P901
WUCHTY S, 2001, MOL BIOL EVOL, V18, P1694
WUCHTY S, 2003, NAT GENET, V35, P176
YOOK SH, IN PRESS PROTEOMICS
YU BJ, 2002, NAT BIOTECHNOL, V20, P1018
ZEITLINGER J, 2003, CELL, V113, P395
NR 106
TC 511
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1471-0056
J9 NAT REV GENET
JI Nat. Rev. Genet.
PD FEB
PY 2004
VL 5
IS 2
BP 101
EP U15
PG 14
SC Genetics & Heredity
GA 768ZW
UT ISI:000188602400012
ER
PT J
AU de Menezes, MA
Barabasi, AL
TI Fluctuations in network dynamics
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID COMPLEX NETWORKS
AB Most complex networks serve as conduits for various dynamical
processes, ranging from mass transfer by chemical reactions in the cell
to packet transfer on the Internet. We collected data on the time
dependent activity of five natural and technological networks, finding
that for each the coupling of the flux fluctuations with the total flux
on individual nodes obeys a unique scaling law. We show that the
observed scaling can explain the competition between the system's
internal collective dynamics and changes in the external environment,
allowing us to predict the relevant scaling exponents.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP de Menezes, MA, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ANDERSON RM, 1982, NATURE, V296, P245
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1999, SCIENCE, V286, P509
BORNHOLDT S, 2002, HDB GRAPHS NETWORKS
CALDARELLI G, 2001, PHYS REV E, V63, P21118
CANCHO RFI, 2001, PHYS REV E 2, V64
CIEPLAK M, 1998, J STAT PHYS, V91, P1
DEMENEZES MA, IN PRESS
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
FAMILY F, 1991, DYNAMICS FRACTAL SUR
LAWRENCE S, 1998, SCIENCE, V280, P98
LELAND WE, 1994, IEEE ACM T NETWORK, V2, P1
STROGATZ SH, 2001, NATURE, V410, P268
TAYLOR LR, 1961, NATURE, V189, P732
VAZQUEZ A, 2002, PHYS REV E 2, V65
NR 17
TC 37
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 16
PY 2004
VL 92
IS 2
AR 028701
DI ARTN 028701
PG 4
SC Physics, Multidisciplinary
GA 764DP
UT ISI:000188187100053
ER
PT J
AU Dezso, Z
Oltvai, ZN
Barabasi, AL
TI Bioinformatics analysis of experimentally determined protein complexes
in the yeast Saccharomyces cerevisiae
SO GENOME RESEARCH
LA English
DT Article
ID EXPRESSION PROFILES; GENE-EXPRESSION; CELL-CYCLE; SCALE DATA; GENOME;
IDENTIFICATION; PATTERNS; NETWORKS
AB Many important cellular functions are implemented by protein complexes
that act as sophisticated molecular machines of varying size and
temporal stability. Here we demonstrate quantitatively that protein
complexes in the yeast Saccharomyces cerevisiae are comprised of a core
in which subunits are highly coexpressed, display the same deletion
phenotype (essential or nonessential), and share identical functional
classification and cellular localization. This core is surrounded by a
functionally mixed group of proteins, which likely represent
short-lived or spurious attachments. The results allow us to define the
deletion phenotype and cellular task of most known complexes, and to
identify with high confidence the biochemical role of hundreds of
proteins with yet unassigned functionality.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
RP Oltvai, ZN, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ABBOTT A, 2002, NATURE, V417, P894
ALBERTS B, 1998, CELL, V92, P291
ALTER O, 2000, P NATL ACAD SCI USA, V97, P10101
CHO RJ, 1998, MOL CELL, V2, P65
EISEN MB, 1998, P NATL ACAD SCI USA, V95, P14863
FRANK J, 2001, BIOESSAYS, V23, P725
FUTCHER B, 1999, MOL CELL BIOL, V19, P7357
GAVIN AC, 2002, NATURE, V415, P141
GE H, 2001, NAT GENET, V29, P482
GRIGORIEV A, 2001, NUCLEIC ACIDS RES, V29, P3513
HARTWELL LH, 1999, NATURE, V402, P47
HASTY J, 2001, NAT REV GENET, V2, P268
HO Y, 2002, NATURE, V415, P180
HOLTER NS, 2000, P NATL ACAD SCI USA, V97, P8409
HUGHES TR, 2000, CELL, V102, P109
JANSEN R, 2002, GENOME RES, V12, P37
JEONG H, 2001, NATURE, V411, P41
KEMMEREN P, 2002, MOL CELL, V9, P1133
MEWES HW, 2002, NUCLEIC ACIDS RES, V30, P31
MROWKA R, 2001, GENOME RES, V11, P1971
SOLE RV, 2002, HDB GRAPHS NETWORKS, P145
SPELLMAN PT, 1998, MOL BIOL CELL, V9, P3273
VONMERING C, 2002, NATURE, V417, P399
WINZELER EA, 1999, SCIENCE, V285, P901
NR 24
TC 15
PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
PI WOODBURY
PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA
SN 1088-9051
J9 GENOME RES
JI Genome Res.
PD NOV
PY 2003
VL 13
IS 11
BP 2450
EP 2454
PG 5
SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology;
Genetics & Heredity
GA 739QB
UT ISI:000186357000011
ER
PT J
AU Wuchty, S
Oltvai, ZN
Barabasi, AL
TI Evolutionary conservation of motif constituents in the yeast protein
interaction network
SO NATURE GENETICS
LA English
DT Article
ID GENE DISPENSABILITY; CELLULAR NETWORKS; ORGANIZATION; DATABASE
AB Understanding why some cellular components are conserved across species
but others evolve rapidly is a key question of modern biology(1-3).
Here we show that in Saccharomyces cerevisiae, proteins organized in
cohesive patterns of interactions are conserved to a substantially
higher degree than those that do not participate in such motifs. We
find that the conservation of proteins in distinct topological motifs
correlates with the interconnectedness and function of that motif and
also depends on the structure of the overall interactome topology.
These findings indicate that motifs may represent evolutionary
conserved topological units of cellular networks molded in accordance
with the specific biological function in which they participate.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR FRASER HB, 2002, SCIENCE, V296, P750
HARTWELL LH, 1999, NATURE, V402, P47
HASTY J, 2002, NATURE, V420, P224
HIRSH AE, 2001, NATURE, V411, P1046
HIRSH AE, 2003, NATURE, V421, P497
HURST LD, 1999, CURR BIOL, V9, P747
JORDAN IK, 2002, GENOME RES, V12, P962
KITANO H, 2002, SCIENCE, V295, P1662
LEE TI, 2002, SCIENCE, V298, P799
MEWES HW, 2002, NUCLEIC ACIDS RES, V30, P31
MILO R, 2002, SCIENCE, V298, P824
OLTVAI ZN, 2002, SCIENCE, V298, P763
PAL C, 2003, NATURE, V421, P496
RAO CV, 2002, NATURE, V420, P231
RAVASZ E, 2002, SCIENCE, V297, P1551
REMM M, 2001, J MOL BIOL, V314, P1041
RIVES AW, 2003, P NATL ACAD SCI USA, V100, P1128
SHENORR SS, 2002, NAT GENET, V31, P64
SNEL B, 2002, P NATL ACAD SCI USA, V99, P5890
VONMERING C, 2002, NATURE, V417, P399
WATTS DJ, 1998, NATURE, V393, P440
XENARIOS I, 2002, NUCLEIC ACIDS RES, V30, P303
NR 22
TC 103
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA
SN 1061-4036
J9 NAT GENET
JI Nature Genet.
PD OCT
PY 2003
VL 35
IS 2
BP 176
EP 179
PG 4
SC Genetics & Heredity
GA 726WV
UT ISI:000185625300015
ER
PT J
AU Gerdes, SY
Scholle, MD
Campbell, JW
Balazsi, G
Ravasz, E
Daugherty, MD
Somera, AL
Kyrpides, NC
Anderson, I
Gelfand, MS
Bhattacharya, A
Kapatral, V
D'Souza, M
Baev, MV
Grechkin, Y
Mseeh, F
Fonstein, MY
Overbeek, R
Barabasi, AL
Oltvai, ZN
Osterman, AL
TI Experimental determination and system level analysis of essential genes
in Escherichia coli MG1655
SO JOURNAL OF BACTERIOLOGY
LA English
DT Article
ID SACCHAROMYCES-CEREVISIAE GENOME; TRANSPOSON MUTAGENESIS; METABOLIC
NETWORKS; SCALE ANALYSIS; IDENTIFICATION; SEQUENCE; ORGANIZATION;
DISRUPTION; STRATEGY; BACTERIA
AB Defining the gene products that play an essential role in an organism's
functional repertoire is vital to understanding the system level
organization of living cells. We used a genetic footprinting technique
for a genome-wide assessment of genes required for robust aerobic
growth of Escherichia coli in rich media. We identified 620 genes as
essential and 3,126 genes as dispensable for growth under these
conditions. Functional context analysis of these data allows individual
functional assignments to be refined. Evolutionary context analysis
demonstrates a significant tendency of essential E. coli genes to be
preserved throughout the bacterial kingdom. Projection of these data
over metabolic subsystems reveals topologic modules with essential and
evolutionarily preserved enzymes with reduced capacity for error
tolerance.
C1 Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
Integrated Genomics Inc, Chicago, IL 60612 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Oltvai, ZN, Northwestern Univ, Dept Pathol, 303 E Chicago Ave, Chicago,
IL 60611 USA.
CR AKERLEY BJ, 2002, P NATL ACAD SCI USA, V99, P966
ANDERSON RP, 1978, J MOL BIOL, V119, P147
BADARINARAYANA V, 2001, NAT BIOTECHNOL, V19, P1060
BLATTNER FR, 1997, SCIENCE, V277, P1453
CSETE ME, 2002, SCIENCE, V295, P1664
EDWARDS JS, 2002, ENVIRON MICROBIOL, V4, P133
FORSYTH RA, 2002, MOL MICROBIOL, V43, P1387
GASTEIGER E, 2001, CURR ISSUES MOL BIOL, V3, P47
GERDES SY, 2002, J BACTERIOL, V184, P4555
GIAEVER G, 2002, NATURE, V418, P387
GORYSHIN IY, 2000, NAT BIOTECHNOL, V18, P97
GRAHAM DE, 2000, P NATL ACAD SCI USA, V97, P3304
HARE RS, 2001, J BACTERIOL, V183, P1694
HASTY J, 2001, NAT REV GENET, V2, P268
HUTCHISON CA, 1999, SCIENCE, V286, P2165
JENSEN KF, 1993, J BACTERIOL, V175, P3401
JEONG H, 2000, NATURE, V407, P651
JI YD, 2001, SCIENCE, V293, P2266
JORDAN IK, 2002, GENOME RES, V12, P962
KAMATH RS, 2003, NATURE, V421, P231
KIM SK, 2001, SCIENCE, V293, P2087
KITANO H, 2002, NATURE, V420, P206
KOBAYASHI K, 2003, P NATL ACAD SCI USA, V100, P4678
KOONIN EV, 2002, NATURE, V420, P218
KYRPIDES N, 1999, J MOL EVOL, V49, P413
NEIDHARDT FC, 1996, ESCHERICHIA COLI SAL
OVERBEEK R, 2003, NUCLEIC ACIDS RES, V31, P164
PEARSON WR, 1988, P NATL ACAD SCI USA, V85, P2444
RAVASZ E, 2002, SCIENCE, V297, P1551
ROSAMOND J, 2000, SCIENCE, V287, P1973
ROSSMACDONALD P, 1999, NATURE, V402, P413
SASSETTI CM, 2001, P NATL ACAD SCI USA, V98, P12712
SCHNEIDER BL, 1998, J BACTERIOL, V180, P4278
SMITH V, 1995, P NATL ACAD SCI USA, V92, P6479
STELLING J, 2002, NATURE, V420, P190
THANASSI JA, 2002, NUCLEIC ACIDS RES, V30, P3152
THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673
WAGNER A, 2000, NAT GENET, V24, P355
WINZELER EA, 1999, SCIENCE, V285, P901
NR 39
TC 122
PU AMER SOC MICROBIOLOGY
PI WASHINGTON
PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA
SN 0021-9193
J9 J BACTERIOL
JI J. Bacteriol.
PD OCT
PY 2003
VL 185
IS 19
BP 5673
EP 5684
PG 12
SC Microbiology
GA 724NK
UT ISI:000185493500003
ER
PT J
AU Yang, I
Jeong, H
Kahng, B
Barabasi, AL
TI Emerging behavior in electronic bidding
SO PHYSICAL REVIEW E
LA English
DT Article
ID EMERGENCE; AUCTIONS; NETWORKS
AB We characterize the statistical properties of a large number of agents
on two major online auction sites. The measurements indicate that the
total number of bids placed in a single category and the number of
distinct auctions frequented by a given agent follow power-law
distributions, implying that a few agents are responsible for a
significant fraction of the total bidding activity on the online
market. We find that these agents exert an unproportional influence on
the final price of the auctioned items. This domination of online
auctions by an unusually active minority may be a generic feature of
all online mercantile processes.
C1 Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea.
Seoul Natl Univ, Ctr Theoret Phys, Seoul 151747, South Korea.
Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Yang, I, Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
AXTELL RL, 2001, SCIENCE, V293, P1818
BARABASI AL, 1999, SCIENCE, V286, P509
BOUCHARD JP, 2000, THEORY FINANCIAL RIS
CHALLET D, 1997, PHYSICA A, V246, P407
DAS SR, 1997, AUCTION THEORY SUMMA
DHULST R, 2001, PHYSICA A, V294, P447
KAUFFMAN RJ, 2000, P AMCIS
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
LEYTONBROWN K, UNPUB GAMES EC BEHA
MANTEGNA RN, 2000, INTRO ECONOPHYSICS C
MARSILI M, 1998, PHYS REV LETT, V80, P2741
NEWMAN MEJ, 2001, PHYS REV E 2, V64
OHARA M, 1995, MARKET MICROSTRUCTUR
PARETO V, 1897, COURS EC POLITIQUE
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PENNOCK DM, 2001, SCIENCE, V291, P987
RESNICK P, 2002, EC INTERNET E COMMER
ROTH AE, UNPUB
SIMON HA, 1955, BIOMETRIKA, V42, P425
STANLEY MHR, 1996, NATURE, V379, P804
VANHECK E, 1998, COMMUN ACM, V41, P99
NR 22
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2003
VL 68
IS 1
PN Part 2
AR 016102
DI ARTN 016102
PG 5
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 708RK
UT ISI:000184582500012
ER
PT J
AU Balazsi, G
Kay, KA
Barabasi, AL
Oltvai, ZN
TI Spurious spatial periodicity of co-expression in microarray data due to
printing design
SO NUCLEIC ACIDS RESEARCH
LA English
DT Article
ID GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; CELL LYMPHOMA; GENOME;
NORMALIZATION; SINGLE; YEAST; CYCLE; CLASSIFICATION; IDENTIFICATION
AB Global transcriptome data is increasingly combined with sophisticated
mathematical analyses to extract information about the functional state
of a cell. Yet the extent to which the results reflect experimental
bias at the expense of true biological information remains largely
unknown. Here we show that the spatial arrangement of probes on
microarrays and the particulars of the printing procedure significantly
affect the log-ratio data of mRNA expression levels measured during the
Saccharomyces cerevisiae cell cycle. We present a numerical method that
filters out these technology-derived contributions from the existing
transcriptome data, leading to improved functional predictions. The
example presented here underlines the need to routinely search and
compensate for inherent experimental bias when analyzing systematically
collected, internally consistent biological data sets.
C1 Northwestern Univ, Feinberg Sch Med, Dept Pathol, Chicago, IL 60611 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Balazsi, G, Northwestern Univ, Feinberg Sch Med, Dept Pathol, Ward Bldg
6-204,303 E Chicago Ave, Chicago, IL 60611 USA.
CR ALIZADEH AA, 2000, NATURE, V403, P503
ALTER O, 2000, P NATL ACAD SCI USA, V97, P10101
BITTNER M, 2000, NATURE, V406, P536
BLAKE WJ, 2003, NATURE, V422, P633
BLUMENTHAL T, 2002, NATURE, V417, P851
BROWN PO, 1999, NAT GENET S, V21, P33
CHO RJ, 1998, MOL CELL, V2, P65
COHEN BA, 2000, NAT GENET, V26, P183
DHANASEKARAN SM, 2001, NATURE, V412, P822
DYRSKJOT L, 2003, NAT GENET, V33, P90
EISEN MB, 1998, P NATL ACAD SCI USA, V95, P14863
ELOWITZ MB, 2002, SCIENCE, V297, P1183
FLORENS L, 2002, NATURE, V419, P520
HEDENFALK I, 2001, NEW ENGL J MED, V344, P539
HEUN P, 2001, SCIENCE, V294, P2181
HORN PJ, 2002, SCIENCE, V297, P1824
HUGHES TR, 2000, CELL, V102, P109
KHAN J, 2001, NAT MED, V7, P673
LERCHER MJ, 2002, NAT GENET, V31, P180
MANNILA H, 2002, BIOINFORMATICS, V18, P482
MEWES HW, 2002, NUCLEIC ACIDS RES, V30, P31
MILLER LD, 2002, CANCER CELL, V2, P353
OZBUDAK EM, 2002, NAT GENET, V31, P69
PEROU CM, 2000, NATURE, V406, P747
QUACKENBUSH J, 2002, NAT GENET S, V32, P496
ROSENWALD A, 2003, CANCER CELL, V3, P185
SPELLMAN PT, 1998, MOL BIOL CELL, V9, P3273
SPELLMAN PT, 2002, J BIOL, V1, P5
TSENG GC, 2001, NUCLEIC ACIDS RES, V29, P2549
VANTVEER LJ, 2002, BREAST CANCER RES, V5, P57
WORKMAN C, 2002, GENOME BIOL, V3
WU LF, 2002, NAT GENET, V31, P255
YANG H, 2003, P NATL ACAD SCI USA, V100, P1122
YANG YH, 2002, NUCLEIC ACIDS RES, V30
NR 34
TC 22
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 0305-1048
J9 NUCL ACID RES
JI Nucleic Acids Res.
PD AUG 1
PY 2003
VL 31
IS 15
BP 4425
EP 4433
PG 9
SC Biochemistry & Molecular Biology
GA 707WM
UT ISI:000184532900026
ER
PT J
AU Barabasi, AL
Bonabeau, E
TI Scale-free networks
SO SCIENTIFIC AMERICAN
LA English
DT Article
C1 Univ Notre Dame, Notre Dame, IN 46556 USA.
Icosyst, Cambridge, MA USA.
RP Barabasi, AL, Univ Notre Dame, Notre Dame, IN 46556 USA.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 2002, LINKED NEW SCI NETWO
COHEN D, 2002, NEW SCI, V174, P24
MENDES JFF, 2003, EVOLUTION NETWORKS B
NR 4
TC 59
PU SCI AMERICAN INC
PI NEW YORK
PA 415 MADISON AVE, NEW YORK, NY 10017 USA
SN 0036-8733
J9 SCI AMER
JI Sci.Am.
PD MAY
PY 2003
VL 288
IS 5
BP 60
EP 69
PG 10
SC Multidisciplinary Sciences
GA 667YW
UT ISI:000182263500031
ER
PT J
AU Ravasz, E
Barabasi, AL
TI Hierarchical organization in complex networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID SCALE-FREE NETWORKS; SCIENTIFIC COLLABORATION NETWORKS; SMALL-WORLD
NETWORKS; METABOLIC NETWORKS; EVOLVING NETWORKS; WIDE-WEB; INTERNET;
EVOLUTION; TOPOLOGY; ATTACK
AB Many real networks in nature and society share two generic properties:
they are scale-free and they display a high degree of clustering. We
show that these two features are the consequence of a hierarchical
organization, implying that small groups of nodes organize in a
hierarchical manner into increasingly large groups, while maintaining a
scale-free topology. In hierarchical networks, the degree of clustering
characterizing the different groups follows a strict scaling law, which
can be used to identify the presence of a hierarchical organization in
real networks. We find that several real networks, such as the
Worldwideweb, actor network, the Internet at the domain level, and the
semantic web obey this scaling law, indicating that hierarchy is a
fundamental characteristic of many complex systems.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Ravasz, E, Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre
Dame, IN 46556 USA.
CR ADAMIC LA, UNPUB
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, PHYS REV LETT, V85, P5234
ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2001, PHYSICA A, V299, P559
BARABASI AL, 2002, PHYSICA A, V311, P590
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
BIANCONI G, 2001, PHYS REV LETT, V86, P5632
BOLLOBAS B, 1985, RANDOM GRAPHS
CANCHO RFI, 2001, P ROY SOC LOND B BIO, V268, P2261
COHEN R, 2001, PHYS REV LETT, V86, P3682
DOROGOVTSEV SN, CONDMAT0112143
DOROGOVTSEV SN, 2001, P ROY SOC LOND B BIO, V268, P2603
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
ECKMANN JP, 2002, P NATL ACAD SCI USA, V99, P5825
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
FALOUTSOS M, 1999, COMP COMM R, V29, P251
FLAKE GW, 2000, P 6 INT C KNOWL DISC, P150
GOVINDAN R, 2000, P IEEE INFOCOM, V3, P1371
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
HARTWELL LH, 1999, NATURE S, V402, C47
HOLME P, 2002, PHYS REV E 2, V65
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, NATURE, V411, P41
JUNG S, 2002, PHYS REV E 2, V65
KLEMM K, 2002, PHYS REV E 2A, V65
LAWRENCE S, 1999, NATURE, V400, P107
LILJEROS F, 2001, NATURE, V411, P907
NEWMAN MEJ, 2000, J STAT PHYS, V101, P819
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
RAVASZ E, 2002, SCIENCE, V297, P1551
SIGMAN M, 2002, P NATL ACAD SCI USA, V99, P1742
SZABO G, CONDMAT0208551
VAZQUEZ A, CONDMAT0206084
VAZQUEZ A, CONDMAT0209183
VAZQUEZ A, 2002, PHYS REV E 2, V65
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 2002, SCIENCE, V296, P1302
YOOK S, UNPUB
YOOK SH, CONDMAT0107417
YOOK SH, UNPUB
NR 49
TC 202
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD FEB
PY 2003
VL 67
IS 2
PN Part 2
AR 026112
DI ARTN 026112
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 654WQ
UT ISI:000181520300024
ER
PT J
AU Jeong, H
Neda, Z
Barabasi, AL
TI Measuring preferential attachment in evolving networks
SO EUROPHYSICS LETTERS
LA English
DT Article
ID GROWING RANDOM NETWORKS; WORLD-WIDE-WEB; INTERNET
AB A key ingredient of man current models proposed to capture the
topological evolution of complex networks is the hypothesis that highly
connected nodes increase their connectivity faster than their less
connected peers, a phenomenon called preferential attachment.
Measurements on four networks, namely the science citation network,
Internet, actor collaboration and science coauthorship network indicate
that the rate at which nodes acquire links depends on the node's
degree, offering direct quantitative support for the presence of
preferential attachment. We find that for the first two systems the
attachment rate depends linearly on the node degree, while for the last
two the dependence follows a sublinear power law.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46616 USA.
Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea.
RP Jeong, H, Univ Notre Dame, Dept Phys, Notre Dame, IN 46616 USA.
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 2000, PHYSICA A, V281, P69
BARABASI AL, 2002, PHYSICA A, V311, P590
BOLLOBAS B, 1985, RANDOM GRAPHS
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV N, 2001, PHYS REV E, V63
DOROGOVTSEV SN, IN PRESS ADV PHYS
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
ERDOS P, 1961, ACTA MATH ACAD SCI H, V12, P261
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
KULLMAN L, 2001, PHYS REV E 1, V63
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
SLANINA F, 2000, PHYS REV E A, V62, P6170
VAZQUEZ A, CONDMAT0006132
WATTS DJ, 1998, NATURE, V393, P440
NR 21
TC 34
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD FEB
PY 2003
VL 61
IS 4
BP 567
EP 572
PG 6
SC Physics, Multidisciplinary
GA 643KC
UT ISI:000180859600020
ER
PT J
AU Farkas, I
Jeong, H
Vicsek, T
Barabasi, AL
Oltvai, ZN
TI The topology of the transcription regulatory network in the yeast,
Saccharomyces cerevisiae
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE bioinformatics; mRNA expression; analysis of graph topology
ID CAENORHABDITIS-ELEGANS; ENVIRONMENTAL-CHANGES; EXPRESSION; GENOME
AB A central goal of postgenomic biology is the elucidation of the
regulatory relationships among all cellular constituents that together
comprise the 'genetic network' of a cell or microorganism. Experimental
manipulation of gene activity coupled with the assessment of perturbed
transcriptome (i.e., global mRNA expression) patterns represents one
approach toward this goal, and may provide a backbone into which other
measurements can be later integrated.
We use microarray data on 287 single gene deletion Saccharomyces
cerevisiae mutant strains to elucidate generic relationships among
perturbed transcriptomes. Their comparison with a method that
preferentially recognizes distinct expression subpatterns allows us to
pair those transcriptomes that share localized similarities. Analyses
of the resulting transcriptome similarity network identify a continuum
hierarchy among the deleted genes, and in the frequency of local
similarities that establishes the links among their reorganized
transcriptomes. We also find a combinatorial utilization of shared
expression subpatterns within individual links, with increasing
quantitative similarity among those that connect transcriptome states
induced by the deletion of functionally related gene products. This
suggests a distinct hierarchical and combinatorial organization of the
S. cerevisiae transcriptional activity, and may represent a pattern
that is generic to the transcriptional organization of all eukaryotic
organisms.
Color versions of both the Supplementary Material and the article are
available at http:// angel.elte.hu/bioinf. (C) 2002 Elsevier Science
B.V. All rights reserved.
C1 Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
NW Univ, Sch Med, Dept Pathol, Chicago, IL 60611 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Vicsek, T, Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
CR BAMMERT GF, 2000, ANTIMICROB AGENTS CH, V44, P1255
BARABASI AL, 1999, SCIENCE, V286, P509
BUSSEMAKER HJ, 2001, NAT GENET, V27, P167
CAUSTON HC, 2001, MOL BIOL CELL, V12, P323
COSTANZO MC, 2000, NUCLEIC ACIDS RES, V28, P73
CVETKOVIC DM, 1979, SPECTRA GRAPHS
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FARKAS IJ, 2001, PHYS REV E 2, V64
FEATHERSTONE DE, 2002, BIOESSAYS, V24, P267
GASCH AP, 2000, MOL BIOL CELL, V11, P4241
GAVIN AC, 2002, NATURE, V415, P141
HO Y, 2002, NATURE, V415, P180
HUGHES TR, 2000, CELL, V102, P109
KIM SK, 2001, SCIENCE, V293, P2087
KUMAR A, 2002, NAT BIOTECHNOL, V20, P58
MCADAMS HH, 1995, SCIENCE, V269, P650
PILPEL Y, 2001, NAT GENET, V10, P10
SMOLEN P, 2000, NEURON, V26, P567
STROGATZ SH, 2001, NATURE, V410, P268
WAGNER A, 2001, BIOINFORMATICS, V17, P1183
WAGNER A, 2002, GENOME RES, V12, P309
WATTS DJ, 1998, NATURE, V393, P440
WINZELER EA, 1999, SCIENCE, V285, P901
NR 23
TC 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD FEB 15
PY 2003
VL 318
IS 3-4
BP 601
EP 612
PG 12
SC Physics, Multidisciplinary
GA 642YP
UT ISI:000180835200026
ER
PT J
AU Makeev, MA
Cuerno, R
Barabasi, AL
TI Morphology of ion-sputtered surfaces
SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS
LA English
DT Review
DE surface morphology; ion irradiation; ripples; sputtering; roughening
ID KURAMOTO-SIVASHINSKY EQUATION; BOMBARDED SOLID-SURFACES;
KARDAR-PARISI-ZHANG; LONG-WAVELENGTH PROPERTIES; AMORPHOUS-CARBON
SURFACES; SCALE INVARIANT SOLUTIONS; INDUCED RIPPLE TOPOGRAPHY; SAMPLE
ROTATION; ROUGHENING INSTABILITY; YIELD CHANGES
AB We derive a stochastic nonlinear continuum equation to describe the
morphological evolution of amorphous surfaces eroded by ion
bombardment. Starting from Sigmund's theory of sputter erosion, we
calculate the coefficients appearing in the continuum equation in terms
of the physical parameters characterizing the sputtering process. We
analyze the morphological features predicted by the continuum theory,
comparing them with the experimentally reported morphologies. We show
that for short time scales, where the effect of nonlinear terms is
negligible, the continuum theory predicts ripple formation. We
demonstrate that in addition to relaxation by thermal surface
diffusion, the sputtering process can also contribute to the smoothing
mechanisms shaping the surface morphology. We explicitly calculate an
effective surface diffusion constant characterizing this smoothing
effect and show that it is responsible for the low temperature ripple
formation observed in various experiments. At long time scales the
nonlinear terms dominate the evolution of the surface morphology. The
nonlinear terms lead to the stabilization of the ripple wavelength and
we show that, depending on the experimental parameters, such as angle
of incidence and ion. energy, different morphologies can be observed:
asymptotically, sputter eroded surfaces could undergo kinetic
roughening, or can display novel ordered structures with rotated
ripples. Finally, we discuss in detail the existing experimental
support for the proposed theory and uncover novel features of the
surface morphology and evolution, that could be directly tested
experimentally. (C) 2002 Published by Elsevier Science B.V.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain.
Univ Carlos III Madrid, Grp Interdisciplinar Sistemas Complicados, Leganes 28911, Spain.
RP Makeev, MA, Louisiana State Univ, Dept Phys & Astron, CCLMS, Baton
Rouge, LA 70803 USA.
CR ALANISSILA T, 1993, J STAT PHYS, V72, P207
AMAR JG, 1990, PHYS REV A, V41, P3399
BABAEV VO, 1976, THIN SOLID FILMS, V38, P15
BALES GS, 1990, SCIENCE, V249, P264
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1997, DYNAMICS FLUCTUATING
BARBER DJ, 1973, J MATER SCI, V8, P1030
BARNETT SA, 1970, SOV PHYS-SOLID STATE, V12, P104
BEDROSSIAN P, 1991, PHYS REV LETT, V67, P124
BEHRISCH R, 1981, SPUTTERING PARTICLE, V1
BEHRISCH R, 1983, SPUTTERING PARTICLE, V2
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
BRUINSMA R, 1992, SURFACE DISORDERING
CARTER G, 1983, SPUTTERING PARTICLE, V2, P231
CARTER G, 1993, PHILOS MAG B, V68, P231
CARTER G, 1996, PHYS REV B, V54, P17647
CARTER G, 1999, PHYS REV B, V59, P1669
CAVAILLE JY, 1978, SURF SCI, V75, P342
CHAN ACT, 1998, SURF SCI, V414, P17
CHASON E, 1990, APPL PHYS LETT, V57, P1793
CHASON E, 1991, APPL PHYS LETT, V59, P3533
CHASON E, 1994, PHYS REV LETT, V72, P3040
CHASON E, 1996, MATER RES SOC SYMP P, V396, P143
CHASON E, 2001, NUCL INSTRUM METH B, V178, P55
CHEY SJ, 1995, PHYS REV B, V52, P16696
CHOW CC, 1995, PHYSICA D, V84, P494
CIRLIN EH, 1991, J VAC SCI TECHNOL 2, V9, P1395
CIRLIN EH, 1992, THIN SOLID FILMS, V220, P197
CSAHOK Z, 1996, SURF SCI, V364, L600
CUERNO R, UNPUB
CUERNO R, 1995, PHYS REV E, V52, P4853
CUERNO R, 1995, PHYS REV LETT, V74, P4746
CUERNO R, 1995, PHYS REV LETT, V75, P4464
DASSARMA S, 1991, PHYS REV LETT, V66, P325
ECKSTEIN W, 1991, COMPUTER SIMULATION
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
ELST K, 1993, J VAC SCI TECHNOL B, V11, P1968
ELST K, 1994, J VAC SCI TECHNOL A, V12, P3205
ERLEBACHER J, 1999, PHYS REV LETT, V82, P2330
FAMILY F, 1985, J PHYS A, V18, L15
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FORREST BM, 1990, J STAT PHYS, V60, P181
GOLUBOVIC L, 1991, PHYS REV LETT, V66, P321
GOLUBOVIC L, 1991, PHYS REV LETT, V67, P2747
HALPINHEALY T, 1995, PHYS REP, V254, P215
HAUTALA M, 1996, NUCL INSTRUM METH B, V117, P95
HAYOT F, 1993, PHYS REV E, V47, P911
HERRING C, 1950, J APPL PHYS, V21, P301
ISHITANI A, 1992, P 8 INT C SEC ION MA, V8
JAYAPRAKASH C, 1993, PHYS REV LETT, V71, P12
KARDAR M, 1986, PHYS REV LETT, V56, P889
KAREN A, 1991, J VAC SCI TECHNOL A, V9, P2247
KAREN A, 1995, SURF INTERFACE ANAL, V23, P506
KARMA A, 1993, PHYS REV LETT, V71, P3810
KIRN JM, 1989, PHYS REV LETT, V62, P2289
KONARSKI P, 1996, VACUUM, V47, P1111
KOPONEN I, 1996, PHYS REV B, V54, P13502
KOPONEN I, 1997, J APPL PHYS, V82, P6047
KOPONEN I, 1997, NUCL INSTRUM METH B, V127, P230
KOPONEN I, 1997, NUCL INSTRUM METH B, V129, P349
KOPONEN I, 1997, PHYS REV LETT, V78, P2612
KRIM J, 1993, PHYS REV LETT, V70, P57
KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356
LAURITSEN KB, 1996, PHYS REV E A, V54, P3577
LVOV V, 1994, PHYS REV LETT, V72, P302
LVOV VS, 1992, PHYS REV LETT, V69, P3543
LVOV VS, 1993, NONLINEARITY, V6, P25
MACLAREN SW, 1992, J VAC SCI TECHNOL A, V10, P468
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAKEEV MA, 1998, APPL PHYS LETT, V72, P906
MAKEEV MA, 1998, APPL PHYS LETT, V73, P1445
MARINOV M, 1977, THIN SOLID FILMS, V46, P267
MARSILI M, 1996, REV MOD PHYS, V68, P963
MAYER TM, 1994, J APPL PHYS, V76, P1633
MEAKIN P, 1993, PHYS REP, V235, P189
MOSER K, 1991, PHYSICA A, V178, P215
MULLINS WW, 1957, J APPL PHYS, V28, P333
PARK S, 1999, PHYS REV LETT, V83, P3486
POELSEMA B, 1994, JPN J APPL PHYS, V33, P2244
PROCACCIA I, 1992, PHYS REV A, V46, P3220
PROTSENKO AN, 1993, NUCL INSTRUM METH B, V82, P417
ROBINSON RS, 1982, J VAC SCI TECHNOL, V21, P790
ROSSNAGEL SM, 1982, SURF SCI, V123, P89
ROST M, 1995, PHYS REV LETT, V75, P3894
RUSPONI S, 1997, PHYS REV LETT, V78, P2795
RUSPONI S, 1998, PHYS REV LETT, V81, P2735
RUSPONI S, 1998, PHYS REV LETT, V81, P4184
SAMARSKY AN, 1963, EQUATIONS MATH PHYSI
SHICHI H, 1991, JPN J APPL PHYS 2, V30, L927
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
SIVASHINSKY GI, 1979, ACTA ASTRONAUT, V6, P569
SMILAUER P, 1993, PHYS REV B, V48, P4968
SMILAUER P, 1993, SURF SCI, V291, L733
SMILGIES DM, 1997, SURF SCI, V377, P1038
SNEPPEN K, 1992, PHYS REV A, V46, R7351
STEVIE FA, 1988, J VAC SCI TECHNOL A, V6, P76
TOMASSONE S, UNPUB
TOWNSEND PD, 1976, ION IMPLANTATION SPU
UMBACH CC, 1999, B AM PHYS SOC, V44, P706
UMBACH CC, 2001, PHYS REV LETT, V87
VAJO JJ, 1996, J VAC SCI TECHNOL A, V14, P2709
VASILIU F, 1975, J MATER SCI, V10, P399
VILLAIN J, 1991, J PHYS I, V1, P19
VOLKERT CA, 1991, J APPL PHYS, V70, P3521
VVEDENSKY DD, 1993, PHYS REV E, V48, P852
WANG SX, 1996, SURF SCI, V364, L511
WATANABE H, 1996, APPL PHYS LETT, V68, P2514
WINTERBON KB, 1972, RADIAT EFF, V13, P215
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
WITVROUW A, 1993, J APPL PHYS, V74, P7154
WOLF DE, 1990, EUROPHYS LETT, V13, P389
WOLF DE, 1991, PHYS REV LETT, V67, P1783
YAKHOT V, 1981, PHYS REV A, V24, P642
YANG HN, 1994, PHYS REV B, V50, P7635
ZALESKI S, 1989, PHYSICA D, V34, P427
NR 118
TC 85
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-583X
J9 NUCL INSTRUM METH PHYS RES B
JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms
PD DEC
PY 2002
VL 197
IS 3-4
BP 185
EP 227
PG 43
SC Instruments & Instrumentation; Nuclear Science & Technology; Physics,
Atomic, Molecular & Chemical; Physics, Nuclear
GA 624LA
UT ISI:000179760100003
ER
PT J
AU Farkas, I
Derenyi, I
Jeong, H
Meda, Z
Oltvai, ZN
Ravasz, E
Schubert, A
Barabasi, AL
Vicsek, T
TI Networks in life: scaling properties and eigenvalue spectra
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE random networks; collaboration graphs; graph spectra; spectral analysis
of real-world graphs
ID SCIENTIFIC COLLABORATION NETWORKS; SMALL-WORLD NETWORKS; BEHAVIOR;
DYNAMICS; WEB
AB We analyze growing networks ranging from collaboration graphs of
scientists to the network of similarities defined among the various
transcriptional profiles of living cells. For the explicit
demonstration of the scale-free nature and hierarchical organization of
these graphs, a deterministic construction is also used. We demonstrate
the use of determining the eigenvalue spectra of sparse random graph
models for the categorization of small measured networks. (C) 2002
Elsevier Science B.V. All rights reserved.
C1 Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
Inst Curie, UMR 168, F-75248 Paris 05, France.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Babes Bolyai, Dept Theoret Phys, RO-3400 Cluj Napoca, Romania.
Northwestern Univ, Sch Med, Dept Pathol, Chicago, IL 60611 USA.
Hungarian Acad Sci Lib, Bibliometr Serv, H-1245 Budapest, Hungary.
RP Vicsek, T, Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 2001, PHYSICA A, V299, P559
BAUER M, 2001, J STAT PHYS, V103, P301
CVETKOVIC DM, 1995, SPECTRA GRAPHS THEOR
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
DOROGOVTSEV SN, 2002, PHYS REV E 2, V65
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FARKAS IJ, IN PRESS TOPOLOGY TR
FARKAS IJ, 2001, PHYS REV E 2, V64
GOH KI, 2001, PHYS REV E 1, V64
HUBERMAN BA, 1999, NATURE, V401, P131
HUGHES TR, 2000, CELL, V102, P109
JEONG H, 2000, NATURE, V407, P651
JUNG S, 2002, PHYS REV E 2, V65
KOCHEN M, 1989, SMALL WORLD
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
LAWRENCE S, 1999, NATURE, V400, P107
MEHTA ML, 1991, RANDOM MATRICES
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
NEWMAN MEJ, 2001, PHYS REV E 2, V64
SOLE RV, 2000, CONDMAT0011196
WASSERMAN S, 1994, SOCIAL NETWORKS ANAL
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLD
WUCHTY S, 2001, MOL BIOL EVOL, V18, P1694
NR 28
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD NOV 1
PY 2002
VL 314
IS 1-4
BP 25
EP 34
PG 10
SC Physics, Multidisciplinary
GA 619XL
UT ISI:000179502800004
ER
PT J
AU Kim, J
Kahng, B
Barabasi, AL
TI Nanoscale wire formation on sputter-eroded surfaces
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RIPPLE TOPOGRAPHY; ION; EROSION
AB Rotated ripple structures (RRS) on sputter-eroded surfaces are
potential candidates for nanoscale wire fabrication. We show that the
RRS can form when the width of the collision cascade in the
longitudinal direction is larger than that in the transverse direction
and the incident angle of ion beam is chosen in a specific window. By
calculating the structure factor for the RRS, we find that they are
more regular and their amplitude is more enhanced compared to the much
studied ripple structure forming in the linear regime of sputter
erosion. (C) 2002 American Institute of Physics.
C1 Seoul Natl Univ, Sch Phys, Seoul 151747, South Korea.
Seoul Natl Univ, Ctr Theoret Phys, Seoul 151747, South Korea.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Kim, J, KISTI, Supercomp Res Dept, Taejon 305806, South Korea.
CR BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CUERNO R, 1995, PHYS REV LETT, V74, P4746
FACSKO S, 1999, SCIENCE, V285, P1551
FACSKO S, 2001, PHYS REV B, V63
FROST F, 2000, PHYS REV LETT, V85, P4116
HABENICHT S, 2000, EUROPHYS LETT, V50, P209
JACAK L, 1998, QUANTUM DOTS
KAHNG B, 2001, APPL PHYS LETT, V78, P805
KAMINS TI, 1997, APPL PHYS LETT, V71, P1201
KAPON E, 1989, PHYS REV LETT, V63, P430
MAKEEV M, UNPUB
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
PARK S, 1999, PHYS REV LETT, V83, P3486
ROST M, 1995, PHYS REV LETT, V75, P3894
SINHA SK, 1988, PHYS REV B, V38, P2297
NR 15
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 4
PY 2002
VL 81
IS 19
BP 3654
EP 3656
PG 3
SC Physics, Applied
GA 609ZA
UT ISI:000178935200046
ER
PT J
AU Yook, SH
Jeong, HW
Barabasi, AL
TI Modeling the Internet's large-scale topology
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
ID GROWING RANDOM NETWORKS; ATTACK; WEB
AB Network generators that capture the Internet's large-scale topology are
crucial for the development of efficient routing protocols and modeling
Internet traffic. Our ability to design realistic generators is limited
by the incomplete understanding of the fundamental driving forces that
affect the Internet's evolution. By combining several independent
databases capturing the time evolution, topology, and physical layout
of the Internet, we identify the universal mechanisms that shape the
Internet's router and autonomous system level topology. We find that
the physical layout of nodes form a fractal set, determined by
population density patterns around the globe. The placement of links is
driven by competition between preferential attachment and linear
distance dependence, a marked departure from the currently used
exponential laws. The universal parameters that we extract
significantly restrict the class of potentially correct Internet models
and indicate that the networks created by all available topology
generators are fundamentally different from the current Internet.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 2000, NATURE, V406, P378
BARABASI AL, 1999, SCIENCE, V286, P509
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
BOLLOBAS B, 1985, RANDOM GRAPHS
CALVERT KL, 1997, IEEE COMMUN MAG, V35, P160
CAPOCCI A, 2001, PHYS REV E 2, V64
COHEN R, 2000, PHYS REV LETT, V85, P4626
COHEN R, 2001, PHYS REV LETT, V86, P3682
CROVELLA ME, 1997, IEEE ACM T NETWORK, V5, P835
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HAVLIN S, 1991, FRACTALS DISORDERED
JIN C, 2000, CSETR44300 U MICH AN
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
LAWRENCE S, 1999, NATURE, V400, P107
LORENZ DH, 2001, DIMACS TECHNICAL REP
MANNA SS, 2002, EPRINT ARCH
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
VICSEK T, 1992, FRACTAL GROWTH PHENO
WAXMAN BM, 1988, IEEE J SEL AREA COMM, V6, P1617
NR 24
TC 86
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 PROC NAT ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD OCT 15
PY 2002
VL 99
IS 21
BP 13382
EP 13386
PG 5
SC Multidisciplinary Sciences
GA 604RW
UT ISI:000178635700009
ER
PT J
AU Oltvai, ZN
Barabasi, AL
TI Life's complexity pyramid
SO SCIENCE
LA English
DT Editorial Material
ID NETWORKS
C1 Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Oltvai, ZN, Northwestern Univ, Dept Pathol, Chicago, IL 60611 USA.
CR BHALLA US, 1999, SCIENCE, V283, P381
BRAY D, 1995, NATURE, V376, P307
HARTWELL LH, 1999, NATURE, V402, P47
HASTY J, 2001, NAT REV GENET, V2, P268
JEONG H, 2000, NATURE, V407, P651
KITANO H, 2002, SCIENCE, V295, P1662
LEE TI, 2002, SCIENCE, V298, P799
MILO R, 2002, SCIENCE, V298, P824
RAVASZ E, 2002, SCIENCE, V297, P1551
SHENORR SS, 2002, NAT GENET, V31, P64
NR 10
TC 102
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 25
PY 2002
VL 298
IS 5594
BP 763
EP 764
PG 2
SC Multidisciplinary Sciences
GA 607KR
UT ISI:000178791200040
ER
PT J
AU Schwartz, N
Cohen, R
ben-Avraham, D
Barabasi, AL
Havlin, S
TI Percolation in directed scale-free networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID COMPLEX NETWORKS; ABSORBING STATES; RANDOM GRAPHS; FRAGILITY; INTERNET;
ATTACK
AB Many complex networks in nature have directed links, a property that
affects the network's navigability and large-scale topology. Here we
study the percolation properties of such directed scale-free networks
with correlated in and out degree distributions. We derive a phase
diagram that indicates the existence of three regimes, determined by
the values of the degree exponents. In the first regime we regain the
known directed percolation mean field exponents. In contrast, the
second and third regimes are characterized by anomalous exponents,
which we calculate analytically. In the third regime the network is
resilient to random dilution, i.e., the percolation threshold is
p(c)-->1.
C1 Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel.
Bar Ilan Univ, Dept Phys, Ramat Gan, Israel.
Clarkson Univ, Dept Phys, Potsdam, NY 13699 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Schwartz, N, Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel.
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, NATURE, V406, P6794
ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 2000, PHYSICA A, V281, P2115
BRODER A, 2000, COMPUT NETW, V33, P309
BUNDE A, 1996, FRACTALS DISORDERED
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, CONDMAT0202259
COHEN R, 2000, PHYS REV LETT, V85, P4626
COHEN R, 2001, PHYS REV LETT, V86, P3682
DOROGOVTSEV SN, 2001, PHYS REV E 2, V64
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
FROJDH P, 2001, INT J MOD PHYS B, V15, P1761
HINRICHSEN H, 2000, ADV PHYS, V49, P815
JEONG H, 2000, NATURE, V407, P651
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
SANCHEZ AD, 2002, PHYS REV LETT, V88
SOLE RV, 2001, P ROY SOC LOND B BIO, V268, P2039
STAUFFER D, 1991, INTRO PERCOLATION TH
WEISS GH, 1994, ASPECTS APPL RANDOM
WILF HS, 1994, GENERATINGFUNCTIONOL
NR 22
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 2002
VL 66
IS 1
PN Part 2
AR 015104
DI ARTN 015104
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 579WG
UT ISI:000177200600004
ER
PT J
AU Barabasi, AL
Jeong, H
Neda, Z
Ravasz, E
Schubert, A
Vicsek, T
TI Evolution of the social network of scientific collaborations
SO PHYSICA A
LA English
DT Article
DE random networks; scaling; small-word systems; scale-free networks
ID WORLD-WIDE-WEB; GROWING RANDOM NETWORKS; TOPOLOGY; INTERNET;
DISTRIBUTIONS; ORGANIZATION; DYNAMICS; GROWTH
AB The co-authorship network of scientists represents a prototype of
complex evolving networks. In addition, it offers one of the most
extensive database to date on social networks. By mapping the
electronic database containing all relevant journals in mathematics and
neuro-science for an 8-year period (1991-98), we infer the dynamic and
the structural mechanisms that govern the evolution and topology of
this complex system. Three complementary approaches allow us to obtain
a detailed characterization. First, empirical measurements allow us to
uncover the topological measures that characterize the network at a
given moment, as well as the time evolution of these quantities. The
results indicate that the network is scale-free, and that the network
evolution is governed by preferential attachment, affecting both
internal and external links. However, in contrast with most model
predictions the average degree increases in time, and the node
separation decreases. Second, we propose a simple model that captures
the network's time evolution. In some limits the model can be solved
analytically, predicting a two-regime scaling in agreement with the
measurements. Third, numerical simulations are used to uncover the
behavior of quantities that could not be predicted analytically. The
combined numerical and analytical results underline the important role
internal links play in determining the observed scaling behavior and
network topology. The results and methodologies developed in the
context of the co-authorship network could be useful for a systematic
study of other complex evolving networks as well, such as the world
wide web, Internet, or other social networks. (C) 2002 Published by
Elsevier Science B.V.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Coll Budepest, Inst Adv Study, Budapest, Hungary.
Univ Babes Bolyai, Dept Theoret Phys, R-3400 Cluj Napoca, Romania.
Lib Hungarian Acad Sci, Bibliomet Serv, Budapest, Hungary.
Lorand Eotvos Univ, Dept Biol Phys, Budapest, Hungary.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT P, 1999, NATURE, V400, P130
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2000, PHYSICA A, V281, P69
BOLLOBAS B, 1985, RANDOM GRAPHS
BRODER A, 2000, P 9 INT WORLD WID WE
BUNDE A, 1996, FRACTALS DISORDERED
COHEN R, 2000, PHYS REV LETT, V85, P4626
DECASTRO R, 1999, MATH INTELL, V21, P51
DOROGOVTSEV SN, 2000, CONDMAT0009090
DOROGOVTSEV SN, 2000, CONDMAT0011077
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V50, P1
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
FALOUTSOS M, 1999, COMP COMM R, V29, P251
FELL DA, 2000, 0007041 SANT FE I
FELL DA, 2000, ANIMATING CELLULAR M, P79
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, 2000, NATURE, V407, P651
KOCHEN M, 1989, SMALL WORLD
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
KULLMANN L, 2000, CONDMAT0012410
LAWRENCE S, 1998, SCIENCE, V280, P98
LAWRENCE S, 1999, NATURE, V400, P107
MONTOYA JM, 2000, CONDMAT0011195
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
REDNER S, 1998, EUR PHYS J B, V4, P131
SCHUBERT A, 1984, SCIENTOMETRICS, V6, P149
SOLE RV, 2000, CONDMAT0011196
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLD
NR 42
TC 162
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD AUG 15
PY 2002
VL 311
IS 3-4
BP 590
EP 614
PG 25
SC Physics, Multidisciplinary
GA 581BK
UT ISI:000177271100023
ER
PT J
AU Dezso, Z
Barabasi, AL
TI Halting viruses in scale-free networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID COMPLEX NETWORKS; PERCOLATION; INTERNET; ATTACK
AB vanishing epidemic threshold for viruses spreading on scale-free
networks indicate that traditional methods, aiming to decrease a virus'
spreading rate cannot succeed in eradicating an epidemic. We
demonstrate that policies that discriminate between the nodes, curing
mostly the highly connected nodes, can restore a finite epidemic
threshold and potentially eradicate a virus. We find that the more
biased a policy is towards the hubs, the more chance it has to bring
the epidemic threshold above the virus' spreading rate. Furthermore,
such biased policies are more cost effective, requiring less cures to
eradicate the virus.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Dezso, Z, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ANDERSON RM, 1991, INFECT DIS HUMANS DY
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2001, PHYS WORLD, V33
BENAVRAHAM D, 2000, DIFFUSION REACTIONS
BOLLOBAS B, 1985, RANDOM GRAPHS
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
COHEN R, 2001, PHYS REV LETT, V86, P3682
DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
EBEL H, CONDMAT0201476
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
GRASSBERGER P, 1983, MATH BIOSCI, V63, P157
JOST J, 2002, PHYS REV E 2, V65
KUPERMAN M, 2001, PHYS REV LETT, V86, P2909
LILJEROS F, 2001, NATURE, V411, P907
LLOYD AL, 2001, SCIENCE, V292, P1316
MAY RM, 2001, PHYS REV E 2, V64
MOORE C, 2000, PHYS REV E B, V61, P5678
MURRAY JD, 1993, MATH BIOL
NEWMAN MEJ, CONDMAT0201433
PASTORSATORRAS R, CONDMAT0202298
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
PIOT P, 2001, NATURE, V410, P968
WANG XF, 2002, IEEE T CIRCUITS-I, V49, P54
NR 31
TC 60
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 2002
VL 65
IS 5
PN Part 2
AR 055103
DI ARTN 055103
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 568PZ
UT ISI:000176552500003
ER
PT J
AU Albert, R
Barabasi, AL
TI Statistical mechanics of complex networks
SO REVIEWS OF MODERN PHYSICS
LA English
DT Review
ID SMALL-WORLD NETWORKS; SCIENTIFIC COLLABORATION NETWORKS; HIGHLY
OPTIMIZED TOLERANCE; GROWING RANDOM NETWORKS; SCALE-FREE NETWORKS;
MEAN-FIELD THEORY; ART. NO. 025101; RANDOM GRAPHS; EVOLVING NETWORKS;
WIDE-WEB
AB Complex networks describe a wide range of systems in nature and
society. Frequently cited examples include the cell, a network of
chemicals linked by chemical reactions, and the Internet, a network of
routers and computers connected by physical links. While traditionally
these systems have been modeled as random graphs, it is increasingly
recognized that the topology and evolution of real networks are
governed by robust organizing principles. This article reviews the
recent advances in the field of complex networks, focusing on the
statistical mechanics of network topology and dynamics. After reviewing
the empirical data that motivated the recent interest in networks, the
authors discuss the main models and analytical tools, covering random
graphs, small-world and scale-free networks, the emerging theory of
evolving networks, and the interplay between topology and the network's
robustness against failures and attacks.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Albert, R, Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA.
CR ABELLO J, 1999, DIMACS SERIES DISCRE, P119
ADAMIC L, 1999, P ECDL, P443
ADAMIC LA, 1999, NATURE, V401, P131
ADAMIC LA, 2000, PREPRINT
ADAMIC LA, 2000, SCIENCE, V287, P2115
ADAMIC LA, 2001, PHYS REV E 2, V64
AIELLO W, 2000, P 32 ANN ACM S THEOR, P171
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, PHYS REV LETT, V85, P5234
ALDOUS DJ, 1999, BERNOULLI, V5, P3
AMARAL LAN, 1999, UNPUB
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
AMBJORN J, 1990, PHYS LETT B, V244, P403
BANAVAR JR, 1997, PHYS REV LETT, V78, P4522
BANAVAR JR, 1999, NATURE, V399, P130
BANAVAR JR, 2000, PHYS REV LETT, V84, P4745
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2001, CONDMAT0104162
BARRAT A, 1999, CONDMAT9903323
BARRAT A, 2000, EUR PHYS J B, V13, P547
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BENAVRAHAM D, 2000, DIFFUSION REACTIONS
BIANCONI G, 2000, INT J MOD PHYS B, V14, P3356
BIANCONI G, 2000, UNPUB
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
BIANCONI G, 2001, INT J MOD PHYS B, V15, P313
BIANCONI G, 2001, PHYS REV LETT, V86, P5632
BILKE S, 2001, PHYS REV E 2, V64
BOLLOBAS B, 1981, DISCRETE MATH, V33, P1
BOLLOBAS B, 1984, T AM MATH SOC, V286, P257
BOLLOBAS B, 1985, RANDOM GRAPHS
BOLLOBAS B, 2001, DIAMETER SCALE FREE
BORNHOLDT S, 2000, P ROY SOC LOND B BIO, V267, P2281
BORNHOLDT S, 2001, PHYS REV E 2, V64
BRODER A, 2000, COMPUT NETW, V33, P309
BUNDE A, 1994, FRACTALS SCI
BUNDE A, 1996, FRACTALS DISORDERED
BURDA Z, 2001, PHYS REV E 2, V64
BURTON RM, 1989, COMMUN MATH PHYS, V121, P501
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CALLAWAY DS, 2001, PHYS REV E 1, V64
CAMACHO J, 2001, CONDMAT0102127
CAMACHO J, 2001, CONDMAT0103114
CANCHO RFI, 2001, 0103016 SANT FE I
CARLSON JM, 1999, PHYS REV E A, V60, P1412
CARLSON JM, 2000, PHYS REV LETT, V84, P2529
CHRISTENSEN K, 1998, PHYS REV LETT, V81, P2380
CHUNG F, 2001, ADV APPL MATH, V26, P257
COHEN JE, 1988, DISCRETE APPL MATH, V19, P113
COHEN R, 2000, PHYS REV LETT, V85, P4626
COHEN R, 2001, PHYS REV LETT, V86, P3682
COLEMAN J, 1957, SOCIOMETRY, V20, P253
COMELLAS F, 2000, INFORM PROCESS LETT, V76, P83
CRISANTI A, 1993, PRODUCTS RANDOM MATR
CROVELLA ME, 1997, IEEE ACM T NETWORK, V5, P835
DEMENEZES MA, 2000, EUROPHYS LETT, V50, P574
DERRIDA B, 1982, J PHYS A, V15, P557
DODDS PS, 2000, ANNU REV EARTH PL SC, V28, P571
DODDS PS, 2001, PHYS REV E 2, V63
DODDS PS, 2001, PHYS REV E 2, V63
DODDS PS, 2001, PHYS REV E 2, V63
DOROGOVTSEV SN, 2000, CONDMAT0009090
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V50, P1
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2001, CONDMAT0011077
DOROGOVTSEV SN, 2001, P ROY SOC LOND B BIO, V268, P2603
DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
DOROGOVTSEV SN, 2001, PHYS REV E 2, V64
DOYLE J, 2000, PHYS REV LETT, V84, P5656
DURRETT R, 1985, Z WAHRSCHEINLICHKEIT, V69, P421
DUXBURY PM, 1995, PHYS REV B, V51, P3476
ELOWITZ MB, 2000, NATURE, V403, P335
ENQUIST BJ, 1998, NATURE, V395, P163
ENQUIST BJ, 1999, NATURE, V401, P907
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
ERDOS P, 1961, B I INT STATIST TOKY, V38, P343
ERGUN G, 2001, CONDMAT0103423
FALOUTSOS M, 1999, COMP COMM R, V29, P251
FARKAS IJ, 2001, PHYS REV E 2, V64
FELL DA, 2000, NAT BIOTECHNOL, V18, P1121
FLAKE GW, 2000, P 6 INT C KNOWL DISC, P150
GARDNER TS, 2000, NATURE, V403, P520
GIBSON D, 1998, P 9 ACM C HYP HYP, P225
GLEISS PM, 2001, ADV COMPLEX SYST, V4, P207
GOH KI, 2001, PHYS REV E 1, V64
GOVINDAN R, 2000, P IEEE INFOCOM, V3, P1371
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GRIMMETT G, 1999, PERCOLATION
GUHR T, 1998, PHYS REP, V299, P189
GUIMERA R, 2001, PHYSICA A, V299, P247
HAMMERSLEY JM, 1957, ANN MATH STAT, V28, P790
HARA T, 1990, COMMUN MATH PHYS, V128, P333
HARTWELL LH, 1999, NATURE S, V402, C47
HAVLIN S, 1984, J PHYS A-MATH GEN, V17, L427
HOHENBERG PC, 1977, REV MOD PHYS, V49, P435
HORNQUIST M, 2001, NLINAO0104016
HUBERMAN BA, 1998, SCIENCE, V280, P95
JAIN S, 2001, P NATL ACAD SCI USA, V98, P543
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, CONDMAT0104131
JEONG H, 2001, NATURE, V411, P41
JESPERSEN S, 2000, PHYS REV E A, V62, P6270
JOHANSEN A, 2000, PHYSICA A, V276, P338
KARONSKI M, 1997, MATH P ERDOS
KASTURIRANGAN R, 1999, CONDMAT9904419
KAUFFMAN SA, 1993, ORIGINS ORDER
KAUFFMAN SA, 1995, HOME UNIVERSE SEARCH
KEELING MJ, 1999, P ROY SOC LOND B BIO, V266, P859
KLEINBERG JM, 1999, P 5 INT C COMP COMB, P1
KLEINBERG JM, 2000, NATURE, V406, P845
KOCHEN M, 1989, SMALL WORLD
KOLCHIN VF, 1986, THEOR PROBAB APPL, V31, P439
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
KRAPIVSKY PL, 2001, PHYS REV LETT, V86, P5401
KULKARNI RV, 2000, PHYS REV E B, V61, P4268
KULLMAN L, 2001, PHYS REV E 1, V63
KUMAR R, 1999, P 9 ACM S PRINC DAT, P1
KUMAR R, 2000, P 19 ACM SIGACT SIGM, P1
KUMAR R, 2000, P 41 IEEE S FDN COMP, P57
KUPERMAN M, 2001, PHYS REV LETT, V86, P2909
LABOVITZ C, 2000, MSRTR200074 MICR RES
LAGOFERNANDEZ LF, 2000, PHYS REV LETT, V84, P2758
LASSIG M, 2001, PHYS REV LETT, V86, P4418
LAWRENCE S, 1998, SCIENCE, V280, P98
LAWRENCE S, 1999, NATURE, V400, P107
LEATH PL, 1976, PHYS REV B, V14, P5064
LILJEROS F, 2001, NATURE, V411, P907
LOTKA AJ, 1926, J WASHINGTON ACADEMY, V16, P317
LUCZAK T, 1990, RANDOM STRUCT ALGOR, V1, P287
MA SK, 1976, MODERN THEORY CRITIC
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MARGULIS G, 1974, PROB PEREDACHI INFOR, V10, P101
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
MEHTA ML, 1991, RANDOM MATRICES
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
MONASSON R, 1999, EUR PHYS J B, V12, P555
MONTOYA JM, 2000, CONDMAT0011195
MOORE C, 2000, PHYS REV E B, V61, P5678
MOORE C, 2000, PHYS REV E B, V62, P7059
MOORE EF, 1952, J FRANKLIN I, V262, P201
MOORE EF, 1956, J FRANKLIN I, V262, P281
MORRA S, 2001, INFORMATION FILTERIN
MOUKARZEL CF, 1999, PHYS REV E, V60, P6263
NEWMAN MEJ, 1999, PHYS LETT A, V263, P341
NEWMAN MEJ, 1999, PHYS REV E B, V60, P7332
NEWMAN MEJ, 2000, J STAT PHYS, V101, P819
NEWMAN MEJ, 2000, PHYS REV LETT, V84, P3201
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, UNPUB
PALMER CR, 2000, P IEEE GLOB 00 SAN F, V1, P434
PANDIT SA, 1999, PHYS REV E, V60, P1119
PARETO V, 1897, COURS EC POLITIQUE, V2
PASTORSATORRAS R, 2001, CONDMAT0102028
PASTORSATORRAS R, 2001, CONDMAT0105161
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PAXSON V, 1997, P 1997 WINT SIM C, P1037
PENNOCK DM, 2000, 2000164 NEC RES I
PIMM SL, 1991, BALANCE NATURE
RAPOPORT A, 1957, B MATH BIOPHYS, V19, P257
REDNER S, 1998, EUR PHYS J B, V4, P131
RODRIGUEZITURBE I, 1997, FRACTAL RIVER BASINS
SAVAGEAU MA, 1998, BIOSYSTEMS, V47, P9
SCALA A, 2001, EUROPHYS LETT, V55, P594
SCHILLING CH, 1998, P NATL ACAD SCI USA, V95, P4193
SIMON HA, 1955, BIOMETRIKA, V42, P425
SLANINA F, 1999, PHYS REV LETT, V83, P5587
SLANINA F, 2000, PHYS REV E A, V62, P6170
SOLE RV, 2001, P ROY SOC LOND B BIO, V268, P2039
SOLE RV, 2001, PHYSICA A, V289, P595
SOLOMONOFF R, 1951, B MATH BIOPHYS, V13, P107
STANLEY HE, 1971, INTRO PHASE TRANSITI
STAUFFER D, 1992, INTRO PERCOLATION TH
STEYVERS M, 2001, PREPRINT
STROGATZ SH, 2001, NATURE, V410, P268
TADIC B, 2001, CONDMAT0104029
TADIC B, 2001, PHYSICA A, V293, P273
VALENTE T, 1995, NETWORK MODELS DIFFU
VAZQUEZ A, 2000, CONDMAT0006132
VAZQUEZ A, 2001, CONDMAT0105031
VOGELSTEIN B, 2000, NATURE, V408, P307
WAGNER A, 2000, 0007041 SANT FE I
WALSH T, 2001, P 17 INT JOINT C ART
WANG XF, 2001, CONDMAT0105014
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
WATTS DJ, 2000, 0012062 SANT FE
WEIGT M, 2001, PHYS REV LETT, V86, P1658
WEST GB, 1997, SCIENCE, V276, P122
WIGNER EP, 1955, ANN MATH, V62, P548
WIGNER EP, 1957, ANN MATH, V65, P203
WIGNER EP, 1958, ANN MATH, V67, P325
WILF HS, 1990, GENERATING FUNCTIONO
WILLIAMS RJ, 2000, 0107036 SANT FE I
WILLINGER W, 1997, IEEE ACM T NETWORK, V5, P71
YOOK S, 2001, CONDMAT0107417
YOOK S, 2001, UNPUB
YOOK SH, 2001, PHYS REV LETT, V86, P5835
ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
ZIZZI PA, 2001, GRQC0103002
NR 214
TC 2060
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0034-6861
J9 REV MOD PHYS
JI Rev. Mod. Phys.
PD JAN
PY 2002
VL 74
IS 1
BP 47
EP 97
PG 51
SC Physics, Multidisciplinary
GA 533UL
UT ISI:000174548700003
ER
PT J
AU Jeong, H
Kahng, B
Lee, S
Kwak, CY
Barabasi, AL
Furdyna, JK
TI Monte Carlo simulation of sinusoidally modulated superlattice growth
SO PHYSICAL REVIEW E
LA English
DT Article
AB The fabrication of ZnSe/ZnTe superlattices grown by the process of
rotating the substrate in the presence of an inhomogeneous flux
distribution instead of the successively closing and opening of source
shutters is studied via Monte Carlo simulations. It is found that the
concentration of each compound is sinusoidally modulated along the
growth direction, caused by the uneven arrival of Se and Te atoms at a
given point of the sample, and by the variation of the Te/Se ratio at
that point due to the rotation of the substrate. In this way we obtain
a ZnSe1-xTex alloy in which the composition x varies sinusoidally along
the growth direction. The period of the modulation is directly
controlled by the rate of the substrate rotation. The amplitude of the
compositional modulation is monotonic for small angular velocities of
the substrate rotation, but is itself modulated for large angular
velocities. The average amplitude of the modulation pattern decreases
as the angular velocity of substrate rotation increases and the
measurement position approaches the center of rotation. The simulation
results are in good agreement with previously published experimental
measurements on superlattices fabricated in this manner.
C1 Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305710, South Korea.
Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea.
Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea.
Korea Univ, Dept Phys, Seoul 136701, South Korea.
Konkuk Univ, Dept Phys, Seoul 143701, South Korea.
Konkuk Univ, Ctr Adv Mat, Seoul 143701, South Korea.
RP Kahng, B, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR FAMILY F, 1986, J PHYS A, V19, L441
FEWSTER PF, 1993, SEMICOND SCI TECH, V8, P1915
LEE S, 2000, J VAC SCI TECHNOL B, V18, P1518
PARK S, 1999, PHYS REV E B, V59, P6184
REIMER PM, 2000, PHYS REV B, V61, P8388
SHAHZAD K, 1988, PHYS REV B, V38, P1417
UESUGI K, 1996, APPL PHYS LETT, V68, P844
WOLF DE, 1995, SCALE INVARIANCE INT, P215
YANG G, 2000, PHYS REV B, V61, P10978
NR 9
TC 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAR
PY 2002
VL 65
IS 3
PN Part 1
AR 031602
DI ARTN 031602
PG 5
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 533UM
UT ISI:000174548800056
ER
PT J
AU Albert, I
Sample, JG
Morss, AJ
Rajagopalan, S
Barabasi, AL
Schiffer, P
TI Granular drag on a discrete object: Shape effects on jamming
SO PHYSICAL REVIEW E
LA English
DT Article
ID FORCE FLUCTUATIONS; STRESS FLUCTUATIONS; BEAD PACKS; PROPAGATION;
MATTER; MEDIA
AB We study the drag force on discrete objects with circular cross section
moving slowly through a spherical granular medium. Variations in the
geometry of the dragged object change the drag force only by a small
fraction relative to shape effects in fluid drag. The drag force
depends quadratically on the object's diameter as expected. We do
observe, however. a deviation above the expected linear depth
dependence, and the magnitude of the deviation is apparently controlled
by geometrical factors.
C1 Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
RP Schiffer, P, Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
EM schiffer@phys.psu.edu
CR ALBERT I, 2000, PHYS REV LETT, V84, P5122
ALBERT I, 2001, PHYS REV E 1, V64
ALBERT I, 2001, THESIS U NOTRE DAME
ALBERT R, 1999, PHYS REV LETT, V82, P205
CATES ME, 1998, PHYS REV LETT, V81, P1841
CATES ME, 1999, PHYSICA A, V263, P354
COPPERSMITH SN, 1996, PHYS REV E A, V53, P4673
FOX RW, 1973, INTRO FLUID MECH
HOWELL D, 1999, PHYS REV LETT, V82, P5241
JIA X, 1999, PHYS REV LETT, V82, P1863
LIU AJ, 1998, NATURE, V396, P21
LIU CH, 1995, SCIENCE, V269, P513
MILLER B, 1996, PHYS REV LETT, V77, P3110
MUETH DM, 1998, PHYS REV E B, V57, P3164
NGUYEN ML, 1999, PHYS REV E B, V59, P5870
VANEL L, 1999, PHYS REV E, V60, P5040
WIEGHARDT K, 1975, ANNU REV FLUID MECH, V7, P89
ZIK O, 1992, EUROPHYS LETT, V17, P315
NR 18
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD DEC
PY 2001
VL 6406
IS 6
PN Part 1
AR 061303
DI ARTN 061303
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 502CN
UT ISI:000172726300018
ER
PT J
AU Kahng, B
Albert, L
Schiffer, P
Barabasi, AL
TI Modeling relaxation and jamming in granular media
SO PHYSICAL REVIEW E
LA English
DT Article
ID STRESS FLUCTUATIONS; BREAKDOWN; PROPAGATION; TRANSITION; SANDPILES;
DRAG; SAND
AB We introduce a stochastic microscopic model to investigate the jamming
and reorganization of grains induced by an object moving through a
granular medium. The model reproduces the experimentally observed
periodic sawtooth fluctuations in the jamming force and predicts the
period and the power spectrum in terms of the controllable physical
parameters. It also predicts that the avalanche sizes, defined as the
number of displaced grains during a single advance of the object,
follow a power law P(s) similar to s(-tau), where the exponent is
independent of the physical parameters.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea.
Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea.
Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
RP Kahng, B, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT I, 2000, PHYS REV LETT, V84, P5122
ALBERT I, 2001, PHYS REV E 1, V64
ALBERT R, 1999, PHYS REV LETT, V82, P205
CATES ME, 1998, PHYS REV LETT, V81, P1841
DEMIREL AL, 1996, PHYS REV LETT, V77, P4330
HELD GA, 1990, PHYS REV LETT, V65, P1120
HOWELL D, 1999, PHYS REV LETT, V82, P5241
JAEGER HM, 1996, REV MOD PHYS, V68, P1259
JIA X, 1999, PHYS REV LETT, V82, P1863
KADANOFF LP, 1999, REV MOD PHYS, V71, P435
KAHNG B, 1988, PHYS REV B, V37, P7625
KAHNG B, 1990, J PHYS A, V23, L49
LIU AJ, 1998, NATURE, V396, P21
LIU CH, 1995, SCIENCE, V269, P513
MARTIN S, 1991, J GEOPHYS RES-OCEANS, V96, P10567
MILLER B, 1996, PHYS REV LETT, V77, P3110
MUETH DM, 1998, PHYS REV E B, V57, P3164
NGADI A, 1998, PHYS REV LETT, V80, P273
NGUYEN ML, CONDMAT0005023
NGUYEN ML, 2000, PHYS REV E B, V62, P5248
ROSENDAHL J, 1993, PHYS REV E, V47, P1401
TKACHENKO AV, 1999, PHYS REV E, V60, P687
VANEL L, 1999, PHYS REV E A, V60, R5040
ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
ZAPPERI S, 1999, PHYS REV E A, V59, P5049
NR 25
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD NOV
PY 2001
VL 6405
IS 5
PN Part 1
AR 051303
DI ARTN 051303
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 496QF
UT ISI:000172406900036
ER
PT J
AU Barabasi, AL
Ravasz, E
Vicsek, T
TI Deterministic scale-free networks
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE disordered systems; networks; scale-free networks; scaling
ID INTERNET; TOPOLOGY; WEB
AB Scale-free networks are abundant in nature and society, describing such
diverse systems as the world wide web, the web of human sexual
contacts, or the chemical network of a cell. All models used to
generate a scale-free topology are stochastic, that is they create
networks in which the nodes appear to be randomly connected to each
other. Here we propose a simple model that generates scale-free
networks in a deterministic fashion. We solve exactly the model,
showing that the tail of the degree distribution follows a power law.
(C) 2001 Published by Elsevier Science B.V.
C1 Univ Notre Dame, Coll Sci, Dept Phys, Notre Dame, IN 46556 USA.
Lorand Eotvos Univ, Dept Biol Sci, H-1117 Budapest, Hungary.
RP Barabasi, AL, Univ Notre Dame, Coll Sci, Dept Phys, 225,Nieuwland Sci
Hall, Notre Dame, IN 46556 USA.
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, PHYS REV LETT, V85, P5234
ALBERT R, 2001, IN PRESS REV MOD PHY
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2001, CONDMAT0104162
BARABASI AL, 2001, PHYS WORLD, V14, P33
BIANCONI G, 2001, CONDMAT0104131
BIANCONI G, 2001, EUROPHYS LETT, V54, P443
BIANCONI G, 2001, PHYS REV LETT, V86, P5632
BRODER A, 2000, COMPUT NETW, V33, P309
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V50, P1
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2001, IN PRESS ADV PHYS
FALOUTSOS M, 1999, COMP COMM R, V29, P251
JEONG H, 2000, NATURE, V407, P651
JEONG H, 2001, CONDMAT0104131
JEONG H, 2001, NATURE, V411, P41
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, IN PRESS PHYS REV LE
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
LILJEROS F, 2001, NATURE, V411, P907
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
NEWMAN MEJ, 2000, J STAT PHYS, V101, P849
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
PASTORSATORRAS R, CONDMAT0105161
SOLE RV, 2000, CONTMAT0011196
VICSEK T, 1989, FRACTAL GROWTH PHENO
NR 32
TC 64
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD OCT 15
PY 2001
VL 299
IS 3-4
BP 559
EP 564
PG 6
SC Physics, Multidisciplinary
GA 484DT
UT ISI:000171675500016
ER
PT J
AU Albert, I
Tegzes, P
Albert, R
Sample, JG
Barabasi, AL
Vicsek, T
Kahng, B
Schiffer, P
TI Stick-slip fluctuations in granular drag
SO PHYSICAL REVIEW E
LA English
DT Article
ID FORCE FLUCTUATIONS; STRESS FLUCTUATIONS; BEAD PACKS; PROPAGATION;
FRICTION; MATTER; LAYERS; MODELS; MEDIA
AB We study fluctuations in the drag force experienced by an object moving
through a granular medium. The successive formation and collapse of
jammed states give a stick-slip nature to the fluctuations which are
periodic at small depths but become "stepped" at large depths, a
transition that we interpret as a consequence of the long-range nature
of the force chains and the finite size of our experiment. Another
important finding is that the mean force and the fluctuations appear to
be independent of the properties of the contact surface between the
grains and the dragged object. These results imply that the drag force
originates in the bulk properties of the granular sample.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea.
Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea.
Penn State Univ, Dept Phys, University Pk, PA 16802 USA.
Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA.
RP Albert, I, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT I, CONDMAT0107392
ALBERT I, 2000, PHYS REV LETT, V84, P5122
ALBERT R, 1999, PHYS REV LETT, V82, P205
BROWN RL, 1970, PRINCIPLES POWDER ME
BUCHHOLTZ V, 1998, GRANUL MATTER, V1, P33
CATES ME, 1998, PHYS REV LETT, V81, P1841
CATES ME, 1999, PHYSICA A, V263, P354
COPPERSMITH SN, 1996, PHYS REV E A, V53, P4673
DEMIREL AL, 1996, PHYS REV LETT, V77, P4330
FEDER HJS, 1991, PHYS REV LETT, V66, P2669
GEMINARD JC, 1999, PHYS REV E B, V59, P5881
GENG JF, 2001, PHYS REV LETT, V87
HOWELL D, 1999, PHYS REV LETT, V82, P5241
JIA X, 1999, PHYS REV LETT, V82, P1863
KOLB E, 1999, EUR PHYS J B, V8, P483
LIU AJ, 1998, NATURE, V396, P21
LIU CH, 1995, SCIENCE, V269, P513
MILLER B, 1996, PHYS REV LETT, V77, P3110
MUETH DM, 1998, PHYS REV E B, V57, P3164
NASUNO S, 1997, PHYS REV LETT, V79, P949
NASUNO S, 1998, PHYS REV E B, V58, P2161
NGADI A, 1998, PHYS REV LETT, V80, P273
NGUYEN ML, 1999, PHYS REV E B, V59, P5870
PERSSON BNJ, 1999, SURF SCI REP, V33, P33
REYDELLET G, 2001, PHYS REV LETT, V86, P3308
TKACHENKO AV, 1999, PHYS REV E, V60, P687
VANEL L, 1999, PHYS REV E, V60, P5040
VANEL L, 2000, PHYS REV LETT, V84, P1439
ZIK O, 1992, EUROPHYS LETT, V17, P315
NR 29
TC 19
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD SEP
PY 2001
VL 6403
IS 3
PN Part 1
BP art. no.
EP 031307
AR 031307
PG 9
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 474ZB
UT ISI:000171136200022
ER
PT J
AU Kahng, B
Jeong, H
Barabasi, AL
TI Nanoscale structure formation on sputter eroded surface
SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY
LA English
DT Article
ID ION-BOMBARDED SI(001); ROUGHENING INSTABILITY; RIPPLE FORMATION;
EROSION; EVOLUTION
AB We investigate the morphological features of sputter eroded surfaces,
demonstrating that while at short times ripple formation is described
by the linear theory, after a characteristic time, the nonlinear terms
determine the surface morphology, by monitoring the surface width and
the erosion velocity. Furthermore, we show that sputtering under normal
incidence leads to the formation of spatially ordered uniform nanoscale
islands or holes. We find that while the size of these nanostructures
is independent of flux and temperature, it can be controlled by ion
beam energy.
C1 Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea.
Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Kahng, B, Seoul Natl Univ, Ctr Theoret Phys, Seoul 151742, South Korea.
CR BAN YC, 1999, J KOREAN PHYS SOC S, V35, S829
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CARTER G, 1996, PHYS REV B, V54, P17647
CHASON E, 1994, PHYS REV LETT, V72, P3040
CUERNO R, 1995, PHYS REV LETT, V74, P4746
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
ERLEBACHER J, 1999, PHYS REV LETT, V82, P2330
ERLEBACHER J, 2000, J VAC SCI TECHNOL A, V18, P115
FACSKO S, 1999, SCIENCE, V285, P1551
KAHNG B, 2001, APPL PHYS LETT, V78, P805
KARDAR M, 1986, PHYS REV LETT, V56, P889
KOPONEN I, 1997, PHYS REV LETT, V78, P2612
MAKEEV M, PREPRINT
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAYER TM, 1994, J APPL PHYS, V76, P1633
PARK S, 1999, PHYS REV LETT, V83, P3486
ROST M, 1995, PHYS REV LETT, V75, P3894
RUSPONI S, 1997, PHYS REV LETT, V78, P2795
RUSPONI S, 1998, PHYS REV LETT, V81, P2735
VAJO JJ, 1988, J VAC SCI TECHNOL A, V6, P76
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
WOLF DE, 1991, PHYS REV LETT, V67, P1783
YANG HN, 1994, PHYS REV B, V50, P7635
NR 23
TC 2
PU KOREAN PHYSICAL SOC
PI SEOUL
PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA
SN 0374-4884
J9 J KOREAN PHYS SOC
JI J. Korean Phys. Soc.
PD SEP
PY 2001
VL 39
IS 3
BP 421
EP 424
PG 4
SC Physics, Multidisciplinary
GA 473FK
UT ISI:000171029700002
ER
PT J
AU Podani, J
Oltvai, ZN
Jeong, H
Tombor, B
Barabasi, AL
Szathmary, E
TI Comparable system-level organization of Archaea and Eukaryotes
SO NATURE GENETICS
LA English
DT Article
ID METABOLIC NETWORKS; HYPOTHESIS; DEFINITION; PATHWAYS; GENES
AB A central and long-standing issue in evolutionary theory is the origin
of the biological variation upon which natural selection acts'. Some
hypotheses suggest that evolutionary change represents an adaptation to
the surrounding environment within the constraints of an organism's
innate characteristics(1-3). Elucidation of the origin and evolutionary
relationship of species has been complemented by nucleotide sequence(4)
and gene content(5) analyses, with profound implications for
recognizing life's major domains(4). Understanding of evolutionary
relationships may be further expanded by comparing systemic
higher-level organization among species. Here we employ multivariate
analyses to evaluate the biochemical reaction pathways characterizing
43 species. Comparison of the information transfer pathways of Archaea
and Eukaryotes indicates a close relationship between these domains. In
addition, whereas, eukaryotic metabolic enzymes are primarily of
bacterial origin(6), the pathway-level organization of archaeal and
eukaryotic metabolic networks is more closely related. Our analyses
therefore suggest that during the symbiotic evolution of
eukaryotes,(7-9) incorporation of bacterial metabolic enzymes into the
proto-archaeal proteome was constrained by the host's pre-existing
metabolic architecture.
C1 Collegium Budapest, Inst Adv Study, H-1014 Budapest, Hungary.
Lorand Eotvos Univ, Dept Plant Taxon & Ecol, H-1117 Budapest, Hungary.
Northwestern Univ, Sch Med, Dept Pathol, Chicago, IL 60611 USA.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Oltvai, ZN, Collegium Budapest, Inst Adv Study, H-1014 Budapest,
Hungary.
CR ANDERSSON JO, 1999, CURR OPIN GENET DEV, V9, P664
BROOKS DR, 2000, ANN NY ACAD SCI, V901, P257
DARWIN C, 1872, ORIGIN SPECIES
DOOLITTLE WE, 1998, TRENDS GENET, V14, P307
JEONG H, 2000, NATURE, V407, P651
LAWRENCE JG, 1996, GENETICS, V143, P1843
MARGULIS L, 1970, ORIGIN EUKARYOTIC CE
MARTIN W, 1998, NATURE, V392, P37
MIYATA T, 1991, EVOLUTION LIFE FOSSI, P337
MOREIRA D, 1998, J MOL EVOL, V47, P517
OVERBEEK R, 2000, NUCLEIC ACIDS RES, V28, P123
PENNY D, 1999, CURR OPIN GENET DEV, V9, P672
PODANI J, 1998, DATA SCI CLASSIFICAT, P125
PODANI J, 2000, INTRO EXPLORATION MU
PODANI J, 2001, SYN TAX 2000 COMPUTE
RIVERA MC, 1998, P NATL ACAD SCI USA, V95, P6239
SAITOU N, 1987, MOL BIOL EVOL, V4, P406
SCHILLING CH, 2000, J THEOR BIOL, V203, P229
SCHUSTER S, 2000, NAT BIOTECHNOL, V18, P326
SMITH JM, 1995, MAJOR TRANSITIONS EV
SNEL B, 1999, NAT GENET, V21, P108
SOKAL R, 1973, NUMERICAL TAXONOMY
TOURASSE NJ, 1999, MOL PHYLOGENET EVOL, V13, P159
WOESE CR, 1990, P NATL ACAD SCI USA, V87, P4576
NR 24
TC 26
PU NATURE AMERICA INC
PI NEW YORK
PA 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA
SN 1061-4036
J9 NAT GENET
JI Nature Genet.
PD SEP
PY 2001
VL 29
IS 1
BP 54
EP 56
PG 3
SC Genetics & Heredity
GA 468WN
UT ISI:000170781300016
ER
PT J
AU Barabasi, AL
Freeh, VW
Jeong, HW
Brockman, JB
TI Parasitic computing
SO NATURE
LA English
DT Article
ID WEB
AB Reliable communication on the Internet is guaranteed by a standard set
of protocols, used by all computers(1). Here we show that these
protocols can be exploited to compute with the communication
infrastructure, transforming the Internet into a distributed computer
in which servers unwittingly perform computation on behalf of a remote
node. In this model, which we call 'parasitic computing', one machine
forces target computers to solve a piece of a complex computational
problem merely by engaging them in standard communication.
Consequently, the target computers are unaware that they have performed
computation for the benefit of a commanding node. As experimental
evidence of the principle of parasitic computing, we harness the power
of several web servers across the globe, which-unknown to them-work
together to solve an NP complete problem(2).
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALDERMAN LM, 1994, SCIENCE, V266, P1021
BOOLE G, 1854, INVESTIGATION LAWS T
COHEN R, 2000, PHYS REV LETT, V85, P4626
COHEN R, 2001, PHYS REV LETT, V86, P3682
FOSTER I, 2000, NATURE WEB MATTERS
GAREY M, 1979, COMPUTERS INTRACTABI
LAWRENCE S, 1998, SCIENCE, V280, P98
LAWRENCE S, 1999, NATURE, V400, P107
OUYANG Q, 1997, SCIENCE, V278, P446
PETERSON LL, 2000, COMPUTER NETWORKS SY
SCHONING U, 1999, P 40 ANN IEEE S FDN, P410
STEVENS WR, 1994, TCP IP ILLUSTRATED, P144
STONE J, 1998, IEEE ACM T NETWORK, V6, P529
STONE J, 2000, P ACM SIGCOMM, P309
NR 14
TC 6
PU MACMILLAN PUBLISHERS LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD AUG 30
PY 2001
VL 412
IS 6850
BP 894
EP 897
PG 5
SC Multidisciplinary Sciences
GA 467EG
UT ISI:000170689000040
ER
PT J
AU Farkas, IJ
Derenyi, I
Barabasi, AL
Vicsek, T
TI Spectra of "real-world" graphs: Beyond the semicircle law
SO PHYSICAL REVIEW E
LA English
DT Article
ID RANDOM NETWORKS; INTERNET; TOPOLOGY
AB Many natural and social systems develop complex networks that are
usually modeled as random graphs. The eigenvalue spectrum of these
graphs provides information about their structural properties. While
the semicircle law is known to describe the spectral densities of
uncorrelated random graphs, much less is known about the spectra of
real-world graphs, describing such complex systems as the Internet,
metabolic pathways, networks of power stations, scientific
collaborations, or movie actors, which are inherently correlated and
usually very sparse. An important limitation in addressing the spectra
of these systems is that the numerical determination of the spectra for
systems with more than a few thousand nodes is prohibitively time and
memory consuming. Making use of recent advances in algorithms for
spectral characterization, here we develop methods to determine the
eigenvalues of networks comparable in size to real systems, obtaining
several surprising results on the spectra of adjacency matrices
corresponding to models of real-world graphs. We find that when the
number of links grows as the number of nodes, the spectral density of
uncorrelated random matrices does not converge to the semicircle, law.
Furthermore, the spectra of real-world graphs have specific features,
depending on the details of the corresponding models. In particular,
scale-free graphs develop a trianglelike spectral density with a
power-law tail, while small-world graphs have a complex spectral
density consisting of several sharp peaks. These and further results
indicate that the spectra of correlated graphs represent a practical
tool for graph classification and can provide useful insight into the
relevant structural properties of real networks.
C1 Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
Collegium Budapest, Inst Adv Study, H-1014 Budapest, Hungary.
Inst Curie, UMR 168, F-75248 Paris, France.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Farkas, IJ, Lorand Eotvos Univ, Dept Biol Phys, Pazmany Peter Setany
1A, H-1117 Budapest, Hungary.
EM fij@elte.hu
derenyi@angel.elte.hu
alb@nd.edu
vicsek@angel.elte.hu
CR ADAMIC LA, 1999, NATURE, V401, P131
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, CONDMAT0001458
BARABASI AL, UNPUB
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BARTHELEMY M, 1999, PHYS REV LETT, V82, P5180
BAUER M, 2001, J STAT PHYS, V103, P301
BIANCONI G, CONDMAT0011029
BIANCONI G, CONDMAT0011224
BIGGS N, 1974, ALGEBRAIC GRAPH THEO
BOLLOBAS B, 1983, RANDOM GRAPHS 83
BOLLOBAS B, 1985, RANDOM GRAPHS
BRODER A, 2000, UNPUB P 9 INT WORLD
BRONK BV, 1964, J MATH PHYS, V5, P215
COHEN R, 2000, PHYS REV LETT, V85, P4626
COHEN R, 2001, PHYS REV LETT, V86, P3682
CRISANTI A, 1993, SPRINGER SERIES SOLI, V104
CVETKOVIC D, 1990, LINEAR MULTILINEAR A, V28, P3
CVETKOVIC DM, 1980, SPECTRA GRAPHS
DOROGOVTSEV SN, CONDMAT0011077
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
DYSON FJ, 1962, J MATH PHYS, V3, P140
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
ERDOS P, 1961, ACTA MATH ACAD SCI H, V12, P261
FALOUTSOS M, 1999, COMP COMM R, V29, P251
GLEISS PM, UNPUB
GOH KI, CONDMAT0103337
GRAHAM RL, 1995, HDB COMBINATORICS
GUHR T, 1998, PHYS REP, V299, P189
HIAI F, 2000, SEMICIRCLE LAW FREE
JEONG H, 2000, NATURE, V407, P651
JESPERSEN S, 2000, PHYS REV E B, V62, P4405
JUHASZ F, 1981, ALGEBRAIC METHODS GR, P313
KLEINBERG J, 1999, UNPUB P INT C COMB C
KRAPIVSKY PL, CONDMAT0011094
KRAPIVSKY PL, CONDMAT0012181
LALOUX L, 1999, PHYS REV LETT, V83, P1467
MANTEGNA RN, CONDMAT9802256
MCDIARMID C, 1989, LONDON MATH SOC LECT, V141, P148
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
MEHTA ML, 1991, RANDOM MATRICES
MONTOYA JM, UNPUB
NEWMAN MEJ, CONDMAT0011144
NEWMAN MEJ, 2000, PHYS REV LETT, V84, P3201
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
PARLETT BN, 1998, SYMMETRIC EIGENVALUE
PLEROU V, 1999, PHYS REV LETT, V83, P1471
PRESS WH, 1995, NUMERICAL RECIPES C
REDNER S, 1998, EUR PHYS J B, V4, P131
SHAVITT Y, 2000, 1000967400021401TM L
SOLE RV, UNPUB
VAZQUEZ A, CONDMAT0006132
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
WIGNER EP, 1955, ANN MATH, V62, P548
WIGNER EP, 1957, ANN MATH, V65, P203
WIGNER EP, 1958, ANN MATH, V67, P325
WIGNER EP, 1967, SIAM REV, V9, P1
WU K, 1998, 41412 LAWR BERK NAT
WU K, 1999, J COMPUT PHYS, V154, P156
NR 66
TC 64
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD AUG
PY 2001
VL 6402
IS 2
PN Part 2
AR 026704
DI ARTN 026704
PG 12
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 463TJ
UT ISI:000170493100104
ER
PT J
AU Barabasi, AL
TI The physics of the Web
SO PHYSICS WORLD
LA English
DT Article
ID NETWORKS; INTERNET
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, 203 Nieuwland Sci Hall, Notre
Dame, IN 46556 USA.
CR ALBERT R, 2000, NATURE, V406, P378
BARABASI AL, 1999, SCIENCE, V286, P509
BIANCONI G, 2001, PHYS REV LETT, V86, P5632
BRODER A, 2000, COMPUT NETW, V33, P309
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
FALOUTSOS M, 1999, COMP COMM R, V29, P251
LAWRENCE S, 1999, NATURE, V400, P107
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
WATTS DJ, 1998, NATURE, V393, P440
NR 10
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8585
J9 PHYS WORLD
JI Phys. World
PD JUL
PY 2001
VL 14
IS 7
BP 33
EP 38
PG 6
SC Physics, Multidisciplinary
GA 459ZR
UT ISI:000170281800031
ER
PT J
AU Yook, SH
Jeong, H
Barabasi, AL
Tu, Y
TI Weighted evolving networks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS; INTERNET
AB Many biological, ecological, and economic systems are best described by
weighted networks, as the nodes interact with each other with varying
strength. However, most evolving network models studied so far are
binary, the link strength being either 0 or 1. In this paper we
introduce and investigate the scaling properties of a class of models
which assign weights to the links as the network evolves. The combined
numerical and analytical approach indicates that asymptotically the
total weight distribution converges to the scaling behavior of the
connectivity distribution, but this convergence is hampered by strong
logarithmic corrections.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
IBM Corp, Thomas J Watson Res Ctr, Yorktown Heights, NY 10598 USA.
RP Yook, SH, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 1999, NATURE, V401, P130
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BERLOW EL, 1999, NATURE, V398, P330
BOLLOBAS B, 1985, RANDOM GRAPHS
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KULLMANN L, CONDMAT0012410
MULLER B, 1991, NEURAL NETWORKS INTR
NEWMAN MEJ, 2000, J STAT PHYS, V101, P819
NEWMAN MEJ, 2001, P NATL ACAD SCI USA, V98, P404
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
NR 19
TC 97
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 18
PY 2001
VL 86
IS 25
BP 5835
EP 5838
PG 4
SC Physics, Multidisciplinary
GA 443ZG
UT ISI:000169373000049
ER
PT J
AU Bianconi, G
Barabasi, AL
TI Bose-Einstein condensation in complex networks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS; INTERNET; TOPOLOGY; WEB
AB The evolution of many complex systems, including the World Wide Web,
business, and citation networks, is encoded in the dynamic web
describing the interactions between the system's constituents. Despite
their irreversible and nonequilibrium nature these networks follow Bose
statistics and can undergo Bose-Einstein condensation. Addressing the
dynamical properties of these nonequilibrium systems within the
framework of equilibrium quantum gases predicts that the
"first-mover-advantage." "fit-get-rich," and "winner-takes-all"
phenomena observed in competitive systems an thermodynamically distinct
phases of the underlying evolving networks.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Coll Budapest, Inst Adv Studies, H-1014 Budapest, Hungary.
RP Bianconi, G, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ADAMIC LA, 2000, SCIENCE, V287, P2115
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, CONDMAT0104162
BARABASI AL, 1999, SCIENCE, V286, P509
BIANCONI G, IN PRESS EUROPHYS LE
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HUANG K, 1987, STAT MECH
KIRMAN A, 1997, J EVOL ECON, V7, P339
KRAPIVSKY PL, CONDMAT0011094
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
LAWRENCE S, 1999, NATURE, V400, P107
NEWMAN MEJ, CONDMAT0011144
REDNER S, 1998, EUR PHYS J B, V4, P131
WATTS DJ, 1998, NATURE, V393, P440
NR 17
TC 82
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 11
PY 2001
VL 86
IS 24
BP 5632
EP 5635
PG 4
SC Physics, Multidisciplinary
GA 441PV
UT ISI:000169239500057
ER
PT J
AU Bianconi, G
Barabasi, AL
TI Competition and multiscaling in evolving networks
SO EUROPHYSICS LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS; WIDE-WEB; INTERNET; TOPOLOGY; DYNAMICS
AB The rate at which nodes in a network increase their connectivity
depends on their fitness to compete for links. For example, in social
networks some individuals acquire more social links than others, or on
the www some webpages attract considerably more links than others. We
nd that this competition for links translates into multiscaling, i.e. a
fitness-dependent dynamic exponent, allowing fitter nodes to overcome
the more connected but less fit ones. Uncovering this
fitter-gets-richer phenomenon can help us understand in quantitative
terms the evolution of many competitive systems in nature and society.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Collegium Budapest, Inst Adv Studies, H-1014 Budapest, Hungary.
RP Bianconi, G, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ADAMIC LA, 2000, J9MENCE, V287, P2115
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOLLOBAS B, 1985, RANDOM GRAPHS
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, 2000, NATURE, V407, P651
KLEINBERG J, 1999, INT C COMB COMP
NEWMAN MEJ, 2000, J STAT PHYS, V101, P819
REDNER S, 1998, EUR PHYS J B, V4, P131
WATTS DJ, 1998, NATURE, V393, P440
NR 18
TC 108
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD MAY
PY 2001
VL 54
IS 4
BP 436
EP 442
PG 7
SC Physics, Multidisciplinary
GA 435GR
UT ISI:000168869500005
ER
PT J
AU Jeong, H
Mason, SP
Barabasi, AL
Oltvai, ZN
TI Lethality and centrality in protein networks
SO NATURE
LA English
DT Article
ID SACCHAROMYCES-CEREVISIAE; YEAST; ORGANIZATION; DATABASE; GENOME
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Jeong, H, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 2000, NATURE, V406, P378
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
COSTANZO MC, 2000, NUCLEIC ACIDS RES, V28, P73
EISENBERG D, 2000, NATURE, V405, P823
FELL DA, ANIMATING CELLULAR M, P79
HARTWELL LH, 1999, NATURE, V402, P47
JEONG H, 2000, NATURE, V407, P651
RAIN JC, 2001, NATURE, V409, P211
ROSSMACDONALD P, 1999, NATURE, V402, P413
UETZ P, 2000, NATURE, V403, P623
WAGNER A, 2000, NAT GENET, V24, P355
WINZELER EA, 1999, SCIENCE, V285, P901
XENARIOS I, 2000, NUCLEIC ACIDS RES, V28, P289
NR 13
TC 745
PU MACMILLAN PUBLISHERS LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD MAY 3
PY 2001
VL 411
IS 6833
BP 41
EP 42
PG 2
SC Multidisciplinary Sciences
GA 427XY
UT ISI:000168432800033
ER
PT J
AU Lee, CS
Kahng, B
Barabasi, AL
TI Spatial ordering of stacked quantum dots
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID OPTICAL-PROPERTIES; INAS ISLANDS; SURFACES; GROWTH; GAAS; STRESS
AB We investigate the growth conditions necessary to form an ordered
quantum dot crystal by capping spatially ordered quantum dots and
growing a new layer of dots on top of the capping layer. Performing
Monte Carlo simulations and developing analytic arguments based on the
stress energy function, we demonstrate the existence of an optimal
capping layer thickness, external flux, and temperature for the
formation of quantum dot crystals. (C) 2001 American Institute of
Physics.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Konkuk Univ, Ctr Adv Mat & Devices, Seoul 143701, South Korea.
Konkuk Univ, Dept Phys, Seoul 143701, South Korea.
RP Lee, CS, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR DARHUBER AA, 1997, THIN SOLID FILMS, V294, P296
DARUKA I, 1999, PHYS REV B, V60, R2150
HOLLY V, 1999, PHYS REV LETT, V83, P356
HU SM, 1989, J APPL PHYS, V66, P2741
JACAK L, 1998, QUANTUM DOTS
KAMINS TI, 1997, APPL PHYS LETT, V71, P120
KOBAYASHI A, 1988, J VAC SCI TECHNOL B, V6, P1145
KOBAYASHI A, 1988, PHYS REV B, V37, P1039
LEE C, 1998, APPL PHYS LETT, V73, P2651
LEONARD D, 1993, APPL PHYS LETT, V63, P3203
MEADE RD, 1989, PHYS REV B, V40, P3905
NAKATA Y, 1997, J CRYST GROWTH 2, V175, P713
NEWMAN MEJ, 1999, MONTE CARLO METHODS
REED MA, 1986, J VAC SCI TECHNOL B, V4, P358
SCHROEDER M, 1997, SURF SCI, V375, P129
SHCHUKIN VA, 1999, REV MOD PHYS, V71, P1125
SOLOMON GS, 1996, PHYS REV LETT, V76, P952
SOLOMON GS, 1997, J CRYST GROWTH 2, V175, P707
SPRINGHOLZ G, 1998, SCIENCE, V282, P734
TERSOFF J, 1996, PHYS REV LETT, V76, P1675
WIDMANN F, 1998, J APPL PHYS, V83, P7618
WOLF DE, 1997, DYNAMICS FLUCTUATING
XIE QH, 1995, PHYS REV LETT, V75, P2542
ZUNDEL MK, 1997, APPL PHYS LETT, V71, P2972
NR 24
TC 15
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 12
PY 2001
VL 78
IS 7
BP 984
EP 986
PG 3
SC Physics, Applied
GA 398TN
UT ISI:000166772600045
ER
PT J
AU Kahng, B
Jeong, H
Barabasi, AL
TI Quantum dot and hole formation in sputter erosion
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RIPPLE FORMATION; SURFACE-DIFFUSION; ION-BOMBARDMENT; SCALE
AB Recently, it was experimentally demonstrated that sputtering under
normal incidence leads to the formation of spatially ordered uniform
nanoscale islands or holes. Here, we show that these nanostructures
have inherently nonlinear origin, first appearing when the nonlinear
terms start to dominate the surface dynamics. Depending on the sign of
the nonlinear terms, determined by the shape of the collision cascade,
the surface can develop regular islands or holes with identical
dynamical features, and while the size of these nanostructures is
independent of flux and temperature, it can be modified by tuning the
ion energy. (C) 2001 American Institute of Physics.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Konkuk Univ, Dept Phys, Seoul 143701, South Korea.
Konkuk Univ, Ctr Adv Mat & Devices, Seoul 143701, South Korea.
RP Kahng, B, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CUERNO R, 1995, PHYS REV LETT, V74, P4746
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
ERLEBACHER J, 2000, J VAC SCI TECHNOL A, V18, P115
FACSKO S, 1999, SCIENCE, V285, P1551
JACAK L, 1998, QUANTUM DOTS
KAMINS TI, 1997, APPL PHYS LETT, V71, P1201
KOPONEN I, 1997, PHYS REV LETT, V78, P2612
MACLAREN SW, 1992, J VAC SCI TECHNOL A, V10, P468
MAKEEV M, UNPUB
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
PARK S, 1999, PHYS REV LETT, V83, P3486
RUSPONI S, 1997, PHYS REV LETT, V78, P2795
RUSPONI S, 1998, PHYS REV LETT, V81, P4184
RUSPONI S, 1999, APPL PHYS LETT, V75, P3318
SHCHUKIN VA, 1999, REV MOD PHYS, V71, P1125
SIGMUND P, 1969, PHYS REV, V184, P383
UMBACH CC, 1999, B AM PHYS SOC, V44, P706
VAJO JJ, 1988, J VAC SCI TECHNOL A, V6, P76
VASILIU F, 1975, J MATER SCI, V10, P399
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
YANG HN, 1994, PHYS REV B, V50, P7635
NR 23
TC 56
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 5
PY 2001
VL 78
IS 6
BP 805
EP 807
PG 3
SC Physics, Applied
GA 398CF
UT ISI:000166737800041
ER
PT J
AU Albet, R
Jeong, N
Barabasi, AL
TI Error and attack tolerance of complex networks (vol 406, pg 378, 2000)
SO NATURE
LA English
DT Correction
ID SMALL-WORLD NETWORKS; INTERNET TOPOLOGY; WIDE-WEB; DYNAMICS
AB Many complex systems display a surprising degree of tolerance against
errors. For example, relatively simple organisms grow, persist and
reproduce despite drastic pharmaceutical or environmental
interventions, an error tolerance attributed to the robustness of the
underlying metabolic network(1). Complex communication networks(2)
display a surprising degree of robustness: although key components
regularly malfunction, local failures rarely lead to the loss of the
global information-carrying ability of the network. The stability of
these and other complex systems is often attributed to the redundant
wiring of the functional web defined by the systems' components. Here
we demonstrate that error tolerance is not shared by all redundant
systems: it is displayed only by a class of inhomogeneously wired
networks, called scale-free networks, which include the World-Wide
Web(3-5), the Internet(6), social networks(7) and cells(8). We find
that such networks display an unexpected degree of robustness, the
ability of their nodes to communicate being unaffected even by
unrealistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to attacks
(that is, to the selection and removal of a few nodes that play a vital
role in maintaining the network's connectivity). Such error tolerance
and attack vulnerability are generic properties of communication
networks.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Albet, R, Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre
Dame, IN 46556 USA.
CR ADAMIC LA, 1999, LECT NOTES COMPUT SC, V1696, P443
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOLLOBAS B, 1985, RANDOM GRAPHS
BUDNE A, 1996, FRACTALS DISORDERED
CLAFFY K, 1999, NATURE WEB MATERS
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HARTWELL LH, 1999, NATURE, V402, P47
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, IN PRESS NATURE
KUMAR R, 2000, P 19 ACM SIGACT SIGM, P1
LAWRENCE S, 1999, NATURE, V400, P107
MARITAN A, 1996, SCIENCE, V272, P984
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
PAXSON V, 1997, IEEE ACM T NETWORK, V5, P601
REDNER S, 1998, EUR PHYS J B, V4, P131
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WILLIAMS RJ, 2000, NATURE, V404, P180
ZEGURA EW, 1997, IEEE ACM T NETWORK, V5, P770
NR 25
TC 16
PU MACMILLAN PUBLISHERS LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD JAN 25
PY 2001
VL 409
IS 6819
BP 542
EP +
PG 6
SC Multidisciplinary Sciences
GA 395FW
UT ISI:000166570500057
ER
PT J
AU Albert, R
Barabasi, AL
TI Topology of evolving networks: Local events and universality
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID INTERNET
AB Networks grow and evolve by local events, such as the addition of new
nodes and links, or rewiring of links from one node to another. We show
that depending on the frequency of these processes two topologically
different networks can emerge, the connectivity distribution following
either a generalized power law or an exponential. We propose a
continuum theory that pr-edicts these two regimes as well as the
scaling function and the exponents, in good agreement with numerical
results. Finally, we use the obtained predictions to fit the
connectivity distribution of the network describing the professional
links between movie actors.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR *MEM CLEV PROJ, 1999, SCI AM, V280, P54
ALBERT R, 1999, NATURE, V401, P130
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
DOROGOVTSEV SN, 2000, PHYS REV E A, V62, P1842
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
JEONG H, 2000, NATURE, V407, P651
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KUMAR R, 1999, P 25 INT C VER LARG, P639
REDNER S, 1998, EUR PHYS J B, V4, P131
TU Y, COMMUNICATION
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
NR 15
TC 246
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD DEC 11
PY 2000
VL 85
IS 24
BP 5234
EP 5237
PG 4
SC Physics, Multidisciplinary
GA 382CC
UT ISI:000165800000055
ER
PT J
AU Jeong, H
Tombor, B
Albert, R
Oltvai, ZN
Barabasi, AL
TI The large-scale organization of metabolic networks
SO NATURE
LA English
DT Article
ID SMALL-WORLD NETWORKS
AB In a cell or microorganism, the processes that generate mass, energy,
information transfer and cell-fate specification are seamlessly
integrated through a complex network of cellular constituents and
reactions(1). However, despite the key role of these networks in
sustaining cellular functions, their large-scale structure is
essentially unknown. Here we present a systematic comparative
mathematical analysis of the metabolic networks of 43 organisms
representing all three domains of life. We show that, despite
significant variation in their individual constituents and pathways,
these metabolic networks have the same topological scaling properties
and show striking similarities to the inherent organization of complex
non-biological systems(2). This may indicate that metabolic
organization is not only identical for all living organisms, but also
complies with the design principles of robust and error-tolerant
scale-free networks(2-5), and may represent a common blueprint for the
large-scale organization of interactions among all cellular
constituents.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Northwestern Univ, Sch Med, Dept Pathol, Chicago, IL 60611 USA.
RP Oltvai, ZN, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM zno008@northwestern.edu
alb@nd.edu
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
AMARAL LAN, 2000, CLASSES BEHAV SMALL
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, SCIENCE, V286, P509
BARKAI N, 1997, NATURE, V387, P913
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BECSKEI A, 2000, NATURE, V405, P590
BHALLA US, 1999, SCIENCE, V283, P381
BOLLOBAS B, 1985, RANDOM GRAPHS
BRAY D, 1995, NATURE, V376, P307
DOROGOVTSEV SN, 2000, EVOLUTION REFERENCE
EDWARDS JS, 2000, P NATL ACAD SCI USA, V97, P5528
ELOWITZ MB, 2000, NATURE, V403, P335
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
GARDNER TS, 2000, NATURE, V403, P339
HARTWELL LH, 1999, NATURE S, V402, C47
HASTY J, 2000, P NATL ACAD SCI USA, V97, P2075
INGBER DE, 1993, J CELL SCI 3, V104, P613
KANEHISA M, 2000, NUCLEIC ACIDS RES, V28, P27
KARP PP, 1999, TRENDS BIOTECHNOL, V17, P275
KISCHNER M, 2000, CELL, V100, P79
MCADAMS HH, 1999, TRENDS GENET, V15, P65
OVERBEEK R, 2000, NUCLEIC ACIDS RES, V28, P123
WATTS DJ, 1998, NATURE, V393, P440
WEST GB, 1999, SCIENCE, V284, P1677
YI TM, 2000, P NATL ACAD SCI USA, V97, P4649
NR 28
TC 939
PU MACMILLAN PUBLISHERS LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD OCT 5
PY 2000
VL 407
IS 6804
BP 651
EP 654
PG 5
SC Multidisciplinary Sciences
GA 362HP
UT ISI:000089772800053
ER
PT J
AU Albert, R
Jeong, H
Barabasi, AL
TI Error and attack tolerance of complex networks
SO NATURE
LA English
DT Article
ID SMALL-WORLD NETWORKS; WIDE-WEB; INTERNET; DYNAMICS
AB Many complex systems display a surprising degree of tolerance against
errors. For example, relatively simple organisms grow, persist and
reproduce despite drastic pharmaceutical or environmental
interventions, an error tolerance attributed to the robustness of the
underlying metabolic network(1). Complex communication networks(2)
display a surprising degree of robustness: although key components
regularly malfunction, local failures rarely lead to the loss of the
global information-carrying ability of the network. The stability of
these and other complex systems is often attributed to the redundant
wiring of the functional web defined by the systems' components. Here
we demonstrate that error tolerance is not shared by all redundant
systems: it is displayed only by a class of inhomogeneously wired
networks, called scale-free networks, which include the World-Wide
Web(3-5), the Internet(6), social networks(7) and cells(8). We find
that such networks display an unexpected degree of robustness, the
ability of their nodes to communicate being unaffected even by
unrealistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to attacks
(that is, to the selection and removal of a few nodes that play a vital
role in maintaining the network's connectivity). Such error tolerance
and attack vulnerability are generic properties of communication
networks.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre
Dame, IN 46556 USA.
CR ADAMIC LA, 1999, LECT NOTES COMPUT SC, V1696, P443
ALBERT R, 1999, NATURE, V401, P130
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOLLOBAS B, 1985, RANDOM GRAPHS
BUNDE A, 1996, FRACTALS DISORDERED
CLAFFY K, 1999, NATURE WEB MATTERS
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, ACM SIGCOMM COMPUTER, V29, P251
HARTWELL LH, 1999, NATURE, V402, P47
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, IN PRESS NATURE
KUMAR R, 2000, P 19 ACM SIGACT SIGM, P1
LAWRENCE S, 1999, NATURE, V400, P107
MARITAN A, 1996, SCIENCE, V272, P984
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
PAXSON V, 1997, IEEE ACM T NETWORK, V5, P601
REDNER S, 1998, EUR PHYS J B, V4, P131
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WILLIAMS RJ, 2000, NATURE, V404, P180
ZEGURA EW, 1997, IEEE ACM T NETWORK, V5, P770
NR 24
TC 775
PU MACMILLAN PUBLISHERS LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD JUL 27
PY 2000
VL 406
IS 6794
BP 378
EP 382
PG 6
SC Multidisciplinary Sciences
GA 337WC
UT ISI:000088383800038
ER
PT J
AU Barabasi, AL
Albert, R
Jeong, H
TI Scale-free characteristics of random networks: the topology of the
World-Wide Web
SO PHYSICA A
LA English
DT Article
DE disordered systems; networks; random networks; critical phenomena;
scaling; world-wide web
ID COMPLEXITY; SYSTEMS
AB The world-wide web forms a large directed graph, whose vertices are
documents and edges are links pointing from one document to another.
Here we demonstrate that despite its apparent random character, the
topology of this graph has a number of universal scale-free
characteristics. We introduce a model that leads to a scale-free
network, capturing in a minimal fashion the self-organization processes
governing the world-wide web. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Notre Dame, Coll Sci, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Coll Sci, Dept Phys, 225 Nieuwland Sci
Hall, Notre Dame, IN 46556 USA.
CR 1999, SCI AM, V280, P54
ALBERT R, CONDMAT9907038
ALBERT R, UNPUB
ARTHUR WB, 1999, SCIENCE, V284, P107
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABISI AL, PREPRINT
BARTHELEMY LAN, 1999, AMARAL PHYS REV LETT, V82, P15
BOLLOBIAS B, 1985, RANDOM GRAPHS
BUNDE A, 1994, FRACTALS SCI
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, SIGCOMM99
GALLAGHER R, 1999, SCIENCE, V284, P79
HUBERMAN BA, CONDMAT9901071
KOCH C, 1999, SCIENCE, V284, P96
KOCHEN M, 1989, SMALL WORLD
KUMAR R, 1999, P 25 VLDB C ED SCOTL
LAWRENCE S, 1998, SCIENCE, V280, P98
LAWRENCE S, 1999, NATURE, V400, P107
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
SERVICE RF, 1999, SCIENCE, V284, P80
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WENG GZ, 1999, SCIENCE, V284, P92
NR 24
TC 142
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUN 15
PY 2000
VL 281
IS 1-4
BP 69
EP 77
PG 9
SC Physics, Multidisciplinary
GA 326NM
UT ISI:000087741700008
ER
PT J
AU Albert, R
Barabasi, AL
TI Dynamics of complex systems: Scaling laws for the period of Boolean
networks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID KAUFFMAN CELLULAR AUTOMATA; EMERGENT PROPERTIES; PHASE-TRANSITIONS;
PERCOLATION
AB Boolean networks serve as models for complex systems, such as social or
genetic networks, where each vertex, based on inputs received from
selected vertices, makes its own decision about its state. Despite
their simplicity, little is known about the dynamical properties of
these systems. Hen we propose a method to calculate the period of a
finite Boolean system, by identifying the mechanisms determining its
value. The proposed method can be applied to systems of arbitrary
topology, and can serve as a roadmap For understanding the dynamics of
large interacting systems in general.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Albert, R, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, UNPUB
ALBERT R, 1999, NATURE, V401, P130
ALON U, 1999, NATURE, V397, P168
ATLAN H, 1981, CYBERNET SYST, V12, P103
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BHALLA US, 1999, SCIENCE, V283, P381
BOLLOBAS B, 1985, RANDOM GRAPHS
BUNDE A, 1994, FRACTALS SCI
COHEN JE, 1988, DISCRETE APPL MATH, V19, P113
DEARCANGELIS L, 1987, J PHYS-PARIS, V48, P1881
DERRIDA B, 1986, EUROPHYS LETT, V2, P739
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FOGELMANSOULIE F, 1984, DISCRETE APPL MATH, V9, P139
FOGELMANSOULIE F, 1985, THEOR COMPUT SCI, V40, P275
GELFAND AE, 1984, ENSEMBLE MODELING
KAUFFMAN SA, 1969, J THEOR BIOL, V22, P437
KAUFFMAN SA, 1984, PHYSICA D, V10, P145
KAUFFMAN SA, 1993, ORIGINS ORDER
LUQUE B, 1997, PHYS REV E A, V55, P257
LUX T, 1999, NATURE, V397, P498
PRAKASH S, 1992, PHYS REV A, V46, R1724
STAUFFER D, 1987, PHILOS MAG B, V56, P901
STAUFFER D, 1991, INTRO PERCOLATION TH
WALKER CC, 1965, KYBERNETICS, V3, P100
WALKER CC, 1979, BEHAV SCI, V24, P112
WASSERMANN S, 1994, SOCIAL NETWORK ANAL
WEISBUCH G, 1987, J PHYS-PARIS, V48, P11
NR 28
TC 24
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 12
PY 2000
VL 84
IS 24
BP 5660
EP 5663
PG 4
SC Physics, Multidisciplinary
GA 322RH
UT ISI:000087522200051
ER
PT J
AU Neda, Z
Ravasz, E
Vicsek, T
Brechet, Y
Barabasi, AL
TI Physics of the rhythmic applause
SO PHYSICAL REVIEW E
LA English
DT Article
ID SYNCHRONIZATION; OSCILLATORS; SYSTEMS
AB We report on a series of measurements aimed to characterize the
development and the dynamics of the rhythmic applause in concert halls.
Our results demonstrate that while this process shares many
characteristics of other systems that are known to synchronize, it also
has features that are unexpected and unaccounted for in many other
systems. In particular, we find that the mechanism lying at the heart
of the synchronization process is the period doubling of the clapping
rhythm. The characteristic interplay between synchronized and
unsynchronized regimes during the applause is the result of a
frustration in the system. All results are understandable in the
framework of the Kuramoto model.
C1 Univ Babes Bolyai, Dept Theoret Phys, RO-3400 Cluj Napoca, Romania.
Lorand Eotvos Univ, Dept Biol Phys, Budapest, Hungary.
Domaine Univ Grenoble, INPG, ENSEEG, LTPCM, F-38402 St Martin Dheres, France.
RP Neda, Z, Univ Babes Bolyai, Dept Theoret Phys, Strada Kogalniceanu Nr
1, RO-3400 Cluj Napoca, Romania.
CR BOTTANI S, 1997, PHYS REV E, V54, P2334
GLASS L, 1988, CLOCKS CHAOS RHYTHMS
JIANG Y, 1997, PHYS REV E A, V56, P2672
JUST W, 1997, PHYS REP, V290, P101
KURAMOTO Y, 1987, J STAT PHYS, V49, P569
MIROLLO RE, 1990, SIAM J APPL MATH, V50, P1645
NEDA Z, 2000, NATURE, V403, P849
ROSENBLUM MG, 1996, PHYS REV LETT, V76, P1804
STROGATZ SH, 1993, LECT NOTES BIOMATH, V100
STROGATZ SH, 1993, SCI AM, V269, P102
WINFREE AT, 1967, J THEOR BIOL, V16, P15
NR 11
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 2000
VL 61
IS 6
PN Part B
BP 6987
EP 6992
PG 6
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 323QA
UT ISI:000087575400036
ER
PT J
AU Albert, I
Tegzes, P
Kahng, B
Albert, R
Sample, JG
Pfeifer, M
Barabasi, AL
Vicsek, T
Schiffer, P
TI Jamming and fluctuations in granular drag
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FORCE FLUCTUATIONS; STRESS FLUCTUATIONS; BEAD PACKS; FRICTION;
PROPAGATION; MATTER; LAYERS; MODEL; MEDIA
AB We investigate the dynamic evolution of jamming in granular media
through fluctuations in the granular drag force. The successive
collapse and formation of jammed states give a stick-slip nature to the
fluctuations which is independent of the contact surface between the
grains and the dragged object, thus implying that the stress-induced
collapse is nucleated in the bull; of the granular sample. We also find
that while the fluctuations are periodic at small depths, they become
"stepped" at large depths, a transition which we interpret as a
consequence of the long-range nature of the force chains.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
Konkuk Univ, Dept Phys, Seoul 143701, South Korea.
RP Schiffer, P, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT I, 1999, PHYS REV LETT, V82, P205
ALBERT R, UNPUB
BROWN RL, 1970, PRINCIPLES POWDER ME
BUCHHOLTZ V, 1998, GRANUL MATTER, V1, P33
CATES ME, CONDMAT9901009
CATES ME, 1998, PHYS REV LETT, V81, P1841
CATES ME, 1999, PHYSICA A, V263, P354
CLAUDIN P, 1997, PHYS REV LETT, V78, P231
COPPERSMITH SN, 1996, PHYS REV E A, V53, P4673
DEMIREL AL, 1996, PHYS REV LETT, V77, P4330
DURAN J, 1993, PHYS REV LETT, V70, P2431
FEDER HJS, 1991, PHYS REV LETT, V66, P2669
GEMINARD JC, 1999, PHYS REV E B, V59, P5881
HOWELL D, 1999, PHYS REV LETT, V82, P5241
JAEGER HM, 1996, REV MOD PHYS, V68, P1259
JIA X, 1999, PHYS REV LETT, V82, P1863
KADANOFF LP, 1999, REV MOD PHYS, V71, P435
KOLB E, 1999, EUR PHYS J B, V8, P483
LIU AJ, 1998, NATURE, V396, P21
LIU CH, 1995, SCIENCE, V269, P513
MILLER B, 1996, PHYS REV LETT, V77, P3110
NASUNO S, 1997, PHYS REV LETT, V79, P949
NASUNO S, 1998, PHYS REV E B, V58, P2161
NGUYEN ML, 1999, PHYS REV E B, V59, P5870
TKACHENKO AV, CONDMAT9910250
VANEL L, 1999, PHYS REV E, V60, P5040
ZIK O, 1992, EUROPHYS LETT, V17, P315
NR 27
TC 32
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAY 29
PY 2000
VL 84
IS 22
BP 5122
EP 5125
PG 4
SC Physics, Multidisciplinary
GA 318CL
UT ISI:000087266300023
ER
PT J
AU Neda, Z
Ravasz, E
Brechet, Y
Vicsek, T
Barabasi, AL
TI The sound of many hands clapping - Tumultuous applause can transform
itself into waves of synchronized clapping
SO NATURE
LA English
DT Article
C1 Univ Babes Bolyai, Dept Theoret Phys, RO-3400 Cluj Napoca, Romania.
INP Grenoble, ENSEEG, LTPCM, St Martin Dheres, France.
Lorand Eotvos Univ, Dept Biol Phys, H-1117 Budapest, Hungary.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Neda, Z, Univ Babes Bolyai, Dept Theoret Phys, Str Kogalniceanu 1,
RO-3400 Cluj Napoca, Romania.
CR BOTTANI S, 1997, PHYS REV E, V54, P2334
GLASS L, 1988, CLOCKS CHAOS RHYTHMS
KURAMOTO Y, 1987, J STAT PHYS, V49, P569
MIROLLO RE, 1990, SIAM J APPL MATH, V50, P1645
STROGATZ SH, 1997, SCI AM, V54, P2334
WINFREE AT, 1967, J THEOR BIOL, V16, P15
NR 6
TC 39
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD FEB 24
PY 2000
VL 403
IS 6772
BP 849
EP 850
PG 2
SC Multidisciplinary Sciences
GA 288JG
UT ISI:000085559200041
ER
PT J
AU Barabasi, AL
TI Thermodynamic and kinetic mechanisms in self-assembled quantum dot
formation
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE thermodynamic mechanisms; kinetic mechanisms; self-assembled quantum dot
ID HETEROEPITAXIAL GROWTH; STRAINED ISLANDS; INAS ISLANDS; BEAM EPITAXY;
EVOLUTION; EQUILIBRIUM; NUCLEATION; SURFACES; SI(001); MODEL
AB Heteroepitaxial growth of highly strained structures offers the
possibility to fabricate islands with very narrow size distribution,
coined self-assembling quantum dots (SAQD). In spite of the high
experimental interest, the mechanism of SAQD formation is not well
understood. We will show that equilibrium theories can successfully
predict the island sizes and densities, the nature and the magnitude of
the critical thickness needed to be deposited for SAQD formation, as
well as the onset of ripening. Furthermore, the flux and temperature
dependence of the SAQDs is described using kinetic Monte Carlo
simulations. (C) 1999 Elsevier Science S.A. All rights reserved.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ABSTREITER G, 1996, SEMICOND SCI TECH S, V11, P1521
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1997, APPL PHYS LETT, V70, P2565
DARUKA I, 1997, PHYS REV LETT, V79, P3708
DARUKA I, 1998, APPL PHYS LETT, V72, P2102
DARUKA I, 1999, PHYS REV LETT, V82, P2753
DRUCKER J, 1993, PHYS REV B, V48, P18203
GERARD JM, 1995, CONFINED ELECT PHOTO
JESSON DE, 1996, PHYS REV LETT, V77, P1330
KAMINS TI, 1997, J APPL PHYS, V81, P211
KIRMSE H, 1998, APPL PHYS LETT, V72, P1329
KOBAYASHI NP, 1996, APPL PHYS LETT, V68, P3299
LEE C, 1998, APPL PHYS LETT, V73, P2651
LEE S, 1998, PHYS REV LETT, V81, P3479
LEONARD D, 1994, PHYS REV B, V50, P11687
MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353
MILLER MS, 1996, SOLID STATE ELECTRON, V40, P609
NGO TT, 1996, PHYS REV B, V53, P9618
NOTZEL R, 1996, SEMICOND SCI TECH, V11, P1365
ORR BG, 1992, EUROPHYS LETT, V19, P33
OSTWALD W, 1900, Z PHYS CHEM-STOCH VE, V34, P495
PETROFF PM, 1996, MRS BULL, V21, P50
PRIESTER C, 1995, PHYS REV LETT, V75, P93
RATSCH C, 1994, SURF SCI, V314, L937
ROSS FM, 1998, PHYS REV LETT, V80, P984
SEIFERT W, 1996, J CRYSTAL GROWTH CHA, V33, P423
SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968
STANLEY HE, 1971, INTRO PHASE TRANSITI
STRANSKI IN, 1938, SITZUNGSBER AK 2B MN, V146, P797
TERSOFF J, 1998, PHYS REV LETT, V81, P3183
WULFF G, 1901, Z KRISTALLOGR, V34, P449
ZINKEALLMANG M, 1992, SURF SCI REP, V16, P377
NR 32
TC 2
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD DEC 8
PY 1999
VL 67
IS 1-2
BP 23
EP 30
PG 8
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 266PY
UT ISI:000084309400005
ER
PT J
AU Tegzes, P
Albert, R
Paskvan, M
Barabasi, AL
Vicsek, T
Schiffer, P
TI Liquid-induced transitions in granular media
SO PHYSICAL REVIEW E
LA English
DT Article
ID FORCE
AB We investigate the effect of interstitial liquid on the physical
properties of granular media by measuring the angle of repose as a
function of the liquid content. The resultant adhesive forces lead to
three distinct regimes in the observed behavior as the liquid content
is increased: a granular regime in which the grains move individually,
a correlated regime in which the grains move in correlated clusters,
and a plastic regime in which the grains flow coherently. We discuss
these regimes in terms of two proposed theories describing the effects
of liquid on the physical properties of granular media.
[S1063-651X(99)12311-0].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Lorand Eotvos Univ, Dept Biol Phys, Budapest, Hungary.
RP Tegzes, P, Univ Notre Dame, Dept Phys, 225 Nieuwland Sci, Notre Dame,
IN 46556 USA.
CR ALBERT R, 1997, PHYS REV E, V56, P6271
ALBERT R, 1999, PHYS REV LETT, V82, P205
ALONSO JJ, 1998, PHYS REV E, V58, P672
BARABASI AL, 1999, PHYSICA A, V266, P340
BOCQUET L, 1998, NATURE, V396, P735
BROWN RL, 1970, PRINCIPLES POWDER ME
DEGENNES PG, 1999, REV MOD PHYS, V71, P374
DUPONT TF, 1993, PHYS REV E, V47, P4182
FRAYSSE N, 1997, POWDERS GRAINS 97
FUJI M, 1998, J PHYS CHEM B, V102, P8782
HALSEY TC, 1998, PHYS REV LETT, V80, P3141
HORNBAKER DJ, 1997, NATURE, V387, P765
JAEGER HM, 1996, REV MOD PHYS, V68, P1259
LIU CH, 1993, PHYS REV B, V48, P15646
LIU CH, 1995, SCIENCE, V269, P513
MAKSE HA, 1997, NATURE, V386, P379
NEDDERMAN RM, 1992, STATICS KINEMATICS G
ULMAN A, 1991, ULTRATHIN ORGANIC FI
UMBANHOWAR PB, 1996, NATURE, V382, P793
WOLF DE, 1996, COMPUTATIONAL SIMULA
NR 20
TC 29
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD NOV
PY 1999
VL 60
IS 5
PN Part B
BP 5823
EP 5826
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 259AB
UT ISI:000083870900023
ER
PT J
AU Park, S
Kahng, B
Jeong, H
Barabasi, AL
TI Dynamics of ripple formation in sputter erosion: Nonlinear phenomena
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID PARISI-ZHANG EQUATION; ROUGHENING INSTABILITY; NUMERICAL-SOLUTION;
ION-BOMBARDMENT; SURFACE GROWTH; DIMENSIONS; SI
AB Many morphological features of sputter eroded surfaces are determined
by the balance between ion-induced linear instability and surface
diffusion. However, the impact of the nonlinear terms on the morphology
is less understood. We demonstrate that, while at short times ripple
formation is described by the linear theory, after a characteristic
time the nonlinear terms determine the surface morphology by either
destroying the ripples or generating a new rotated ripple structure. We
show that the morphological transitions induced by the nonlinear
effects can be detected by monitoring the surface width and the erosion
velocity.
C1 Konkuk Univ, Dept Phys, Seoul 143701, South Korea.
Konkuk Univ, Ctr Adv Mat & Devices, Seoul 143701, South Korea.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Park, S, Konkuk Univ, Dept Phys, Seoul 143701, South Korea.
CR AMAR JG, 1990, PHYS REV A, V41, P3399
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CARTER G, 1996, PHYS REV B, V54, P17647
CHASON E, 1994, PHYS REV LETT, V72, P3040
CUERNO R, 1995, PHYS REV LETT, V74, P4746
DASGUPTA C, 1996, PHYS REV E, V54, P4552
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
ERLEBACHER J, IN PRESS
ERLEBACHER J, 1999, PHYS REV LETT, V82, P2330
JEONG H, 1996, PHYS REV LETT, V77, P5094
JIANG ZX, 1998, APPL PHYS LETT, V73, P315
KARDAR M, 1986, PHYS REV LETT, V56, P889
KOPONEN I, 1997, PHYS REV LETT, V78, P2612
KURAMOTO Y, 1984, CHEM OSCILLATIONS WA
LAM CH, 1998, PHYS REV E, V57, P6506
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAYER TM, 1994, J APPL PHYS, V76, P1633
MOSER K, 1991, PHYSICA A, V178, P215
PRESS WH, 1986, NUMERICAL RECIPES
ROST M, 1995, PHYS REV LETT, V75, P3894
RUSPONI S, 1997, PHYS REV LETT, V78, P2795
RUSPONI S, 1998, PHYS REV LETT, V81, P2735
SIGMUND P, 1969, PHYS REV, V184, P383
SIVASHINSKY GI, 1977, ACTA ASTRONAUT, V4, P1177
SIVASHINSKY GI, 1980, PROG THEOR PHYS, V63, P2112
VAJO JJ, 1988, J VAC SCI TECHNOL A, V6, P76
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
WOLF DE, 1991, PHYS REV LETT, V67, P1783
YANG HN, 1994, PHYS REV B, V50, P7635
NR 30
TC 85
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 25
PY 1999
VL 83
IS 17
BP 3486
EP 3489
PG 4
SC Physics, Multidisciplinary
GA 247VZ
UT ISI:000083242800035
ER
PT J
AU Barabasi, AL
Albert, R
Jeong, H
TI Mean-field theory for scale-free random networks
SO PHYSICA A
LA English
DT Article
DE disordered systems; networks; random networks; critical phenomena;
scaling
ID SMALL-WORLD NETWORKS
AB Random networks with complex topology are common in Nature, describing
systems as diverse as the world wide web or social and business
networks. Recently, it has been demonstrated that most large networks
for which topological information is available display scale-free
features. Here we study the scaling properties of the recently
introduced scale-free model, that can account for the observed
power-law distribution of the connectivities. We develop a mean-field
method to predict the growth dynamics of the individual vertices, and
use this to calculate analytically the connectivity distribution and
the scaling exponents. The mean-field method can be used to address the
properties of two variants of the scale-free model, that do not display
power-law scaling. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR 1999, SCI AM, V280, P54
ALBERT R, IN PRESS NATURE
ALBERT R, UNPUB
ARTHUR WB, 1999, SCIENCE, V284, P107
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, UNPUB SCIENCE
BARRAT A, CONDMAT9903323
BARRAT A, CONDMAT9903411
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOLLOBAS B, 1985, RANDOM GRAPHS
COLLINS J, 1998, NATURE, V393, P6684
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
GALLAGHER R, 1999, SCIENCE, V284, P79
HERZEL H, 1998, FRACTALS, V6, P301
HUBERMAN BA, CONDMAT9901071
HUBERMAN BA, 1998, SCIENCE, V280, P95
KASTURIRANGAN R, CONDMAT9904055
KOCH C, 1999, SCIENCE, V284, P96
KOCHEN M, 1989, SMALL WORLD
KULKARNI RV, CONDMAT9905066
LAWRENCE S, 1999, NATURE, V400, P107
LUBKIN GB, 1998, PHYS TODAY, V51, P17
MENEZES MA, CONDMAT9903426
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
MONASSON R, CONDMAT9903323
MOUKARZEL CF, CONDMAT9905131
MOUKARZEL CF, CONDMAT9905322
NEWMAN MEJ, CONDMAT9903357
NEWMAN MEJ, CONDMAT9904419
REDNER S, 1998, EUR PHYS J B, V4, P131
SERVICE RF, 1999, SCIENCE, V284, P80
STAUFFER D, 1992, PERCOLATION THEORY
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WENG GZ, 1999, SCIENCE, V284, P92
NR 35
TC 374
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD OCT 1
PY 1999
VL 272
IS 1-2
BP 173
EP 187
PG 15
SC Physics, Multidisciplinary
GA 244YZ
UT ISI:000083079500012
ER
PT J
AU Barabasi, AL
Albert, R
TI Emergence of scaling in random networks
SO SCIENCE
LA English
DT Article
ID WORLD-WIDE-WEB; COMPLEXITY; INTERNET; DYNAMICS
AB Systems as diverse as genetic networks or the World Wide Web are best
described as networks with complex topology. A common property of many
Large networks is that the vertex connectivities follow a scale-free
power-law distribution. This feature was found to be a consequence of
two generic mechanisms: (i) networks expand continuously by the
addition of new vertices, and (ii) new vertices attach preferentially
to sites that are already well connected. A model based on these two
ingredients reproduces the observed stationary scale-free
distributions, which indicates that the development of Large networks
is governed by robust self-organizing phenomena that go beyond the
particulars of the individual systems.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR 1999, SCI AM, V280, P54
ALBERT R, 1999, NATURE, V401, P130
ARTHUR WB, 1999, SCIENCE, V284, P107
BANAVAR JR, 1999, NATURE, V399, P130
BARABASI AL, 1999, PHYSICA A, V272, P173
BARTHELEMY M, 1999, PHYS REV LETT, V82, P1580
BOLLOBA B, 1985, RANDOM GRAPHS
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
GALLAGHER R, 1999, SCIENCE, V284, P79
GUARE J, 1990, 6 DEGREES SEPARATION
HUBERMAN BA, 1998, SCIENCE, V280, P95
HUBERMAN BA, 1999, NATURE, V401, P131
KOCH C, 1999, SCIENCE, V284, P96
KOCHEN M, 1989, SMALL WORLD
LAWRENCE S, 1998, SCIENCE, V280, P98
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
REDNER S, 1998, EUR PHYS J B, V4, P131
SEVICE RF, 1999, SCIENCE, V284, P80
TU Y, COMMUNICATION
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WENG GZ, 1999, SCIENCE, V284, P92
NR 22
TC 2218
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA
SN 0036-8075
J9 SCIENCE
JI Science
PD OCT 15
PY 1999
VL 286
IS 5439
BP 509
EP 512
PG 4
SC Multidisciplinary Sciences
GA 245RD
UT ISI:000083121200054
ER
PT J
AU Albert, R
Jeong, H
Barabasi, AL
TI Internet - Diameter of the World-Wide Web
SO NATURE
LA English
DT Article
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Albert, R, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOLLOBAS B, 1985, RANDOM GRAPHS
BUNDLE A, 1994, FRACTALS SCI
CLAFFY K, 1999, INTERNET TOMOGRAPHY
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
LAWRENCE S, 1999, NATURE, V400, P107
WATTS DJ, 1998, NATURE, V393, P440
NR 7
TC 670
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD SEP 9
PY 1999
VL 401
IS 6749
BP 130
EP 131
PG 2
SC Multidisciplinary Sciences
GA 234AF
UT ISI:000082458800041
ER
PT J
AU Daruka, I
Barabasi, AL
Zhou, SJ
Germann, TC
Lomdahl, PS
Bishop, AR
TI Molecular-dynamics investigation of the surface stress distribution in
a Ge/Si quantum dot superlattice
SO PHYSICAL REVIEW B
LA English
DT Article
ID X-RAY-DIFFRACTION; ASSEMBLED GE DOTS; OPTICAL-PROPERTIES; SHOCK-WAVES;
SIMULATIONS; GROWTH; SILICON; GAAS
AB The surface stress distribution in an ordered quantum dot superlattice
is investigated using classical molecular dynamics simulations. We find
that the surface stress field induced by various numbers (from 1 to 9)
of Ge islands embedded in a Si(001) substrate is in good agreement with
analytical expressions based on pointlike embedded force dipoles,
explaining the tendency of layered arrays to form vertically aligned
columns. The shea-ranged nature of this stress field implies that only
the uppermost layers affect the surface growth and that their influence
decreases rapidly with layer depth. [S0163-1829(99)52028-6].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Calif Los Alamos Natl Lab, Appl Theoret & Computat Phys Div, Los Alamos, NM 87545 USA.
Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.
RP Daruka, I, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BEAZLEY DM, 1994, PARALLEL COMPUT, V20, P173
BEAZLEY DM, 1997, COMPUT PHYS, V11, P230
DARHUBER AA, 1997, PHYS REV B, V55, P15652
DARHUBER AA, 1997, THIN SOLID FILMS, V294, P296
GIBSON JB, 1960, PHYS REV, V120, P1229
HARDY RJ, 1982, J CHEM PHYS, V76, P622
HOLIAN BL, 1998, SCIENCE, V280, P2085
HU SM, 1989, J APPL PHYS, V66, P2741
KHOR KE, 1987, PHYS REV B, V36, P7733
LI XP, 1988, PHYS REV B, V38, P3331
LIU F, 1999, PHYS REV LETT, V82, P2528
LOMDAHL PS, 1993, P SUP 93, P520
NAKATA Y, 1997, J CRYST GROWTH 2, V175, P713
ROLAND C, 1993, PHYS REV B, V47, P16286
ROUVIMOV S, 1998, J ELECTRON MATER, V27, P427
SOLOMON GS, 1997, J CRYST GROWTH 2, V175, P707
SPRINGHOLZ G, 1998, SCIENCE, V282, P734
STEPHENSON PCL, 1996, SURF SCI, V366, P177
STILLINGER FH, 1985, PHYS REV B, V31, P5262
TERSOFF J, 1996, PHYS REV LETT, V76, P1675
WIDMANN F, 1998, J APPL PHYS, V83, P7618
ZHOU SJ, 1997, PHYS REV LETT, V78, P479
ZHOU SJ, 1998, SCIENCE, V279, P1525
ZUNDEL MK, 1997, APPL PHYS LETT, V71, P2972
NR 24
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 1999
VL 60
IS 4
BP R2150
EP R2153
PG 4
SC Physics, Condensed Matter
GA 223HA
UT ISI:000081834400005
ER
PT J
AU Lee, CS
Janko, B
Derenyi, I
Barabasi, AL
TI Reducing vortex density in superconductors using the 'ratchet effect'
SO NATURE
LA English
DT Article
ID HIGH-TEMPERATURE SUPERCONDUCTORS; VOLTAGE RECTIFICATION; DYNAMIC
PHASES; VORTICES; LATTICES; NOISE; FIELD
AB A serious obstacle impeding the application of low- and
high-temperature superconductor devices is the presence of trapped
magnetic flux(1,2): flux lines or vortices can be induced by fields as
small as the Earth's magnetic field Once present, vortices dissipate
energy and generate internal noise, limiting the operation of numerous
superconducting devices(2,3). Methods used to overcome this difficulty
include the pinning of vortices by the incorporation of impurities and
defects(4), the construction of flux 'dams'(5), slots and holes(6), and
magnetic shields(2,3) which block the penetration of new flux lines in
the bulk of the superconductor or reduce the magnetic field in the
immediate vicinity of the superconducting device. The most desirable
method would be to remove the vortices from the bulk of the
superconductor, but there was hitherto no known phenomenon that could
form the basis for such a process. Here we show that the application of
an alternating current to a superconductor patterned with an asymmetric
pinning potential can induce vortex motion whose direction is
determined only by the asymmetry of the pattern. The mechanism
responsible for this phenomenon is the so-called 'ratchet
effect'(7-10), and its working principle applies to both low- and
high-temperature superconductors. We demonstrate theoretically that,
with an appropriate choice of pinning potential, the ratchet effect can
be used to remove vortices from low-temperature superconductors in the
parameter range required for various applications.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA.
Univ Chicago, Dept Surg, Chicago, IL 60637 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ASTUMIAN RD, 1997, SCIENCE, V276, P917
BLATTER G, 1994, REV MOD PHYS, V66, P1125
CLARKE J, 1990, SUPERCONDUCTING DEVI, P51
CLEM JR, 1973, J LOW TEMP PHYS, V12, P449
DANTSKER E, 1997, APPL PHYS LETT, V70, P2037
DERENYI I, 1998, PHYS REV LETT, V80, P1473
DONALDSON GB, 1985, SQUID 85, P749
FAUCHEUX LP, 1995, PHYS REV LETT, V74, P1504
HANGGI P, 1996, LECT NOTE PHYS, V476, P294
JULICHER F, 1997, REV MOD PHYS, V69, P1269
KELLY TR, UNPUB NATURE
KOCH RH, 1995, APPL PHYS LETT, V67, P709
MAGNASCO MO, 1993, PHYS REV LETT, V71, P1477
MUCK M, 1997, SUPERLATTICE MICROST, V21, P415
OLSON CJ, 1998, PHYS REV LETT, V81, P3757
REICHHARDT C, 1997, PHYS REV LETT, V78, P2648
REICHHARDT C, 1998, PHYS REV B, V58, P6534
ROUSSELET J, 1994, NATURE, V370, P446
SCOTT BA, 1997, NATURE, V389, P164
TINKHAM M, 1996, INTRO SUPERCONDUCTIV
ZAPATA I, 1996, PHYS REV LETT, V77, P2292
ZAPATA L, 1998, PHYS REV LETT, V80, P829
ZELDOV E, 1994, PHYS REV LETT, V73, P1428
NR 23
TC 97
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD JUL 22
PY 1999
VL 400
IS 6742
BP 337
EP 340
PG 4
SC Multidisciplinary Sciences
GA 219CH
UT ISI:000081590000041
ER
PT J
AU Lee, S
Daruka, I
Kim, CS
Barabasi, AL
Furdyna, JK
Merz, JL
TI Comment on "Dynamics of ripening of self-assembled II-VI semiconductor
quantum dots" - Lee et al. reply
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SURFACE; GROWTH; ZNSE
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Lee, S, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
DARUKA I, 1997, PHYS REV LETT, V79, P3708
HOMMEL D, 1997, PHYS STATUS SOLIDI B, V202, P835
KO HC, 1997, APPL PHYS LETT, V70, P3278
KRATZERT PR, 1999, PHYS REV LETT, V83, P239
KURTZ E, 1998, J CRYST GROWTH, V184, P242
LEE S, 1998, PHYS REV LETT, V81, P3479
MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353
MERZ JL, 1998, J CRYST GROWTH, V184, P228
RABE M, 1997, PHYS STATUS SOLIDI B, V202, P817
ROSS FM, 1998, PHYS REV LETT, V80, P984
SMATHERS JB, 1998, APPL PHYS LETT, V72, P1238
XIN SH, 1996, APPL PHYS LETT, V69, P3884
NR 13
TC 2
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 5
PY 1999
VL 83
IS 1
BP 240
EP 240
PG 1
SC Physics, Multidisciplinary
GA 212VH
UT ISI:000081238000061
ER
PT J
AU Barabasi, AL
Albert, R
Schiffer, P
TI The physics of sand castles: maximum angle of stability in wet and dry
granular media
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE sand castles; granular medium; maximum angle
ID DYNAMICS; DRUM
AB We demonstrate that stability criteria can be used to calculate the
maximum angle of stability, theta(m), of a granular medium composed of
spherical particles in three dimensions and circular discs in two
dimensions. We apply the results to wet granular material by
calculating the dependence of theta(m) on the liquid content of the
material. The results are in good agreement with our experimental data.
(C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR ALBERT R, 1997, PHYS REV E, V56, P6271
BROWN RL, 1970, PRINCIPLES POWDER ME
CANTELAUBE F, 1995, J PHYS I, V5, P581
EREMENKO V, 1970, LIQUID PHASE SINTERI
HALSEY TC, 1998, PHYS REV LETT, V80, P3141
HILL KM, 1994, PHYS REV E A, V49, R3610
HORNBAKER DJ, 1997, NATURE, V387, P765
JAEGER HM, 1989, PHYS REV LETT, V62, P40
JAEGER HM, 1992, SCIENCE, V255, P1523
LEE J, 1993, J PHYS A-MATH GEN, V26, P373
NEDDERMANN RM, 1992, STATICS KINEMATICS G
RISTOW GH, 1996, EUROPHYS LETT, V34, P263
SCHWARZER S, 1995, PHYS REV E B, V52, P6461
TEGZES D, UNPUB
TRAIN D, 1958, J PHARM PHARMACOL, V10, T127
NR 15
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD APR 15
PY 1999
VL 266
IS 1-4
BP 366
EP 371
PG 6
SC Physics, Multidisciplinary
GA 194AR
UT ISI:000080170400054
ER
PT J
AU Daruka, I
Tersoff, J
Barabasi, AL
TI Shape transition in growth of strained islands
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB Strained islands formed in heteroepitaxy sometimes change shape during
growth. Here we show that there is typically a first-order shape
transition with island size, with the discontinuous introduction of
steeper facets at the island edge. We present a phase diagram for
island shape as a function of volume and surface energy, showing how
surface energy controls the sequence of island shapes with increasing
volume. The discontinuous chemical potential at the shape transition
drastically affects island coarsening and size distributions.
[S0031-9007(99)08789-X].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Heights, NY 10598 USA.
RP Daruka, I, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR 1996, PHYS TODAY, V49, P22
1998, MAT RES B, V23, P15
CHEN KM, 1997, PHYS REV B, V56, P1700
DUPORT C, 1997, MORPHOLOGICAL ORG EP
HERRING C, 1951, PHYS REV, V82, P87
KERN R, 1979, CURRENT TOPICS MAT S, V3
LEGOUES FK, 1995, APPL PHYS LETT, V67, P2317
MEDEIROSRIBEIRO G, COMMUNICATION
MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353
PONCHET A, 1995, APPL PHYS LETT, V67, P1850
REAVES CM, 1996, APPL PHYS LETT, V69, P3878
ROSS FM, 1998, PHYS REV LETT, V80, P984
SEIFERT W, 1996, PROG CRYST GROWTH CH, V33, P423
SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968
TERSOFF J, 1993, PHYS REV LETT, V70, P2782
TERSOFF J, 1994, PHYS REV LETT, V72, P3570
TOUGAW PD, 1996, J APPL PHYS, V80, P4722
WULFF G, 1901, Z KRISTALLOGR, V34, P449
ZANGWILL A, 1988, PHYSICS SURFACES
ZINKEALLMANG M, 1992, SURF SCI REP, V16, P377
NR 20
TC 95
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 29
PY 1999
VL 82
IS 13
BP 2753
EP 2756
PG 4
SC Physics, Multidisciplinary
GA 179UY
UT ISI:000079348900033
ER
PT J
AU Albert, R
Pfeifer, MA
Barabasi, AL
Schiffer, P
TI Slow drag in a granular medium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STRESS FLUCTUATIONS; FORCE FLUCTUATIONS; BEAD PACKS; MODEL
AB We have studied the drag force acting on an object moving with low
velocity through a granular medium. Although the drag force is a
dynamic quantity, its behavior in this regime is dominated by the
inhomogeneous distribution of stress in static granular media. We find
experimentally that the drag force on a vertical cylinder is linearly
dependent on the cylinder diameter, quadratically dependent on the
depth of insertion, and independent of velocity. An accompanying
analytical calculation based on the static distribution of forces
arrives at the same result, demonstrating that the local theory of
stress propagation in static granular media can be used to predict this
bulk dynamic property. [S0031-9007(98)08142-3].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Albert, R, Univ Notre Dame, Dept Phys, 225 Nieuwland Sci Hall, Notre
Dame, IN 46556 USA.
CR ALBERT R, 1997, PHYS REV E, V56, P6271
BARABASI AL, IN PRESS PHYSICA A
BAXTER GW, 1997, POWDERS GRAINS 97
BEHRINGER RP, 1993, NONLINEAR SCI TODAY, V3, P1
BROWN RL, 1970, PRINCIPLES POWDER ME
CLAUDIN P, 1997, PHYS REV LETT, V78, P231
COPPERSMITH SN, 1996, PHYS REV E A, V53, P4673
DRESCHER A, 1972, J MECH PHYS SOLIDS, V20, P337
HORNBAKER DJ, 1997, NATURE, V387, P765
LIU CH, 1995, SCIENCE, V269, P513
MILLER B, 1996, PHYS REV LETT, V77, P3110
MUETH DM, 1998, PHYS REV E B, V57, P3164
RADJAI F, 1996, PHYS REV LETT, V77, P274
SMITH KA, 1991, SOIL ANAL
TARDOS GI, 1998, PHYS FLUIDS, V10, P335
TRAVERS T, 1987, EUROPHYS LETT, V4, P329
WIEGHARDT K, 1975, ANNU REV FLUID MECH, V7, P89
ZIK O, 1992, EUROPHYS LETT, V17, P315
NR 18
TC 49
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 4
PY 1999
VL 82
IS 1
BP 205
EP 208
PG 4
SC Physics, Multidisciplinary
GA 154KA
UT ISI:000077887000051
ER
PT J
AU Czirok, A
Barabasi, AL
Vicsek, T
TI Collective motion of self-propelled particles: Kinetic phase transition
in one dimension
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LONG-RANGE ORDER; BACTERIAL COLONIES; XY MODEL; SYSTEM; 2-TEMPERATURE;
PATTERNS; GROWTH
AB We demonstrate that a system of self-propelled particles exhibits
spontaneous symmetry breaking and self-organization in one dimension,
in contrast with previous analytical predictions. To explain this
surprising result we derive a new continuum theory that can account for
the development of the symmetry broken state and belongs to the same
universality class as the discrete self-propelled particle model.
[S0031-9007(98)07911-3].
C1 Lorand Eotvos Univ, Dept Biol Phys, H-1118 Budapest, Hungary.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Czirok, A, Lorand Eotvos Univ, Dept Biol Phys, Pazmany Stny 1, H-1118
Budapest, Hungary.
CR ALBANO EV, 1996, PHYS REV LETT, V77, P2129
ALLISON C, 1991, SCI PROG, V75, P403
ALON U, CONDMAT9710142
BASSLER KE, 1994, PHYS REV LETT, V73, P1320
BASSLER KE, 1995, PHYS REV E A, V52, R9
BENJACOB E, 1994, FRACTALS, V2, P1
BENJACOB E, 1994, NATURE, V368, P46
BENJACOB E, 1994, PHYSICA A, V202, P1
BUSSEMAKER HJ, 1997, PHYS REV LETT, V78, P5018
CSAHOK Z, 1995, PHYS REV E B, V52, P5297
CSAHOK Z, 1997, PHYSICA A, V243, P304
CZIROK A, 1997, J PHYS A-MATH GEN, V30, P1375
DENEUBOURG JL, 1989, ETHOL ECOL EVOL, V1, P295
DUPARCMEUR YL, 1995, J PHYS I, V5, P1119
EVANS MR, 1995, PHYS REV LETT, V74, P208
FUJIKAWA H, 1989, J PHYS SOC JPN, V58, P3875
HELBING D, 1996, PHYS REV E, V53, P2366
HELBING D, 1997, PHYS REV E A, V56, P2527
HEMMINGSSON J, 1995, J PHYS A-MATH GEN, V28, P4245
HUTH A, 1990, BIOLOGICAL MOTION
MA SK, 1976, MODERN THEORY CRITIC
MERMIN ND, 1966, PHYS REV LETT, V17, P1133
NAGEL K, 1996, PHYS REV E A, V53, P4655
RAUCH EM, 1995, PHYS LETT A, V207, P185
REYNOLDS CW, 1987, COMPUT GRAPH, V21, P25
SHAPIRO JA, 1995, BIOESSAYS, V17, P579
STANLEY HE, 1971, INTRO PHASE TRANSITI
TONER J, 1995, PHYS REV LETT, V75, P4326
VICSEK T, 1995, PHYS REV LETT, V75, P1226
NR 29
TC 27
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 4
PY 1999
VL 82
IS 1
BP 209
EP 212
PG 4
SC Physics, Multidisciplinary
GA 154KA
UT ISI:000077887000052
ER
PT J
AU Lee, C
Barabasi, AL
TI Spatial ordering of islands grown on patterned surfaces
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPE; ASSEMBLED QUANTUM DOTS; BEAM EPITAXY;
HETEROEPITAXY; FABRICATION; WIRES
AB We demonstrate that growth on a sample patterned with an ordered defect
array can lead to islands with rather narrow size distribution.
However, improvement in the size distribution is achieved only if the
growth conditions (flux and temperature) have optimal values,
determined by the patterning length scale. Since the scanning tunelling
and the atomic force microscopes are capable of inducing surface
perturbations that act as potential preferential nucleation sites, our
work demonstrates that nanoscale surface patterning can improve the
ordering of platelets and self-assembled quantum dots. (C) 1998
American Institute of Physics. [S0003-6951(98)03444-5]
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Lee, C, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR AMAR JG, 1994, PHYS REV B, V50, P8781
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1997, APPL PHYS LETT, V70, P2565
BARTELT MC, 1998, PHYS REV LETT, V81, P1901
BRESSLERHILL V, 1994, PHYS REV B, V50, P8479
DARUKA I, 1997, PHYS REV LETT, V78, P3027
EIGLER DM, 1990, NATURE, V344, P524
GHAISAS SV, 1992, PHYS REV B, V46, P7308
HARTMANN A, 1995, J APPL PHYS, V77, P1959
HEATH JR, 1996, J PHYS CHEM-US, V100, P3144
JEPPESEN S, 1996, APPL PHYS LETT, V68, P2228
KAMINS TI, 1997, APPL PHYS LETT, V71, P1201
LEON R, 1997, PHYS REV LETT, V78, P4942
MAMIN HJ, 1990, PHYS REV LETT, V65, P2418
NGO TT, 1996, PHYS REV B, V53, P9618
PETROFF PM, 1996, MRS BULL, V21, P50
PRIESTER C, 1995, PHYS REV LETT, V75, P93
SHIRYAEV SY, 1997, PHYS REV LETT, V78, P503
TERASHIMA K, 1990, J VAC SCI TECHNOL A, V8, P581
WANG PD, 1994, APPL PHYS LETT, V64, P1526
WANG PD, 1996, SOLID STATE COMMUN, V100, P763
YAMADA S, 1996, J APPL PHYS, V79, P8391
NR 22
TC 24
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 2
PY 1998
VL 73
IS 18
BP 2651
EP 2653
PG 3
SC Physics, Applied
GA 131DR
UT ISI:000076560900037
ER
PT J
AU Lee, S
Daruka, I
Kim, CS
Barabasi, AL
Merz, JL
Furdyna, JK
TI Dynamics of ripening of self-assembled II-VI semiconductor quantum dots
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID KRASTANOW GROWTH MODE; HETEROEPITAXIAL GROWTH; ISLAND FORMATION;
EVOLUTION; SURFACES
AB We report the systematic investigation of ripening of CdSe
self-assembled quantum dots (QDs) on ZnSe. We investigate the size and
density of the QDs as a function of time after deposition of CdSe has
stopped. The dynamics of the ripening process is interpreted in terms
of the theory of Ostwald ripening. Furthermore, the experimental
results allow us to identify the growth mode of the QD formation
process. [S0031-9007(98)07378-5].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA.
RP Lee, S, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
furdyna.1@nd.edu
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1997, APPL PHYS LETT, V70, P2565
DARUKA I, 1997, PHYS REV LETT, V79, P3708
DARUKA I, 1998, APPL PHYS LETT, V72, P2102
DOBBS HT, 1997, DOBBS HT, P263
DRUCKER J, 1993, PHYS REV B, V48, P18203
FLACK F, 1996, PHYS REV B, V54
FURDYNA JK, 1999, 2 6 SEMICONDUCTOR MA
JESSON DE, 1996, PHYS REV LETT, V77, P1330
KAMINS TI, 1997, J APPL PHYS, V81, P211
KO HC, 1997, APPL PHYS LETT, V70, P3278
KURTZ E, IN PRESS J CRYST GRO
MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353
MERZ JL, 1998, J CRYST GROWTH, V184, P228
OSTWALD W, 1900, Z PHYS CHEM-STOCH VE, V34, P495
PETROFF PM, 1996, MRS BULL, V21, P50
RABE M, 1997, PHYS STATUS SOLIDI B, V202, P817
RATSCH C, 1994, SURF SCI, V314, L937
ROSS FM, 1998, PHYS REV LETT, V80, P984
SCHROEDER M, 1997, SURF SCI, V375, P129
SEIFERT W, 1996, PROG CRYST GROWTH CH, V33, P423
SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968
SUEMUNE I, 1997, PHYS STATUS SOLIDI B, V202, P845
VOORHEES PW, 1992, ANNU REV MATER SCI, V22, P197
XIN SH, 1996, APPL PHYS LETT, V69, P3884
ZINKEALLMANG M, 1992, SURF SCI REP, V16, P377
NR 26
TC 52
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 19
PY 1998
VL 81
IS 16
BP 3479
EP 3482
PG 4
SC Physics, Multidisciplinary
GA 129JX
UT ISI:000076461000045
ER
PT J
AU Makeev, MA
Barabasi, AL
TI Effect of surface roughness on the secondary ion yield in ion sputtering
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPE; BOMBARDMENT; GROWTH
AB There is extensive experimental evidence that, at low temperatures,
surface erosion by ion bombardment roughens the sputtered substrate,
leading to a self-affine surface. These changes in the surface
morphology also modify the secondary ion yield. Here, we calculate
analytically the secondary ion yield in terms of parameters
characterizing the sputtering process and the interface roughness. (C)
1998 American Institute of Physics. [S0003-6951(98)04036-4].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Makeev, MA, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CHASON E, 1994, PHYS REV LETT, V72, P3040
CUERNO R, 1995, PHYS REV LETT, V74, P4746
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
FAMILY F, 1991, DYNAMICS FRACTAL SUR
HALPINHEALY T, 1995, PHYS REP, V254, P215
KRIM J, 1993, PHYS REV LETT, V70, P57
MAKEEV MA, UNPUB
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAKEEV MA, 1998, APPL PHYS LETT, V72, P906
MEAKIN P, 1993, PHYS REP, V235, P189
SIGMUND P, 1969, PHYS REV, V184, P383
TOWNSEND PD, 1976, ION IMPLANTATION SPU
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
YAMAMURA Y, 1987, RADIAT EFF, V103, P25
YANG HN, 1994, PHYS REV B, V50, P7635
YOU H, 1993, PHYS REV LETT, V70, P2900
NR 19
TC 1
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 12
PY 1998
VL 73
IS 15
BP 2209
EP 2211
PG 3
SC Physics, Applied
GA 128UX
UT ISI:000076427700048
ER
PT J
AU Albert, R
Barabasi, AL
Carle, N
Dougherty, A
TI Driven interfaces in disordered media: Determination of universality
classes from experimental data
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID POROUS-MEDIA; DISPLACEMENT; MODEL
AB While there have been important theoretical advances in understanding
the universality classes of interfaces moving in porous media, the
developed tools cannot be directly applied to experiments. Here we
introduce a method that can distinguish the isotropic and directed
percolation universality classes from snapshots of the interface
profile. We test the method on discrete models whose universality class
is well known, and use it to identify the universality class of
interfaces obtained in experiments on fluid flow in porous media.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Lafayette Coll, Dept Phys, Easton, PA 18042 USA.
RP Albert, R, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR AMARAL LAN, 1994, PHYS REV LETT, V73, P62
AMARAL LAN, 1995, PHYS REV E B, V52, P4087
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BLATTER G, 1994, REV MOD PHYS, V66, P1125
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, PHYSICA A, V191, P220
CIEPLAK M, 1988, PHYS REV LETT, V60, P2042
FAMILY F, 1985, J PHYS A, V18, P75
HORVATH VK, 1995, PHYS REV E B, V52, P5166
KOILLER B, 1992, PHYS REV B, V46, P5258
LESCHHORN H, 1993, PHYSICA A, V195, P324
NATTERMANN T, 1992, J PHYS II, V2, P1483
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
TANG LH, 1992, PHYS REV A, V45, P8309
TANG LH, 1995, PHYS REV LETT, V74, P920
WONG PZ, 1994, MRS BULL, V19, P32
NR 16
TC 19
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 5
PY 1998
VL 81
IS 14
BP 2926
EP 2929
PG 4
SC Physics, Multidisciplinary
GA 125HR
UT ISI:000076231900023
ER
PT J
AU Frey, U
Silverman, M
Barabasi, AL
Suki, B
TI Irregularities and power law distributions in the breathing pattern in
preterm and term infants
SO JOURNAL OF APPLIED PHYSIOLOGY
LA English
DT Article
DE control of breathing; apnea; hypopnea; neural network
ID EYE-MOVEMENT SLEEP; RIB CAGE; APNEA; MODEL; NOISE
AB Unlike older children, young infants are prone to develop unstable
respiratory patterns, suggesting important differences in their control
of breathing. We examined the irregular breathing pattern in infants by
measuring the time interval between breaths ("interbreath interval";
IBI) assessed from abdominal movement during 2 h of sleep in 25 preterm
infants at a postconceptional age of 40.5 +/- 5.2 (SD) wk. and in 14
term healthy infants at a postnatal age of 8.2 +/- 4 wk. In 10 infants
we performed longitudinal measurements on two occasions. We developed a
threshold algorithm for the detection of a breath so that an IBI
included an apneic period and potentially some periods of insufficient
tidal breathing excursions (hypopneas). The probability density
distribution (P) of IBIs follows a power law, P(IBI)similar to
IBI-alpha, with the exponent alpha providing a statistical measurement
of the relative risk of insufficient breathing. With maturation, alpha
increased from 2.62 +/- 0.4 at 41.2 +/- 3.6 wk to 3.22 +/- 0.4 at 47.3
+/- 6.4 wk postconceptional age, indicating a decrease in long
hypopneas (for paired data P = 0.002). The statistical properties of
IBI were well reproduced in a model of the respiratory oscillator on
the basis of two hypotheses: 1) tonic neural inputs to the respiratory
oscillator are noisy; and 2) the noise explores a critical region where
IBI diverges with decreasing tonic inputs. Accordingly, maturation of
infant respiratory control can be explained by the tonic inputs moving
away from this critical region. We conclude that breathing
irregularities in infants can be characterized by alpha, which provides
a link between clinically accessible data and the neurophysiology of
the respiratory oscillator.
C1 Univ Leicester, Dept Child Hlth, Leicester LE2 7LX, Leics, England.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA.
RP Frey, U, Univ Hosp Bern, Inselspital, Dept Paediat, CH-3010 Bern,
Switzerland.
EM urs.frey@insel.ch
CR AMIT DJ, 1989, MODELING BRAIN FUNCT
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BERGMAN AB, 1972, PEDIATRICS, V49, P860
BOTROS SM, 1990, BIOL CYBERN, V63, P143
BOUCHAUD JP, 1990, PHYS REP, V195, P127
COONS S, 1982, PEDIATRICS, V69, P793
DRANSFIELD DA, 1983, AM J DIS CHILD, V137, P441
FARBER JP, 1988, AM J PHYSIOL, V254, R578
FINER NN, 1976, J PAEDIAT CHILD HLTH, V89, P249
GAULTIER C, 1987, J DEV PHYSIOL, V9, P391
GERHARDT T, 1984, PEDIATRICS, V74, P58
GIRARD F, 1960, J PHYSIOL-PARIS, V52, P108
HENDERSONSMART DJ, 1983, NEW ENGL J MED, V308, P353
HERSHENSON MB, 1990, AM REV RESPIR DIS, V141, P922
HODGMAN JE, 1990, AM J DIS CHILD, V144, P54
HOOP B, 1995, CHAOS, V5, P609
LAWSON EE, 1989, J APPL PHYSIOL, V66, P983
MATHEW OP, 1982, J PEDIATR, V100, P964
MONTROLL EW, 1982, P NATL ACAD SCI USA, V79, P3380
OGILVIE MD, 1992, AM J PHYSIOL 2, V263, R962
PAYDARFAR D, 1995, CHAOS, V5, P18
RICHTER DW, 1983, CENTRAL NEURONE ENV, P165
ROSE A, 1993, J MARC RES, V1, P65
SACHIS PN, 1982, J NEUROPATH EXP NEUR, V41, P466
SUKI B, 1994, NATURE, V368, P615
SZETO HH, 1992, AM J PHYSIOL 2, V263, R141
NR 26
TC 8
PU AMER PHYSIOLOGICAL SOC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA
SN 8750-7587
J9 J APPL PHYSIOL
JI J. Appl. Physiol.
PD SEP
PY 1998
VL 85
IS 3
BP 789
EP 797
PG 9
SC Physiology; Sport Sciences
GA 117KY
UT ISI:000075781500003
ER
PT J
AU Makeev, MA
Barabasi, AL
TI Effect of surface roughness on the secondary ion yield in ion sputtering
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPE; BOMBARDMENT; GROWTH
AB There is extensive experimental evidence that, at low temperatures,
surface erosion by ion bombardment roughens the sputtered substrate,
leading to a self-affine surface. These changes in the surface
morphology also modify the secondary ion yield. Here, we calculate
analytically the secondary ion yield in terms of parameters
characterizing the sputtering process and the interface roughness. (C)
1998 American Institute of Physics. [S0003-6951(98)04036-4].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Makeev, MA, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CUERNO R, 1995, PHYS REV LETT, V74, P4746
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
FAMILY F, 1991, DYNAMICS FRACTAL SUR
HALPINHEALY T, 1995, PHYS REP, V254, P215
KRIM J, 1993, PHYS REV LETT, V70, P57
MAKEEV MA, UNPUB
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAKEEV MA, 1998, APPL PHYS LETT, V72, P906
MAYER TM, 1994, J APPL PHYS, V76, P1633
MEAKIN P, 1993, PHYS REP, V235, P189
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
TOWNSEND PD, 1976, ION IMPLANTATION SPU
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
YAMAMURA Y, 1987, RADIAT EFF, V103, P25
YANG HN, 1994, PHYS REV B, V50, P7635
YOU H, 1993, PHYS REV LETT, V70, P2900
NR 20
TC 4
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD SEP 7
PY 1998
VL 73
IS 10
BP 1445
EP 1447
PG 3
SC Physics, Applied
GA 117MU
UT ISI:000075786000046
ER
PT J
AU Daruka, I
Barabasi, AL
TI Equilibrium phase diagrams for dislocation free self-assembled quantum
dots
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID GROWTH
AB The equilibrium theory of self-assembled quantum dot (SAQD) formation
can account for many of the experimentally observed growth modes. Here,
we show that despite the large number of material constants entering
the free energy of strained islands, then are only four topologically
different phase diagrams describing the SAQD formation process. We
derive each of these phase diagrams and discuss the physical properties
of the predicted growth modes. (C) 1998 American Institute of Physics.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Daruka, I, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR BARABASI AL, 1997, APPL PHYS LETT, V70, P2565
DARUKA L, 1997, PHYS REV LETT, V79, P3708
DOBBS HT, 1997, PHYS REV LETT, V79, P897
KAMINS TI, 1997, J APPL PHYS, V81, P211
KRISHNAMURTHY M, 1997, APPL PHYS LETT, V70, P49
MADHUKAR A, 1996, J CRYST GROWTH, V163, P149
MEDEIROSRIBEIRO G, 1998, SCIENCE, V279, P353
ORR BG, 1992, EUROPHYS LETT, V19, P33
PETROFF PM, 1996, MRS BULL, V21, P50
ROLAND C, 1993, PHYS REV B, V47, P16286
SEIFERT W, 1997, J PROGR CRYSTAL GROW, V33, P423
SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968
TERSOFF J, 1991, PHYS REV B, V43, P9377
WILLIAMS SR, COMMUNICATION
NR 14
TC 48
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD APR 27
PY 1998
VL 72
IS 17
BP 2102
EP 2104
PG 3
SC Physics, Applied
GA ZJ819
UT ISI:000073256700012
ER
PT J
AU Makeev, MA
Barabasi, AL
TI Secondary ion yield changes on rippled interfaces
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ROUGHENING INSTABILITY; TOPOGRAPHY CHANGES; SURFACE; BOMBARDMENT;
EVOLUTION; EROSION; SILICON; GAAS; SI
AB Sputter erosion often leads to the development of surface ripples. Here
we investigate the effect of the ripples on the secondary ion yield, by
calculating the yield as a function of the microscopic parameters
characterizing the ion cascade (such as penetration depth, widths of
the deposited energy distribution) and the ripples (ripple amplitude,
wavelength), We find that ripples can strongly enhance the yield, with
the magnitude of the effect depending on the interplay between the ion
and ripple characteristics. Furthermore, pre compare our predictions
with existing experimental results. (C) 1998 American Institute of
Physics.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Makeev, MA, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1997, DYNAMICS FLUCTUATING
BEHRISCH R, 1983, SPUTTERING PARTICLE, V1
BEHRISCH R, 1983, SPUTTERING PARTICLE, V2
BEHRISCH R, 1983, SPUTTERING PARTICLE, V3
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
BRADLEY RM, 1996, PHYS REV E, V54, P6149
CHASON E, 1994, PHYS REV LETT, V72, P3040
CRESPOSOSA A, 1996, PHYS REV B, V53, P14795
CUERNO R, 1995, PHYS REV LETT, V74, P4746
CUERNO R, 1995, PHYS REV LETT, V75, P4464
DUNKAN S, 1984, VACUUM, V34, P145
KAREN A, 1991, J VAC SCI TECHNOL A, V9, P2247
MACLAREN SW, 1992, J VAC SCI TECHNOL A, V10, P468
MAKEEV MA, UNPUB
MAKEEV MA, 1997, APPL PHYS LETT, V71, P2800
MAYER TM, 1994, J APPL PHYS, V76, P1633
SHICHI H, 1991, JPN J APPL PHYS 2, V30, L927
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
STEVIE FA, 1988, J VAC SCI TECHNOL A, V6, P76
VAJO JJ, 1996, J VAC SCI TECHNOL A, V14, P2709
WITTMAACK K, 1990, J VAC SCI TECHNOL 2, V8, P2246
NR 23
TC 12
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 23
PY 1998
VL 72
IS 8
BP 906
EP 908
PG 3
SC Physics, Applied
GA ZJ463
UT ISI:000073218200012
ER
PT J
AU Derenyi, I
Lee, C
Barabasi, AL
TI Ratchet effect in surface electromigration: Smoothing surfaces by an ac
field
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SEMICONDUCTOR SURFACES; BROWNIAN PARTICLES; TRANSPORT; GROWTH
AB We demonstrate that for surfaces that have a nonzero Schwoebel barrier
the application of an ac field parallel to the surface induces a net
electromigration current that points in the descending step direction.
The magnitude of the current is calculated analytically and compared
with Monte Carlo simulations. Since a downhill current smoothes the
surface, our results imply that the application of ac fields can aid
the smoothing process during annealing and can slow or eliminate the
Schwoebel-barrier-induced mound formation during growth.
[S0031-9007(97)05220-4].
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Lorand Eotvos Univ, Dept Atom Phys, H-1088 Budapest, Hungary.
RP Barabasi, AL, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
EM alb@nd.edu
CR AJDARI A, 1992, CR ACAD SCI II-MEC P, V315, P1635
ASTUMIAN RD, 1994, PHYS REV LETT, V72, P1766
ASTUMIAN RD, 1997, SCIENCE, V276, P917
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
DERENYI I, 1995, PHYS REV LETT, V75, P374
DOERING CR, 1994, PHYS REV LETT, V72, P2984
FAUCHEUX LP, 1995, PHYS REV LETT, V74, P1504
ICHIKAWA M, 1990, VACUUM, V41, P923
JO BH, 1995, APPL SURF SCI, V89, P237
JOHNSON MD, 1994, PHYS REV LETT, V72, P116
KANDEL D, 1996, PHYS REV LETT, V76, P1114
KODIYALAM S, 1996, PHYS REV B, V53, P9913
MAGNASCO MO, 1993, PHYS REV LETT, V71, P1477
PROST J, 1994, PHYS REV LETT, V72, P2652
ROUS PJ, 1994, SURF SCI, V315, L995
ROUSSELET J, 1994, NATURE, V370, P446
SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614
STROSCIO JA, 1995, PHYS REV LETT, V75, P4246
VERBRUGGEN AH, 1988, IBM J RES DEV, V32, P93
VILLAIN J, 1991, J PHYS I, V1, P19
YASUNAGA H, 1992, SURF SCI REP, V15, P205
ZUO JK, 1997, PHYS REV LETT, V78, P2791
NR 22
TC 55
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 16
PY 1998
VL 80
IS 7
BP 1473
EP 1476
PG 4
SC Physics, Multidisciplinary
GA YX202
UT ISI:000072016600030
ER
PT J
AU Albert, R
Albert, I
Hornbaker, D
Schiffer, P
Barabasi, AL
TI Maximum angle of stability in wet and dry spherical granular media
SO PHYSICAL REVIEW E
LA English
DT Article
ID AVALANCHES; SANDPILE; DRUM
AB We demonstrate that stability criteria can be used to calculate the
maximum angle of stability theta(m) of a granular medium composed of
spherical particles in three dimensions and circular disks in two
dimensions. The predicted angles are in good agreement with the
experimental results. Furthermore, we determine the dependence of
theta(m) on cohesive forces, applying the results to wet granular
material by calculating the dependence of theta(m) on the liquid
content of the material. We have also studied wet granular media
experimentally and find good agreement between the theory and our
experimental results.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Albert, R, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR BROWN RL, 1970, PRINCIPLES POWDER ME
CANTELAUBE F, 1995, J PHYS I, V5, P581
CZIROK A, 1993, PHYS REV LETT, V71, P2154
CZIROK A, 1994, PHYSICA A, V205, P355
EREMENKO V, 1972, LIQUID PHASE SINTERI
EVESQUE P, 1991, PHYS REV A, V43, P2720
EVESQUE P, 1993, PHYS REV E, V47, P2326
FOWLER TR, 1960, AUST J CHEM ENG, V1, P5
HILL KM, 1994, PHYS REV E A, V49, R3610
HORNBAKER DJ, 1997, NATURE, V387, P765
ISRAELACHVILI JN, 1989, INTERMOLECULAR SURFA
JAEGER HM, 1989, PHYS REV LETT, V62, P40
JAEGER HM, 1992, SCIENCE, V255, P1523
LEE J, 1993, J PHYS A-MATH GEN, V26, P373
NAGEL SR, 1992, REV MOD PHYS, V64, P321
PILPEL N, 1970, MANUF CHEM AEROSOL N, V41, P19
RISTOW GH, 1996, EUROPHYS LETT, V34, P263
SCHWARZER S, 1995, PHYS REV E B, V52, P6461
STANDISH N, 1991, POWDER TECHNOL, V68, P187
TRAIN D, 1958, J PHARM PHARMACOL, V10, T127
WOLF EF, 1945, T AM SOC MECH ENG, V67, P585
NR 21
TC 53
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD DEC
PY 1997
VL 56
IS 6
BP R6271
EP R6274
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA YM237
UT ISI:000071043500013
ER
PT J
AU Daruka, I
Barabasi, AL
TI Dislocation-free island formation in heteroepitaxial growth: A study at
equilibrium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID INAS ISLANDS; EVOLUTION; FILMS; GE
AB We investigate the equilibrium properties of strained heteroepitaxial
systems, incorporating the formation and the growth of a wetting film,
dislocation-free island formation, and ripening. The derived phase
diagram provides a detailed characterization of the possible growth
modes in terms of the island density, equilibrium island size, and
wetting layer thickness. Comparing our predictions with experimental
results we discuss the growth conditions that can lead to stable
islands as well as ripening. [S0031-9007(97)04531-6].
RP Daruka, I, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR ABARABASI AL, 1997, APPL PHYS LETT, V70, P2565
ABSTREITER G, 1996, SEMICOND SCI TECH S, V11, P1521
DARUKA I, 1997, PHYS REV LETT, V78, P3027
GERARD JM, 1995, CONFINED ELECT PHOTO
JESSON DE, 1996, PHYS REV LETT, V77, P1330
KAMINS TI, 1997, J APPL PHYS, V81, P211
KOBAYASHI NP, 1996, APPL PHYS LETT, V68, P3299
LANDAU LD, 1986, THEORY ELASTICITY
LEONARD D, 1994, PHYS REV B, V50, P11687
MARCHENKO VI, 1981, SOV PHYS JETP, V54, P605
MILLER MS, 1996, SOLID STATE ELECTRON, V40, P609
ORR BG, 1992, EUROPHYS LETT, V19, P33
PETROFF PM, 1996, MRS BULL, V21, P50
RICKMAN JM, 1993, SURF SCI, V284, P211
ROLAND C, 1993, PHYS REV B, V47, P16286
SEIFERT W, 1996, J CRYSTAL GROWTH CHA, V33, P423
SHCHUKIN VA, 1995, PHYS REV LETT, V75, P2968
TERSOFF J, 1991, PHYS REV B, V43, P9377
XIN SH, 1996, APPL PHYS LETT, V69, P3884
NR 19
TC 166
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 10
PY 1997
VL 79
IS 19
BP 3708
EP 3711
PG 4
SC Physics, Multidisciplinary
GA YF186
UT ISI:A1997YF18600041
ER
PT J
AU Makeev, MA
Barabasi, AL
TI Ion-induced effective surface diffusion in ion sputtering
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ROUGHENING INSTABILITY; BOMBARDMENT; GROWTH; ROUGHNESS; IMPACT
AB Ion bombardment is known to enhance surface diffusion and affect the
surface morphology. Here we demonstrate that preferential erosion
during ion sputtering can lead to a physical phenomenon reminiscent of
surface diffusion, what we call effective surface diffusion (ESD), that
does not imply mass transport along the surface and is independent of
the temperature. We calculate the ion-induced ESD constant and its
dependence on the ion energy, flux and angle of incidence, showing that
sputtering can both enhance and suppress surface diffusion. The
influence of ion-induced ESD on ripple formation and roughening of
ion-sputtered surfaces is discussed and summarized in a morphological
phase diagram. (C) 1997 American Institute of Physics.
[S0003-6951(97)02245-6].
RP Makeev, MA, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR BABAEV VO, 1976, THIN SOLID FILMS, V38, P1
BARNETT SA, 1987, SURF SCI, V181, P596
BEHRISCH R, 1982, SPUTTERING PARTICLE, V2
BEHRISCH R, 1983, SPUTTERING PARTICLE, V1
BEHRISCH R, 1983, SPUTTERING PARTICLE, V3
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CARTER G, 1983, SPUTTERING PARTICLE, V2, P231
CAVAILLE JY, 1978, SURF SCI, V75, P342
CHASON E, 1990, APPL PHYS LETT, V57, P1793
CHASON E, 1994, PHYS REV LETT, V72, P3040
CUERNO R, 1995, PHYS REV LETT, V74, P4746
DASSARMA S, 1991, PHYS REV LETT, V66, P325
DRANOVA ZI, 1970, FIZ TVERD TELA, V12, P104
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
FAMILY F, 1991, DYNAMICS FRACTAL SUR
HERRING C, 1950, J APPL PHYS, V21, P301
KARDAR M, 1986, PHYS REV LETT, V56, P889
KAY E, 1983, SPUTTERING PARTICLE
KOPONEN I, 1997, PHYS REV LETT, V78, P2612
KRIM J, 1993, PHYS REV LETT, V70, P57
KURAMOTO Y, 1976, PROG THEOR PHYS, V55, P356
MACLAREN SW, 1992, J VAC SCI TECHNOL A, V10, P468
MARINOV M, 1977, THIN SOLID FILMS, V46, P267
MAYER TM, 1994, J APPL PHYS, V76, P1633
MULLINS WW, 1957, J APPL PHYS, V28, P333
ROSSNAGEL SM, 1982, SURF SCI, V123, P89
ROST M, 1995, PHYS REV LETT, V75, P3894
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
SIVASHINSKY GI, 1979, ACTA ASTRONAUT, V6, P569
TONG AL, 1994, FRACTAL CONCEPTS SUR, V45, P405
WOLF DE, 1990, EUROPHYS LETT, V13, P389
YANG HN, 1994, PHYS REV B, V50, P7635
NR 34
TC 87
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 10
PY 1997
VL 71
IS 19
BP 2800
EP 2802
PG 3
SC Physics, Applied
GA YE753
UT ISI:A1997YE75300026
ER
PT J
AU Hornbaker, DJ
Albert, R
Albert, I
Barabasi, AL
Schiffer, P
TI What keeps sandcastles standing?
SO NATURE
LA English
DT Letter
RP Hornbaker, DJ, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR ALANSO JJ, 1996, PHYS REV LETT, V76, P4911
ALBERT R, UNPUB PHYS REV LETT
BROWN RL, 1970, PRINCIPLES POWDER ME
CRAIK DJ, 1958, J PHARM PHARMACOL, V10, T136
EREMENKO VN, 1970, LIQUIDPHASE SINTERIN
FOWLER RT, 1960, AUS J CHEM ENG, V1, P5
JAEGER HM, 1989, PHYS REV LETT, V62, P40
JAEGER HM, 1996, REV MOD PHYS, V68, P1259
MAKSE HA, 1997, NATURE, V386, P379
PILPEL N, 1970, MANUF CHEM AEROSOL N, V41, P19
STANDISH N, 1991, POWDER TECHNOL, V68, P187
UMBANHOWAR PB, 1996, NATURE, V382, P793
WOLF EF, 1945, T AM SOC MECH ENG, V67, P585
NR 13
TC 85
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW
SN 0028-0836
J9 NATURE
JI Nature
PD JUN 19
PY 1997
VL 387
IS 6635
BP 765
EP 765
PG 1
SC Multidisciplinary Sciences
GA XF144
UT ISI:A1997XF14400027
ER
PT J
AU Barabasi, AL
TI Self-assembled island formation in heteroepitaxial growth
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID QUANTUM DOTS; INAS ISLANDS; GAAS; EPITAXY
AB We investigate island formation during heteroepitaxial growth using an
atomistic model that incorporates deposition, activated diffusion, and
stress relaxation. For high misfit the system naturally evolves into a
state characterized by a narrow island size distribution. The
simulations indicate the existence of a strain assisted kinetic
mechanism responsible for the self-assembling process, involving
enhanced detachment of atoms from the edge of large islands and biased
adatom diffusion. (C) 1997 American Institute of Physics.
RP Barabasi, AL, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR ABSTREITER G, 1996, SEMICOND SCI TECH S, V11, P1521
APETZ R, 1995, APPL PHYS LETT, V66, P445
BARABASI AL, 1995, FRACT CONCEPTS SURFA
CARLSSON N, 1994, APPL PHYS LETT, V65, P3093
DARUKA I, 1997, PHYS REV LETT, V78, P3027
HARRISON WA, 1980, ELECTRONIC STRUCTURE
HATAMI F, 1995, APPL PHYS LETT, V67, P656
JESSON DE, 1996, MRS BULL, V21, P31
KOBAYASHI NP, 1996, APPL PHYS LETT, V68, P3299
KRISHNAMURTHY M, 1991, J APPL PHYS, V69, P6461
LEON R, 1995, APPL PHYS LETT, V67, P521
LEONARD D, 1993, APPL PHYS LETT, V63, P3203
LEONARD D, 1994, PHYS REV B, V50, P11687
MADHUKAR A, 1994, APPL PHYS LETT, V64, P2727
MILLER MS, 1996, SOLID STATE ELECTRON, V40, P609
MOISON JM, 1994, APPL PHYS LETT, V64, P196
ORR BG, 1992, EUROPHYS LETT, V19, P33
PETROFF PM, 1996, MRS BULL, V21, P50
PONCHET A, 1995, APPL PHYS LETT, V67, P1850
RATSCH C, 1994, SURF SCI, V314, L937
RUVIMOV S, 1995, PHYS REV B, V51, P14766
SCHITTENHELM P, 1995, APPL PHYS LETT, V67, P1292
SEIFERT W, 1996, J CRYSTAL GROWTH CHA, V33, P423
XIN SH, 1996, APPL PHYS LETT, V69, P3884
NR 24
TC 173
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAY 12
PY 1997
VL 70
IS 19
BP 2565
EP 2567
PG 3
SC Physics, Applied
GA WY234
UT ISI:A1997WY23400025
ER
PT J
AU Daruka, I
Barabasi, AL
TI Island formation and critical thickness in heteroepitaxy
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GROWTH
RP Daruka, I, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR AMAR JG, 1995, PHYS REV LETT, V74, P2066
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARTELT MC, 1992, PHYS REV B, V46, P12675
CHEN Y, 1996, PHYS REV LETT, V77, P4046
DARUKA I, IN PRESS
GERARD JM, 1995, CONFINED ELECT PHOTO
LEONARD D, 1994, PHYS REV B, V50, P11687
MILLER MS, 1996, UNPUB SOLID STATE EL, V40, P609
ROLAND C, 1993, PHYS REV B, V47, P16286
TESOFF J, 1991, PHYS REV B, V43, P9377
NR 10
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 14
PY 1997
VL 78
IS 15
BP 3027
EP 3027
PG 1
SC Physics, Multidisciplinary
GA WT633
UT ISI:A1997WT63300040
ER
PT J
AU Barabasi, AL
Kaxiras, E
TI Dynamic scaling in conserved systems with coupled fields: Application
to surfactant-mediated growth
SO EUROPHYSICS LETTERS
LA English
DT Article
ID NONEQUILIBRIUM INTERFACES; DRIVEN INTERFACES; EPITAXIAL-GROWTH; KINETIC
GROWTH; RELAXATION; DIFFUSION; CONTINUUM; SI(001); MODELS
AB We present an analytical study of the interaction of two nonequilibrium
conservative fields. Due to the conservative character of the
relaxation mechanism, the scaling exponents can be obtained exactly
using dynamic renormalization group. We apply our results to
surfactant-mediated growth of semiconductors. We find that the coupling
between the surfactant thickness and the interface height cannot
account for the experimentally observed layered growth, implying that
reduced diffusion of the embedded atoms is a key mechanism in
surfactant-mediated growth.
C1 HARVARD UNIV,DEPT PHYS,CAMBRIDGE,MA 02139.
HARVARD UNIV,DIV APPL SCI,CAMBRIDGE,MA 02139.
RP Barabasi, AL, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR BARABASI AL, 1992, PHYS REV A, V46, R2977
BARABASI AL, 1993, FRACTALS, V1, P846
BARABASI AL, 1993, PHYS REV LETT, V70, P4102
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BERRERA A, 1994, PHYS REV LETT, V72, P458
COPEL M, 1989, PHYS REV LETT, V63, P632
COPEL M, 1990, PHYS REV B, V42, P11682
COPEL M, 1994, PHYS REV LETT, V72, P1236
DASSARMA S, 1991, PHYS REV LETT, V66, P325
ERTAS D, 1992, PHYS REV LETT, V69, P929
ERTAS D, 1993, PHYS REV E, V48, P1228
FISHER MPA, 1992, PHYS REV LETT, V69, P2322
HWA T, 1992, PHYS REV LETT, V69, P1552
JOHNSON MD, 1994, PHYS REV LETT, V72, P116
KARDAR M, 1985, PHYS REV LETT, V55, P2923
KRUG J, 1993, PHYS REV LETT, V70, P3271
LAI ZW, 1991, PHYS REV LETT, V66, P2348
RACZ Z, 1991, PHYS REV A, V43, P5275
SUN T, 1989, PHYS REV A, V40, P6763
TROMP RM, 1992, PHYS REV LETT, V68, P954
VICSEK T, 1992, FRACTAL GROWTH PHENO
VICSEK T, 1992, SURFACE DISORDERING
VILLAIN J, 1991, J PHYS I, V1, P19
VONHOEGEN MH, 1995, APPL PHYS LETT, V66, P487
WOLF DE, 1990, EUROPHYS LETT, V13, P389
NR 25
TC 1
PU EDITIONS PHYSIQUE
PI LES ULIS CEDEX
PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD OCT 10
PY 1996
VL 36
IS 2
BP 129
EP 134
PG 6
SC Physics, Multidisciplinary
GA VP871
UT ISI:A1996VP87100009
ER
PT J
AU Buldyrev, SV
Amaral, LAN
Barabasi, AL
Harrington, ST
Havlin, S
Kertesz, J
SadrLahijany, R
Stanley, HE
TI Avalanches in the directed percolation depinning and self-organized
depinning models of interface roughening
SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
LA English
DT Article
ID AFFINE FRACTAL INTERFACES; POROUS-MEDIA; QUENCHED DISORDER;
BALLISTIC-DEPOSITION; DRIVEN INTERFACES; CORRELATED NOISE; FLUID
INVASION; IMMISCIBLE DISPLACEMENT; PUNCTUATED EQUILIBRIUM; GROWING
INTERFACES
AB We review the recently introduced Directed Percolation Depinning (DPD)
and Self-Organized Depinning (SOD) models for interface roughening with
quenched disorder. The differences in the dynamics of the invasion
process in these two models are discussed and different avalanche
definitions are presented. The scaling properties of the avalanche size
distribution and the properties of active cells are discussed.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
BAR ILAN UNIV,MINERVA CTR,RAMAT GAN,ISRAEL.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
TECH UNIV BUDAPEST,INST PHYS,H-1111 BUDAPEST,HUNGARY.
RP Buldyrev, SV, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMAR JG, 1991, PHYS REV A, V43, P4548
AMARAL LAN, UNPUB
AMARAL LAN, 1993, FRACTALS, V1, P818
AMARAL LAN, 1994, PHYS REV LETT, V72, P641
AMARAL LAN, 1994, PHYS REV LETT, V73, P62
AMARAL LAN, 1995, PHYS REV E B, V52, P4087
AMARAL LAN, 1995, PHYS REV E, V51, P4655
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1993, PHYS REV LETT, V71, P4083
BARABASI AL, PREPRINT
BARABASI AL, 1992, PHYS REV A, V46, R2977
BARABASI AL, 1992, SURFACE DISORDERING
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BENOIT M, 1994, PHYSICA A, V207, P500
BRUINSMA R, 1984, PHYS REV LETT, V52, P1547
BULDYREV SV, UNPUB
BULDYREV SV, 1991, PHYS REV A, V43, P7113
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, PHYSICA A, V191, P220
BULDYREV SV, 1993, FRACTALS, V1, P827
BULDYREV SV, 1993, PHYSICA A, V200, P200
BULDYREV SV, 1995, PHYS REV E A, V52, P373
BUNDE A, 1991, FRACTALS DISORDERED
CARDY JL, 1984, NUCL PHYS B, V240, P514
CIEPLAK M, 1988, PHYS REV LETT, V60, P2042
CSAHOK Z, 1993, J PHYS A, V26, L171
CSAHOK Z, 1993, PHYSICA A, V200, P136
DHAR D, 1981, PHYS REV LETT, V47, P1238
DONG M, 1993, PHYS REV LETT, V70, P662
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
ESSAM JW, 1986, PHYS REV B, V33, P1982
ESSAM JW, 1988, J PHYS A, V21, P3815
FAMILY F, 1985, J PHYS A, V18, L75
FAMILY F, 1986, J PHYS A, V19, L441
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FEIGELMAN MV, 1983, ZH EKSP TEOR FIZ, V58, P1076
GAT O, UNOPUB
GOUYET JF, 1990, PHYSICA A, V168, P581
GOUYET JF, 1991, FRACTALS DISORDERED
HALPINHEALY T, 1995, PHYS REP, V254, P215
HAVLIN S, 1987, ADV PHYS, V36, P695
HAVLIN S, 1991, J PHYS A, V24, L925
HAVLIN S, 1993, GROWTH PATTERNS PHYS
HAVLIN S, 1995, PHYS REV LETT, V74, P4205
HE SJ, 1992, PHYS REV LETT, V69, P3731
HORVATH VK, 1990, PHYS REV LETT, V65, P1388
HORVATH VK, 1991, J PHYS A, V24, L25
HORVATH VK, 1991, PHYS REV LETT, V67, P3207
HORVATH VK, 1995, PHYS REV E B, V52, P5166
HUBER G, 1995, PHYS REV E A, V52, R2133
JOVANOVIC B, 1994, PHYS REV E, V50, P2403
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1994, FRACTALS SCI
KESSLER DA, 1991, PHYS REV A, V43, P4551
KIM JM, 1989, PHYS REV LETT, V62, P2289
KOILLER B, 1993, NEW TRENDS MAGNETIC
KOPLIK J, 1985, PHYS REV B, V32, P280
KRUG J, 1991, SOLIDS FAR EQUILIBRI
LESCHHORN H, UNPUB PHYS REV E
LESCHHORN H, 1993, PHYSICA A, V195, P324
LESCHHORN H, 1994, PHYS REV E, V49, P1238
MAKSE HA, 1995, EUROPHYS LETT, V31, P379
MARTYS N, 1991, PHYS REV LETT, V66, P1058
MASLOV S, 1994, PHYS REV E, V50, R643
MASLOV S, 1994, PHYS REV LETT, V73, P2162
MEAKIN P, 1986, PHYS REV A, V34, P5091
MEAKIN P, 1993, PHYS REP, V235, P189
MEDINA E, 1989, PHYS REV A, V39, P3053
NARAYAN O, 1993, PHYS REV B, V48, P7030
NATTERMANN T, 1992, J PHYS II, V2, P1483
NOLLE CS, 1993, PHYS REV LETT, V71, P2074
OLAMI Z, 1994, PHYS REV E, V49, P1232
OLAMI Z, 1995, PHYS REV E A, V52, P3402
PACZUSKI M, 1994, EUROPHYS LETT, V27, P96
PACZUSKI M, 1995, PHYS REV LETT, V74, P4253
PACZUSKI M, 1996, PHYS REV E A, V53, P414
PARISI G, 1992, EUROPHYS LETT, V17, P673
PENG CK, 1991, PHYS REV A, V44, P2239
RAY TS, 1994, PHYS REV LETT, V72, P4045
REDNER S, 1982, PHYS REV B, V25, P3242
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
RUBIO MA, 1990, PHYS REV LETT, V65, P1389
SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
SNEPPEN K, 1993, PHYS REV LETT, V70, P3833
SNEPPEN K, 1993, PHYS REV LETT, V71, P101
SPASOJEVIC D, 1993, PHYSICA A, V201, P482
STAUFFER D, 1992, INTRO PERCOLATION TH
STEPANOW S, 1995, J PHYS II, V5, P11
STOKES JP, 1988, PHYS REV LETT, V60, P1386
SUKI B, 1994, NATURE, V368, P615
TANG LH, 1992, PHYS REV A, V45, P8309
TANG LH, 1993, PHYS REV LETT, V70, P3832
TANG LH, 1995, PHYS REV LETT, V74, P920
VICSEK T, 1990, PHYSICA A, V167, P315
VICSEK T, 1992, FRACTAL GROWTH PHE 4
ZAITSEV SI, 1992, PHYSICA A, V189, P411
ZHANG J, 1992, PHYSICA A, V189, P383
ZHANG YC, 1990, J PHYS-PARIS, V51, P2129
NR 98
TC 3
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0218-348X
J9 FRACTALS
JI Fractals-Interdiscip. J. Complex Geom. Nat.
PD SEP
PY 1996
VL 4
IS 3
BP 307
EP 319
PG 13
SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
GA VM909
UT ISI:A1996VM90900013
ER
PT J
AU Jensen, P
Barabasi, AL
Larralde, H
Havlin, S
Stanley, HE
TI A fractal model for the first stages of thin film growth
SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; ISLAND GROWTH; SUBMONOLAYER EPITAXY;
CLUSTER MOBILITY; DEPOSITION; SURFACES; NANOSTRUCTURES; NUCLEATION;
PARTICLES; DYNAMICS
AB In this paper, we briefly review a model that describes the
diffusion-controlled aggregation exhibited by particles as they are
deposited on a surface. This model allows us to understand many
experiments of thin film deposition. In the Sec. 1, we describe the
model, which incorporates deposition, particle and cluster diffusion,
and aggregation. In Sec. 2, we study the dynamical evolution of the
model. Finally, we analyze the effects of small cluster mobility and
show that the introduction of cluster diffusion dramatically affects
the dynamics of film growth. Some of these effects can be tested
experimentally.
C1 UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
UNIV CAMBRIDGE,CAVENDISH LAB,DEPT PHYS,CAMBRIDGE CB3 0HE,ENGLAND.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
RP Jensen, P, UNIV LYON 1,DEPT PHYS MAT,F-69622 VILLEURBANNE,FRANCE.
CR AMAR JG, 1995, PHYS REV LETT, V74, P2066
BALES GS, 1994, PHYS REV B, V50, P6057
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARDOTTI L, 1995, PHYS REV LETT, V74, P4694
BARTELT MC, 1992, PHYS REV B, V46, P12675
BARTELT MC, 1993, PHYS REV B, V47, P13891
BRUNE H, 1994, NATURE, V369, P469
BRUNE H, 1994, PHYS REV LETT, V73, P1955
BUNDE A, 1991, FRACTALS DISO9RDERED
CHAPON C, 1981, SURF SCI, V106, P152
DASSARMA S, 1990, J VAC SCI TECHNOL 2, V8, P2714
HERRMANN HJ, 1986, PHYS REP, V136, P153
HWANG RQ, 1991, PHYS REV LETT, V67, P3279
JENSEN P, 1994, NATURE, V368, P22
JENSEN P, 1994, PHYS REV B, V50, P15316
JENSEN P, 1994, PHYS REV E, V50, P618
JENSEN P, 1994, PHYSICA A, V207, P219
JENSEN P, 1996, RECHERCHE, V283, P42
KALDIS E, 1971, SURF SCI, V27, P483
KELLOGG GL, 1994, PHYS REV LETT, V73, P1833
KERN R, 1979, CURRENT TOPICS MAT S, V3
KOLB M, 1983, PHYS REV LETT, V51, P1123
LAGALLY M, 1990, KINETICS ORDERING GR
LAGALLY M, 1993, PHYSICS TODAY, V24
LIU SD, 1995, PHYS REV B, V52, P2907
MEAKIN P, 1983, PHYS REV LETT, V51, P1119
MELINON P, 1991, PHYS REV B, V44, P12562
MICHELY T, 1993, PHYS REV LETT, V70, P3943
MO YW, 1991, PHYS REV LETT, V66, P1998
MULHERAN PA, 1995, PHIL MAG LETT, V72, P55
RAEKER TJ, 1994, SURF SCI, V317, P283
RATSCH C, 1994, PHYS REV LETT, V72, P3194
RODER H, 1993, NATURE, V366, P141
STAUFFER D, 1992, INTRO PERCOLATION TH
STOYANOV S, 1981, CURRENT TOPICS MAT S
STROSCIO JA, 1994, J VAC SCI TECHNOL B, V12, P1783
TANG LH, 1993, J PHYS I, V3, P935
VENABLES JA, 1984, REP PROG PHYS, V47, P399
VICSEK T, 1992, FRACTAL GROWTH PHENO
VILLAIN J, 1992, J PHYS I, V2, P2107
VILLAIN J, 1997, PHYSIQUE CROSSANCE C
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 42
TC 7
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0218-348X
J9 FRACTALS
JI Fractals-Interdiscip. J. Complex Geom. Nat.
PD SEP
PY 1996
VL 4
IS 3
BP 321
EP 329
PG 9
SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
GA VM909
UT ISI:A1996VM90900014
ER
PT J
AU Barabasi, AL
TI Roughening of growing surfaces: Kinetic models and continuum theories
SO COMPUTATIONAL MATERIALS SCIENCE
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; FREE SOLID FILMS; ION-BOMBARDMENT; 2+1
DIMENSIONS; MORPHOLOGICAL INSTABILITY; NONEQUILIBRIUM GROWTH;
UNIVERSALITY CLASSES; NUMERICAL-SOLUTION; DIFFUSION; INTERFACES
AB The use of scaling concepts in understanding growth by molecular beam
epitaxy (MBE) is increasingly important these days. Here we present a
critical discussion on the advantages and disadvantages of kinetic
theories and continuum models, two main methods frequently used to
study the roughening and scaling of surfaces grown by MBE. Finally,
some open problems faced by these approaches are also discussed.
C1 UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
CR AMAR JG, 1990, PHYS REV A, V41, P3399
AMAR JG, 1993, PHYS REV E, V47, P3242
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BEHRISCH R, 1981, SPUTTERING PARTICLE, V1
BEHRISCH R, 1983, SPUTTERING PARTICLE, V2
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
CARTER G, 1983, SPUTTERING PARTICLE, V2, P231
CHASON E, 1994, PHYS REV LETT, V72, P3040
CLARKE S, 1987, PHYS REV LETT, V58, P2235
CUERNO R, 1994, P MRS FALL M BOST 19
DASSARMA S, 1991, PHYS REV LETT, V66, P325
DASSARMA S, 1992, PHYS REV LETT, V69, P3762
DASSARMA S, 1994, PHYS REV B, V49, P10693
DASSARMA S, 1994, PHYS REV E, V49, P122
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FORREST BM, 1990, J STAT PHYS, V60, P181
HALPINHEALY T, 1995, PHYS REP, V254, P215
JENSEN P, 1994, NATURE, V368, P22
JENSEN P, 1994, PHYS REV B, V50, P15316
JENSEN P, 1994, PHYS REV E, V50, P618
JOHNSON MD, 1994, PHYS REV LETT, V72, P116
KARDAR M, 1986, PHYS REV LETT, V56, P889
KIM JM, 1989, PHYS REV LETT, V62, P2289
KOTRLA M, 1992, EUROPHYS LETT, V20, P25
KRIM J, 1993, PHYS REV LETT, V70, P57
KRUG J, 1988, PHYS REV A, V38, P4271
KRUG J, 1991, SOLIDS FAR EQUILIBRI
KRUG J, 1993, PHYS REV LETT, V70, P3271
KRUG J, 1994, PHYS REV LETT, V72, P2907
MAYER TM, 1994, J APPL PHYS, V76, P1633
MEAKIN P, 1993, PHYS REP, V235, P189
MOSER K, 1991, PHYSICA A, V178, P215
NISSILA TA, 1993, J STAT PHYS, V72, P207
PLISCHKE M, 1993, PHYS REV LETT, V71, P2509
RATSCH C, 1994, PHYS REV B, V50, P14489
SCHROEDER M, 1993, EUROPHYS LETT, V24, P563
SIEGERT M, 1992, PHYS REV LETT, V68, P2035
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
SMILAUER P, 1993, PHYS REV B, V47, P4119
SMILAUER P, 1994, PHYS REV B, V49, P5769
SPENCER BJ, 1993, J APPL PHYS, V73, P4955
SPENCER BJ, 1993, PHYS REV B, V47, P9760
TAMBORENEA PI, 1993, PHYS REV E, V48, P2575
VVEDENSKY DD, 1993, PHYS REV E, V48, P852
WOLF DE, 1990, EUROPHYS LETT, V13, P389
NR 48
TC 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0927-0256
J9 COMPUT MATER SCI
JI Comput. Mater. Sci.
PD AUG
PY 1996
VL 6
IS 2
BP 127
EP 134
PG 8
SC Materials Science, Multidisciplinary
GA VJ932
UT ISI:A1996VJ93200004
ER
PT J
AU MolinasMata, P
Munoz, MA
Martinez, DO
Barabasi, AL
TI Ballistic random walker
SO PHYSICAL REVIEW E
LA English
DT Article
ID INITIALLY SEPARATED REACTANTS; KINETIC CRITICAL PHENOMENON; 2-SPECIES
ANNIHILATION; DISORDERED MEDIA; REACTION FRONT; DIFFUSION; SYSTEMS;
MODEL; BEHAVIOR
AB We introduce and investigate the scaling properties of a random walker
that moves ballistically on a two-dimensional square lattice. The
walker is scattered (changes direction randomly) every time it reaches
a previously unvisited site, and follows ballistic trajectories between
two scattering events. The asymptotic properties of the density of
unvisited sites and the diffusion exponent can be calculated using a
mean-field theory. The obtained predictions are in good agreement with
the results of extensive numerical simulations. In particular, we show
that this random walk is subdiffusive.
C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
LOS ALAMOS NATL LAB,DIV THEORET,LOS ALAMOS,NM 87545.
UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR AMIT DJ, 1983, PHYS REV B, V27, P1635
ARAUJO M, 1992, PHYS REV LETT, V68, P1791
ARAUJO M, 1993, PHYS REV LETT, V71, P3592
BARABASI AL, 1991, DYNAMICS FRACTAL SUR
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BENNAIM E, 1993, PHYS REV LETT, V70, P1890
BOUCHAUD JP, 1990, PHYS REP, V195, P127
DEGENNES PG, 1979, SCALING CONCEPTS POL
DEUTSCHER G, 1980, ANN ISRAEL PHYSICAL, V5
DOMB C, 1972, J PHYS C SOLID STATE, V5, P956
DUXBURY PM, 1984, J PHYS A, V17, P2113
DUXBURY PM, 1985, J PHYS A-MATH GEN, V18, P661
EINSTEIN A, 1905, ANN PHYS-BERLIN, V17, P549
GRASSBERGER P, 1982, J CHEM PHYS, V77, P6281
GRASSBERGER P, 1982, Z PHYS B, V47, P255
GRASSBERGER P, 1984, J PHYS A, V17, L105
GRASSBERGER P, 1989, J PHYS A, V22, L1103
HAVLIN S, 1987, ADV PHYS, V36, P695
JENSEN I, 1993, J PHYS A-MATH GEN, V26, P3921
KANG K, 1984, PHYS REV A, V30, P2833
KANG K, 1984, PHYS REV LETT, V52, P955
KRAPIVSKY PL, 1995, PHYS REV E A, V51, P3977
LARRALDE H, 1992, NATURE, V356, P168
LARRALDE H, 1992, PHYS REV A, V45, P7128
LARRALDE H, 1992, PHYS REV A, V46, P6121
LARRALDE H, 1992, PHYS REV A, V46, P855
LEYVRAZ F, 1991, PHYS REV LETT, V66, P2168
LEYVRAZ F, 1992, PHYS REV A, V46, P3132
MUNOZ MA, UNPUB
PELITI L, 1986, J PHYS A-MATH GEN, V19, L365
PIASECKI J, 1995, PHYS REV E A, V51, P5535
REDNER S, 1983, PHYS REV LETT, V51, P1729
STANLEY HE, 1983, PHYS REV LETT, V51, P1223
SZABO A, 1988, PHYS REV LETT, V61, P2496
TOUSSAINT D, 1983, J CHEM PHYS, V78, P2642
VINEYARD GH, 1963, J MATH PHYS, V4, P1991
ZIFF RM, 1986, PHYS REV LETT, V56, P2553
NR 37
TC 2
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 1996
VL 54
IS 1
BP 968
EP 971
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA UY734
UT ISI:A1996UY73400119
ER
PT J
AU Makse, HA
Barabasi, AL
Stanley, HE
TI Elastic string in a random medium
SO PHYSICAL REVIEW E
LA English
DT Article
ID DISORDERED MEDIUM; SURFACE GROWTH; INTERFACES; DYNAMICS; MODEL
AB We consider a one-dimensional elastic string as a set of massless beads
interacting through springs characterized by anisotropic elastic
constants. The string, driven by an external force, moves in a medium
with quenched disorder. We find that longitudinal fluctuations lead to
nonlinear behavior in the equation of motion that is kinematically
generated by the motion of the string. The strength of the nonlinear
effects depends on the anisotropy of the medium and the distance from
the depinning transition. On the other hand, the consideration of
restricted solid-on-solid conditions imposed on the string leads to a
nonlinear term with a diverging coefficient at the depinning transition.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP Makse, HA, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMARAL LAN, 1994, PHYS REV LETT, V73, P62
AMARAL LAN, 1995, PHYS REV E B, V52, P4087
AMARAL LAN, 1995, PHYS REV E, V51, P4655
BARABASI AL, 1995, FRACTAL CONCEPTS SUF
BLATTER G, 1994, REV MOD PHYS, V66, P1125
BULDYREV SV, 1992, PHYS REV A, V45, P8313
DONG M, 1993, PHYS REV LETT, V70, P662
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
ERTAS D, 1994, PHYS REV LETT, V73, P1703
HALPINHEALY T, 1995, PHYS REP, V254, P215
KAPER HG, 1993, PHYS REV LETT, V71, P3713
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1994, FRACTALS SCI
KIM JM, 1989, PHYS REV LETT, V62, P2289
KRUG J, 1990, PHYS REV LETT, V64, P2332
LESCHHORN H, 1993, PHYS REV LETT, V70, P2973
LESCHHORN H, 1993, PHYSICA A, V195, P324
MAKSE HA, 1995, EUROPHYS LETT, V31, P379
MAKSE HA, 1995, PHYS REV E, V52, P4080
MEAKIN P, 1993, PHYS REP, V235, P189
NARAYAN O, 1993, PHYS REV B, V48, P7030
NATTERMANN T, 1992, J PHYS II, V2, P1483
PARISI G, 1992, EUROPHYS LETT, V17, P673
SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
SNEPPEN K, 1993, PHYS REV LETT, V70, P3833
TANG C, 1994, PHYS REV LETT, V72, P1264
TANG LH, 1992, PHYS REV A, V45, P8309
TANG LH, 1993, PHYS REV LETT, V70, P3832
VICSEK T, 1992, FRACTAL GROWTH PHENO
NR 29
TC 1
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 1996
VL 53
IS 6
PN Part B
BP 6573
EP 6576
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA UR607
UT ISI:A1996UR60700061
ER
PT J
AU Barabasi, AL
TI Invasion percolation and global optimization
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID POROUS-MEDIA; SIMULATION
AB Invasion bond percolation (IBP) is mapped exactly into Prim's algorithm
for finding the shortest spanning tree of a weighted random graph.
Exploring this mapping, which is valid for arbitrary dimensions and
lattices, we introduce a new IBP model that belongs to the same
universality class as IBP and generates the minimal energy tree
spanning the IBP cluster.
C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
RP Barabasi, AL, UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BLUNT M, 1992, PHYS REV A, V46, P7680
BUNDE A, 1991, FRACTALS DISORDERED
CAYYLEY A, 1874, PHILOS MAG, V67, P444
CHANDLER R, 1982, J FLUID MECH, V119, P249
CHRISTOFIDES N, 1975, GRAPH THEORY ALGORIT
CIEPLAK M, IN PRESS
CIEPLAK M, 1994, PHYS REV LETT, V72, P2320
FEDER J, 1988, FRACTALS
FURUBERG L, 1988, PHYS REV LETT, V61, P2117
KEVIN V, 1972, COMMUN ACM, V15, P273
KRUSKAL JB, 1956, P AM MATH SOC, V7, P48
LENORMAND R, 1980, CR ACAD SCI PARIS B, V291, P279
PRIM RC, 1957, BELL SYST TECH J, V36, P1389
SAHIMI M, 1995, FLOW TRANSPORT POROU
SUKI B, 1994, NATURE, V368, P615
TZSCHICHHOLZ F, 1989, PHYS REV A, V39, P5470
VICSEK T, 1992, FRACTAL GROWTH PHENO
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
WONG PZ, 1994, MRS BULL, V19, P32
NR 20
TC 20
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAY 13
PY 1996
VL 76
IS 20
BP 3750
EP 3753
PG 4
SC Physics, Multidisciplinary
GA UK560
UT ISI:A1996UK56000023
ER
PT J
AU Barabasi, AL
Buldyrev, SV
Stanley, HE
Suki, B
TI Avalanches in the lung: A statistical mechanical model
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID BRONCHIAL TREE; AIRWAY-CLOSURE
AB We study a statistical mechanical model for the dynamics of lung
inflation which incorporates recent experimental observations on the
opening of individual airways by a cascade or avalanche mechanism.
Using an exact mapping of the avalanche problem onto percolation on a
Cayley tree, we analytically derive the exponents describing the size
distribution of the first avalanches and test the analytical solution
by numerical simulations. We find that the treelike structure of the
airways, together with the simplest assumptions concerning opening
threshold pressures of each airway, is sufficient to explain the
existence of power-law distributions observed experimentally.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
UNIV NOTRE DAME,DEPT PHYS,NOTRE DAME,IN 46556.
BOSTON UNIV,DEPT BIOMED ENGN,RESP RES LAB,BOSTON,MA 02215.
RP Barabasi, AL, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR ASMUSSEN S, 1983, BRANCHING PROCESSES
BASSINGTHWAIGHT.JB, 1994, FRACTAL PHYSL
BASSINGTHWAIGHT.JB, 1994, FRACTALS NATURAL SCI
BINGHAM NH, 1988, J APPL PROBAB A, V25, P215
BUNDE A, 1996, FRACTALS DISORDERED
CRAWFORD ABH, 1989, J APPL PHYSIOL, V66, P2511
ENGEL LA, 1975, J APPL PHYSIOL, V38, P1117
ESSAM JW, 1980, REP PROG PHYS, V43, P833
GRAVER DP, 1990, J APPL PHYS, V69, P74
GRINSTEIN G, 1995, SCALE INVARIANCE INT
HARRIS TE, 1989, THEORY BRANCHING PRO
HORSFIELD K, 1971, J APPL PHYSIOL, V31, P207
OTIS DR, 1994, THESIS MIT
PETAK F, 1993, EUR RESPIR J, V6, S403
SHLESINGER MF, 1991, PHYS REV LETT, V67, P2106
SUKI B, 1993, J APPL PHYSIOL, V75, P2755
SUKI B, 1994, NATURE, V368, P615
WEST BJ, 1989, INT J MOD PHYS B, V3, P795
WEST BJ, 1990, FRACTAL PHYSL CHAOS
WEST BJ, 1993, GROWTH PATTERNS PHYS
WEST BJ, 1994, PHYS REP, V246, P1
NR 21
TC 27
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 18
PY 1996
VL 76
IS 12
BP 2192
EP 2195
PG 4
SC Physics, Multidisciplinary
GA TZ984
UT ISI:A1996TZ98400052
ER
PT J
AU Barabasi, AL
Grinstein, G
Munoz, MA
TI Directed surfaces in disordered media
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID POROUS-MEDIA; FLUID INVASION; INTERFACE; PERCOLATION; GROWTH; MODEL
AB The critical exponents for a class of one-dimensional models of
interface depinning in disordered media can be calculated through a
mapping onto directed percolation. In higher dimensions these models
give rise to directed surfaces, which do not belong to the directed
percolation universality class. We formulate a scaling theory of
directed surfaces, and calculate critical exponents numerically, using
a cellular automaton that locates the directed surfaces without making
reference to the dynamics of the underlying interface growth models.
C1 IBM CORP,DIV RES,TJ WATSON RES CTR,YORKTOWN HTS,NY 10598.
CR AHARONY A, 1986, DIRECTIONS CONDENSED
AMARAL LAN, 1994, PHYS REV LETT, V73, P62
AMARAL LAN, 1995, PHYS REV E B, V52, P4087
AMARAL LAN, 1995, PHYS REV E, V51, P4655
ARORA BM, 1983, J PHYS C SOLID STATE, V16, P2913
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BLATTER G, 1994, REV MOD PHYS, V66, P1125
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, PHYSICA A, V191, P220
CIEPLAK M, 1988, PHYS REV LETT, V60, P2042
FAMILY F, 1991, DYNAMICS FRACTAL STR
HALPINHEALY T, 1995, PHYS REP, V254, P215
HAVLIN S, 1993, GROWTH PATTERNS PHYS
HE SJ, 1992, PHYS REV LETT, V69, P3731
HEDE B, 1991, J STAT PHYS, V64, P829
HORVATH VK, 1991, J PHYS A, V24, L25
HORVATH VK, 1991, PHYS REV LETT, V67, P3207
HORVATH VK, 1995, PHYS REV E B, V52, P5166
HUBER G, 1995, PHYS REV E A, V52, R2133
KARDAR M, 1986, PHYS REV LETT, V56, P889
KARDAR M, 1995, PHYS REV LETT, V74, P920
MASLOV S, 1994, PHYS REV E, V50, R643
MEAKIN P, 1993, PHYS REP, V235, P189
OLAMI Z, 1994, PHYS REV E, V49, P1232
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
TANG LH, 1992, PHYS REV A, V45, P8309
NR 27
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 26
PY 1996
VL 76
IS 9
BP 1481
EP 1484
PG 4
SC Physics, Multidisciplinary
GA TW700
UT ISI:A1996TW70000020
ER
PT J
AU JENSEN, P
BARABASI, AL
LARRALDE, H
HAVLIN, S
STANLEY, HE
TI GROWTH AND PERCOLATION OF THIN-FILMS - A MODEL INCORPORATING
DEPOSITION, DIFFUSION AND AGGREGATION
SO CHAOS SOLITONS & FRACTALS
LA English
DT Article
AB We propose a model for describing diffusion-controlled aggregation of
parti cles that are continually deposited on a surface. The model,
which incorporates deposition, diffusion and aggregation, is motivated
by recent thin film deposition experiments. We find, that the diffusion
and aggregation of randomly deposited particles ''builds'' a wide
variety of fractal structures, all characterized by a common length
scale L(1). This length L(1) scales as the ratio of the diffusion
constant over the particle flux to the power 1/4. We compare our
results with several recent experiments on two-dimensional
nanostructures formed by diffusion-controlled aggregation on surfaces.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP JENSEN, P, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BRUNE H, 1994, NATURE, V369, P469
JENSEN P, 1992, PHYSICA A, V185, P104
JENSEN P, 1994, NATURE, V368, P22
JENSEN P, 1994, PHYS REV B, V50, R30
JENSEN P, 1994, PHYS REV E, V50, P618
JENSEN P, 1994, PHYSICA A, V207, P219
KERTESZ J, 1994, FRACTALS SCI
RODER H, 1993, NATURE, V366, P141
VENABLES JA, 1984, REP PROG PHYS, V47, P399
VICSEK T, 1992, FRACTAL GROWTH PHENO
NR 11
TC 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 0960-0779
J9 CHAOS SOLITON FRACTAL
JI Chaos Solitons Fractals
PY 1995
VL 6
BP 227
EP 236
PG 10
SC Mathematics, Interdisciplinary Applications; Physics,
Multidisciplinary; Physics, Mathematical
GA TF140
UT ISI:A1995TF14000029
ER
PT J
AU AMARAL, LAN
BARABASI, AL
MAKSE, HA
STANLEY, HE
TI SCALING PROPERTIES OF DRIVEN INTERFACES IN DISORDERED MEDIA
SO PHYSICAL REVIEW E
LA English
DT Article
ID AFFINE FRACTAL INTERFACES; FIELD ISING-MODEL; POROUS-MEDIA; IMMISCIBLE
DISPLACEMENT; BALLISTIC-DEPOSITION; CORRELATED NOISE; FLUID INVASION;
SURFACE GROWTH; ROUGH SURFACES; PERCOLATION
AB We perform a systematic study of several models that have been proposed
for the purpose of understanding the motion of driven interfaces in
disordered media. We identify two distinct universality classes. (i)
One of these, referred to as directed percolation depinning (DPD), can
be described by a Langevin equation similar to the Kardar-Parisi-Zhang
equation, but with quenched disorder. (ii) The other, referred to as
quenched Edwards-Wilkinson (QEW), can be described by a Langevin
equation similar to the Edwards-Wilkinson equation, but with quenched
disorder. We find that for the DPD universality class, the coefficient
lambda of the nonlinear term diverges at the depinning transition,
while for the QEW universality class, either lambda = 0 or lambda --> 0
as the depinning transition is approached. The identification of the
two universality classes allows us to better understand many of the
results previously obtained experimentally and numerically. However, we
find that some results cannot be understood in terms of the exponents
obtained for the two universality classes at the depinning transition.
In order to understand these remaining disagreements, we investigate
the scaling properties of models in each of the two universality
classes above the depinning transition. For the DPD universality class,
we find for the roughness exponent alpha(P) = 0.63 +/- 0.03 for the
pinned phase and alpha(M) = 0.75 +/- 0.05 for the moving phase. For the
growth exponent, we find beta(P) = 0.67 +/- 0.05 for the pinned phase
and beta(M) = 0.74 +/- 0.06 for the moving phase. Furthermore, we find
an anomalous scaling of the prefactor of the width on the driving
force. A new exponent (phi(M) = -0.12 +/- 0.06, characterizing the
scaling of this prefactor, is shown to relate the values of the
roughness exponents on both sides of the depinning transition. For the
QEW universality class, we find that alpha(P) approximate to alpha(M) =
0.92 +/- 0.04 and beta(P) approximate to beta(M) = 0.86 +/- 0.03 are
roughly the same for both the pinned and moving phases. Moreover, we
again find a dependence of the prefactor of the width on the driving
force. For this universality class, the exponent phi(M) = 0.44 +/- 0.05
is found to relate the different values of the local crp and global
roughness exponent alpha(G) approximate to 1.23 +/- 0.04 at the
depinning transition. These results provide us with a more consistent
understanding of the scaling properties of the two universality
classes, both at and above the depinning transition. We compare our
results with all the relevant experiments.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP AMARAL, LAN, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMAR JG, 1991, PHYS REV A, V43, P4548
AMARAL LAN, THESIS BOSTON U
AMARAL LAN, 1993, FRACTALS, V1, P818
AMARAL LAN, 1994, PHYS REV LETT, V72, P641
AMARAL LAN, 1994, PHYS REV LETT, V73, P62
AMARAL LAN, 1995, PHYS REV E, V51, P4655
BARABASI AL, 1992, PHYS REV A, V46, R2977
BARABASI AL, 1992, SURFACE DISORDERING
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BENOIT M, 1994, PHYSICA A, V207, P500
BIROVLJEV A, 1991, PHYS REV LETT, V67, P584
BRUINSMA R, 1984, PHYS REV LETT, V52, P1547
BULDYREV SV, 1991, PHYS REV A, V43, P7113
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, PHYSICA A, V191, P220
BULDYREV SV, 1993, FRACTALS, V1, P827
BULDYREV SV, 1993, PHYSICA A, V200, P200
BULDYREV SV, 1995, PHYS REV E A, V52, P373
CIEPLAK M, 1988, PHYS REV LETT, V60, P2042
CSAHOK Z, 1993, J PHYS A, V26, L171
CSAHOK Z, 1993, PHYSICA A, V200, P136
DASSARMA S, 1994, PHYS REV E, V49, P122
DONG M, 1993, PHYS REV LETT, V70, P662
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
ESSAM JW, 1986, PHYS REV B, V33, P1982
ESSAM JW, 1988, J PHYS A, V21, P3815
FAMILY F, 1985, J PHYS A, V18, L75
FAMILY F, 1986, J PHYS A, V19, L441
FAMILY F, 1991, DYNAMICS FRACTAL SUR
GALLUCCIO S, 1995, PHYS REV E, V51, P1686
GOUYET JF, 1991, FRACTALS DISORDERED
GRINSTEIN G, 1983, PHYS REV B, V28, P2588
HALPINHEALY T, 1995, PHYS REP, V254, P215
HANSEN A, 1990, J PHYS A-MATH GEN, V23, L145
HANSEN A, 1991, J PHYS A-MATH GEN, V24, P2377
HAVLIN S, 1987, ADV PHYS, V36, P695
HAVLIN S, 1991, J PHYS A, V24, L925
HAVLIN S, 1993, GROWTH PATTERNS PHYS
HAVLIN S, 1995, PHYS REV LETT, V74, P4205
HE SJ, 1992, PHYS REV LETT, V69, P3731
HORVATH VK, 1990, PHYS REV LETT, V65, P1388
HORVATH VK, 1991, J PHYS A, V24, L25
HORVATH VK, 1991, PHYS REV LETT, V67, P3207
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1994, FRACTALS SCI
KESSLER DA, 1991, PHYS REV A, V43, P4551
KIM JM, 1989, PHYS REV LETT, V62, P2289
KOILLER B, 1993, NEW TRENDS MAGNETIC
KOPLIK J, 1985, PHYS REV B, V32, P280
KRUG J, 1990, PHYS REV LETT, V64, P2332
KRUG J, 1991, SOLIDS FAR EQUILIBRI
LESCHHORN H, 1993, PHYS REV LETT, V70, P2973
LESCHHORN H, 1993, PHYSICA A, V195, P324
LESCHHORN H, 1994, PHYS REV E, V49, P1238
MAKSE HA, THESIS BOSTON U
MAKSE HA, UNPUB
MAKSE HA, 1995, EUROPHYS LETT, V31, P379
MAKSE HA, 1995, PHYS REV E, V52, P4080
MARTYS N, 1991, PHYS REV LETT, V66, P1058
MASLOV S, 1994, PHYS REV E, V50, R643
MEAKIN P, 1986, PHYS REV A, V34, P5091
MEAKIN P, 1993, PHYS REP, V235, P189
MEDINA E, 1989, PHYS REV A, V39, P3053
NARAYAN O, 1993, PHYS REV B, V48, P7030
NATTERMANN T, 1992, J PHYS II, V2, P1483
NOLLE CS, 1993, PHYS REV LETT, V71, P2074
OLAMI Z, 1994, PHYS REV E, V49, P1232
PARISI G, 1992, EUROPHYS LETT, V17, P673
PENG CK, 1991, PHYS REV A, V44, P2239
ROBBINS MO, 1993, GROWTH PATTERNS PHYS
ROSSO M, 1986, PHYS REV LETT, V57, P3195
ROUX S, 1994, J PHYS I, V4, P515
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
RUBIO MA, 1990, PHYS REV LETT, V65, P1389
SAPOVAL B, 1985, J PHYS LETT-PARIS, V46, L149
SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
SNEPPEN K, 1993, PHYS REV LETT, V70, P3833
SNEPPEN K, 1993, PHYS REV LETT, V71, P101
SPASOJEVIC D, 1993, PHYSICA A, V201, P482
STAUFFER D, 1992, INTRO PERCOLATION TH
STOKES JP, 1988, PHYS REV LETT, V60, P1386
TANG C, 1994, PHYS REV LETT, V72, P1264
TANG LH, PHYS REV LETT, V74, P920
TANG LH, 1992, PHYS REV A, V45, R8039
TANG LH, 1993, PHYS REV LETT, V70, P3832
VICSEK T, 1992, FRACTAL GROWTH PHE 4
WILKINSON D, 1984, PHYS REV A, V30, P520
WILKINSON D, 1986, PHYS REV A, V34, P1380
ZHANG J, 1992, PHYSICA A, V189, P383
ZHANG YC, 1990, J PHYS-PARIS, V51, P2129
NR 90
TC 52
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD OCT
PY 1995
VL 52
IS 4
PN Part B
BP 4087
EP 4104
PG 18
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA TA525
UT ISI:A1995TA52500019
ER
PT J
AU CUERNO, R
BARABASI, AL
TI DYNAMIC SCALING OF ION-SPUTTERED SURFACES
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID KURAMOTO-SIVASHINSKY EQUATION; KARDAR-PARISI-ZHANG; LONG-WAVELENGTH
PROPERTIES; INVARIANT SOLUTIONS; NUMERICAL-SOLUTION; GROWTH;
DIMENSIONS; BOMBARDMENT; INTERFACES; MODEL
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
IBM CORP,TJ WATSON RES CTR,NEW YORK,NY 10598.
RP CUERNO, R, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMAR JG, 1990, PHYS REV A, V41, P3399
BALES GS, 1990, SCIENCE, V249, P264
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BEHRISCH R, 1981, SPUTTERING PARTICLE, V1
BEHRISCH R, 1983, SPUTTERING PARTICLE, V2
BRADLEY RM, 1988, J VAC SCI TECHNOL A, V6, P2390
BRUINSMA R, 1992, SURFACE DISORDERING
CARTER G, 1983, SPUTTERING PARTICLE, V2, P231
CHASON E, 1994, PHYS REV LETT, V72, P3040
CUERNO R, UNPUB
DASSARMA S, 1991, PHYS REV LETT, V66, P325
EKLUND EA, 1991, PHYS REV LETT, V67, P1759
EKLUND EA, 1993, SURF SCI, V285, P157
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FORREST BM, 1990, J STAT PHYS, V60, P181
HALPINHEALY T, 1995, PHYS REP, V254, P215
HAYOT F, 1993, PHYS REV E, V47, P911
HERRING C, 1950, J APPL PHYS, V21, P301
JAYAPRAKASH C, 1993, PHYS REV LETT, V71, P12
JAYAPRAKASH C, 1994, PHYS REV LETT, V72, P308
KARDAR M, 1986, PHYS REV LETT, V56, P889
KIM JM, 1989, PHYS REV LETT, V62, P2289
KRIM J, 1993, PHYS REV LETT, V70, P57
KURAMOTO Y, 1977, PROG THEOR PHYS, V55, P356
LVOV V, 1994, PHYS REV LETT, V72, P307
LVOV VS, 1992, PHYS REV LETT, V69, P3543
LVOV VS, 1993, NONLINEARITY, V6, P25
MAYER TM, 1994, J APPL PHYS, V76, P1633
MEAKIN P, 1993, PHYS REP, V235, P189
MOSER K, 1991, PHYSICA A, V178, P215
MULLINS WW, 1957, J APPL PHYS, V28, P333
NISSILA TA, 1993, J STAT PHYS, V72, P207
PROCACCIA I, 1992, PHYS REV A, V46, P3220
SIGMUND P, 1969, PHYS REV, V184, P383
SIGMUND P, 1973, J MATER SCI, V8, P1545
SIVASHINSKY GI, 1979, ACTA ASTRONAUT, V6, P569
SNEPPEN K, 1992, PHYS REV A, V46, P7352
WOLF DE, 1990, EUROPHYS LETT, V13, P389
WOLF DE, 1991, PHYS REV LETT, V67, P1783
ZALESKI S, 1989, PHYSICA D, V34, P427
NR 40
TC 182
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 5
PY 1995
VL 74
IS 23
BP 4746
EP 4749
PG 4
SC Physics, Multidisciplinary
GA RB200
UT ISI:A1995RB20000047
ER
PT J
AU AMARAL, LAN
BARABASI, AL
BULDYREV, SV
HARRINGTON, ST
HAVLIN, S
SADRLAHIJANY, R
STANLEY, HE
TI AVALANCHES AND THE DIRECTED PERCOLATION DEPINNING MODEL - EXPERIMENTS,
SIMULATIONS, AND THEORY
SO PHYSICAL REVIEW E
LA English
DT Article
ID AFFINE FRACTAL INTERFACES; POROUS-MEDIA; IMMISCIBLE DISPLACEMENT;
BALLISTIC-DEPOSITION; CORRELATED NOISE; DISORDERED MEDIUM; ROUGH
SURFACES; FLUID INVASION; GROWTH; DYNAMICS
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
BAR ILAN UNIV,MINERVA CTR,RAMAT GAN,ISRAEL.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
RP AMARAL, LAN, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMAR JG, 1991, PHYS REV A, V43, P4548
AMARAL LAN, UNPUB
AMARAL LAN, 1993, FRACTALS, V1, P818
AMARAL LAN, 1994, PHYS REV LETT, V72, P641
AMARAL LAN, 1994, PHYS REV LETT, V73, P62
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1993, PHYS REV LETT, V71, P4083
BARABASI AL, 1991, PHYS REV A, V44, P2730
BARABASI AL, 1991, PHYSICA A, V178, P17
BARABASI AL, 1992, PHYS REV A, V46, R2977
BARABASI AL, 1992, SURFACE DISORDERING
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BENOIT M, 1994, PHYSICA A, V207, P500
BIROVLJEV A, 1991, PHYS REV LETT, V67, P584
BRUINSMA R, 1984, PHYS REV LETT, V52, P1547
BULDYREV SV, UNPUB
BULDYREV SV, 1991, PHYS REV A, V73, P7113
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, PHYSICA A, V191, P220
BULDYREV SV, 1993, FRACTALS, V1, P827
BULDYREV SV, 1993, PHYSICA A, V200, P200
CIEPLAK M, 1988, PHYS REV LETT, V60, P2042
CSAHOK Z, 1993, J PHYS A, V26, L171
CSAHOK Z, 1993, PHYSICA A, V200, P136
DONG M, 1993, PHYS REV LETT, V70, P662
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
ESSAM JW, 1986, PHYS REV B, V33, P1982
ESSAM JW, 1988, J PHYS A, V21, P3815
FAMILY F, 1985, J PHYS A, V18, L75
FAMILY F, 1986, J PHYS A, V19, L441
FAMILY F, 1991, DYNAMICS FRACTAL SUR
GOUYET JF, 1991, FRACTALS DISORDERED
HALPINHEALY T, 1995, PHYS REP, V254, P215
HANSEN A, 1990, J PHYS A-MATH GEN, V23, L145
HANSEN A, 1991, J PHYS A-MATH GEN, V24, P2377
HAVLIN S, IN PRESS PHYS REV LE
HAVLIN S, 1987, ADV PHYS, V36, P695
HAVLIN S, 1991, J PHYS A, V24, L925
HAVLIN S, 1993, GROWTH PATTERNS PHYS
HE SJ, 1992, PHYS REV LETT, V69, P3731
HORVATH VK, 1990, PHYS REV LETT, V65, P1388
HORVATH VK, 1991, J PHYS A, V24, L25
HORVATH VK, 1991, PHYS REV LETT, V67, P3207
JOVANOVIC B, 1994, PHYS REV E, V50, P2403
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1994, FRACTALS SCI
KESSLER DA, 1991, PHYS REV A, V43, P4551
KIM JM, 1989, PHYS REV LETT, V62, P2289
KOILLER B, 1993, NEW TRENDS MAGNETIC
KRUG J, 1991, SOLIDS FAR EQUILIBRI
LESCHHORN H, 1993, PHYSICA A, V195, P324
LESCHHORN H, 1994, PHYS REV E, V49, P1238
MAKSE HA, UNPUB
MAKSE HA, UNPUB
MARTYS N, 1991, PHYS REV LETT, V66, P1058
MASLOV S, 1994, PHYS REV E, V50, R643
MASLOV S, 1994, PHYS REV LETT, V73, P2162
MEAKIN P, 1986, PHYS REV A, V34, P5091
MEAKIN P, 1993, PHYS REP, V235, P189
MEDINA E, 1989, PHYS REV A, V39, P3053
NARAYAN O, 1993, PHYS REV B, V48, P7030
NATTERMANN T, 1992, J PHYS II, V2, P1483
NOLLE CS, 1993, PHYS REV LETT, V71, P2074
OLAMI Z, 1994, PHYS REV E, V49, P1232
PACZUSKI M, 1994, EUROPHYS LETT, V27, P96
PARISI G, 1992, EUROPHYS LETT, V17, P673
PENG CK, 1991, PHYS REV A, V44, P2239
RAY TS, 1994, PHYS REV LETT, V72, P4045
ROSSO M, 1986, PHYS REV LETT, V57, P3195
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
RUBIO MA, 1990, PHYS REV LETT, V65, P1389
SAPOVAL B, 1985, J PHYS LETT-PARIS, V46, L149
SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
SNEPPEN K, 1993, PHYS REV LETT, V70, P3833
SNEPPEN K, 1993, PHYS REV LETT, V71, P101
SPASOJEVIC D, 1993, PHYSICA A, V201, P482
STAUFFER D, 1992, INTRO PERCOLATION TH
STOKES JP, 1988, PHYS REV LETT, V60, P1386
SUKI B, UNPUB
SUKI B, 1994, NATURE, V368, P615
TANG LH, 1992, PHYS REV A, V45, P8309
TANG LH, 1993, PHYS REV LETT, V70, P3832
TANG LH, 1995, PHYS REV LETT, V74, P920
VICSEK T, 1990, PHYSICA A, V167, P315
VICSEK T, 1992, FRACTAL GROWTH PHE 4
WILKINSON D, 1984, PHYS REV A, V30, P520
WILKINSON D, 1986, PHYS REV A, V34, P1380
ZHANG J, 1992, PHYSICA A, V189, P383
ZHANG YC, 1990, J PHYS-PARIS, V51, P2129
NR 89
TC 27
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 1995
VL 51
IS 5
PN Part B
BP 4655
EP 4673
PG 19
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA QZ155
UT ISI:A1995QZ15500016
ER
PT J
AU JENSEN, P
BARABASI, AL
LARRALDE, H
HAVLIN, S
STANLEY, HE
TI DEPOSITION, DIFFUSION AND AGGREGATION OF ATOMS ON SURFACES - A MODEL
FOR NANOSTRUCTURE GROWTH
SO PHYSICAL REVIEW B
LA English
DT Article
ID MEDIATED ISLAND GROWTH; LIMITED AGGREGATION; CLUSTER DEPOSITION;
CRYSTAL-GROWTH; GOLD-FILMS; PERCOLATION; EPITAXY
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
UNIV LYON 1,DEPT PHYS MAT,F-69622 VILLEURBANNE,FRANCE.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
RP JENSEN, P, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMAR JG, 1994, PHYS REV B, V50, P8781
BALES GS, 1994, PHYS REV B, V50, P6057
BARABASI AL, IN PRESS FRACTAL APP
BARDOTTI L, UNPUB
BARTELT MC, 1992, PHYS REV B, V46, P12675
BARTELT MC, 1993, EUROPHYS LETT, V21, P99
BARTELT MC, 1993, PHYS REV B, V47, P13891
BARTELT MC, 1993, SURF SCI, V298, P421
BRUNE H, 1994, NATURE, V369, P469
BUNDE A, 1991, FRACTALS DISORDERED
CHAPON C, 1981, SURF SCI, V106, P152
DASSARMA S, 1990, J VAC SCI TECHNOL 2, V8, P2714
GHAISAS SV, 1992, PHYS REV B, V46, P7308
HASHIMOTO M, 1991, THIN SOLID FILMS, V199, P71
HENRY CR, 1977, THIN SOLID FILMS, V46, P157
HERRMANN HJ, 1986, PHYS REP, V136, P153
HWANG RQ, 1991, PHYS REV LETT, V67, P3279
JENSEN P, 1992, PHYSICA A, V185, P104
JENSEN P, 1994, NATURE, V368, P22
JENSEN P, 1994, PHYSICA A, V207, P219
KAPITULNIK A, 1984, J PHYS A, V16, L269
KASCHIEV D, 1979, SURF SCI, V86, P14
KOLB M, 1983, PHYS REV LETT, V51, P1123
LAGALLY M, 1990, KINETICS ORDERING GR
LAGALLY MG, 1993, PHYS TODAY, V46, P24
MEAKIN P, 1983, PHYS REV LETT, V51, P1119
MELINON P, 1991, PHYS REV B, V44, P12562
MICHELY T, 1993, PHYS REV LETT, V70, P3943
MO YW, 1991, PHYS REV LETT, V66, P1998
REINERS G, 1986, THIN SOLID FILMS, V143, P311
RODER H, 1993, NATURE, V366, P141
SCHWOEBEL RL, 1966, J APPL PHYS, V37, P3682
SCHWOEBEL RL, 1969, J APPL PHYS, V40, P614
SMILAUER P, 1991, CONTEMP PHYS, V32, P89
STAUFFER D, 1992, INTRO PERCOLATION TH
STOYANOV S, 1992, CURRENT TOPICS MATER
TANG LH, 1993, J PHYS I, V3, P935
VENABLES JA, 1984, REP PROG PHYS, V47, P399
VICSEK T, 1992, FRACTAL GROWTH PHENO
VILLAIN J, 1991, J PHYS I, V1, P19
VILLAIN J, 1992, J PHYS I, V2, P2107
VILLAIN J, 1992, PHYS REV LETT, V69, P985
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YAGIL Y, 1992, PHYS REV B, V46, P2503
NR 44
TC 105
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 1994
VL 50
IS 20
BP 15316
EP 15329
PG 14
SC Physics, Condensed Matter
GA PV865
UT ISI:A1994PV86500066
ER
PT J
AU JENSEN, P
BARABASI, AL
LARRALDE, H
HAVLIN, S
STANLEY, HE
TI MODEL INCORPORATING DEPOSITION, DIFFUSION, AND AGGREGATION IN
SUBMONOLAYER NANOSTRUCTURES
SO PHYSICAL REVIEW E
LA English
DT Note
ID CLUSTER DEPOSITION; GROWTH; PERCOLATION; EPITAXY; FILMS
AB We propose a model for describing diffusion-controlled aggregation of
particles that are continually deposited on a surface. The model
incorporates deposition, diffusion, and aggregation. We find that the
diffusion and aggregation of randomly deposited particles ''builds'' a
wide variety of fractal structures, all characterized by a common
length scale L1. This length L1 scales as the ratio of the diffusion
constant over the particle flux to the power 1/4. We compare our
results with several recent experiments on two-dimensional
nanostructures formed by diffusion-controlled aggregation on surfaces.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
UNIV LYON 1,DEPT PHYS MAT,F-69621 VILLEURBANNE,FRANCE.
UNIV CAMBRIDGE,CAVENDISH LAB,DEPT PHYS,CAMBRIDGE CB3 0HE,ENGLAND.
BAR ILAN UNIV,DEPT PHYS,IL-52100 RAMAT GAN,ISRAEL.
RP JENSEN, P, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMAR JG, IN PRESS PHYS REV B
CHAPON C, 1981, SURF SCI, V106, P152
GHAISAS SV, 1992, PHYS REV B, V46, P7308
HERRMANN HJ, 1986, PHYS REP, V136, P153
HWANG RQ, 1991, PHYS REV LETT, V67, P3279
JENSEN P, 1992, PHYSICA A, V185, P104
JENSEN P, 1994, NATURE, V368, P22
JENSEN P, 1994, PHYSICA A, V207, P219
KOLB M, 1983, PHYS REV LETT, V51, P1123
MEAKIN P, 1983, PHYS REV LETT, V51, P1119
MEAKIN P, 1992, REP PROG PHYS, V55, P157
MEAKING P, 1992, 1992 P HOUCH WORKSH
MELINON P, 1991, PHYS REV B, V44, P12562
REINERS G, 1986, THIN SOLID FILMS, V143, P311
RODER H, 1993, NATURE, V366, P141
TANG LH, 1993, J PHYS I, V3, P935
VENABLES JA, 1984, REP PROG PHYS, V47, P399
VICSEK T, 1992, FRACTAL GROWTH PHENO
VILLAIN J, 1992, J PHYS I, V2, P2107
VILLAIN J, 1992, PHYS REV LETT, V69, P985
NR 20
TC 17
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUL
PY 1994
VL 50
IS 1
BP 618
EP 621
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA NZ084
UT ISI:A1994NZ08400082
ER
PT J
AU AMARAL, LAN
BARABASI, AL
STANLEY, HE
TI UNIVERSALITY CLASSES FOR INTERFACE GROWTH WITH QUENCHED DISORDER
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RANDOM-MEDIA; SURFACE GROWTH; DYNAMICS; PERCOLATION
AB We present numerical evidence for the existence of two distinct
universality classes characterizing driven interface roughening in the
presence of quenched disorder. The evidence is based on the behavior of
lambda, the coefficient of the nonlinear term in the growth equation.
Specifically, for three of the models studied, lambda --> infinity at
the depinning transition, while for the two other models, lambda --> 0.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP AMARAL, LAN, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR AMARAL LAN, UNPUB
AMARAL LAN, 1994, PHYS REV LETT, V72, P641
BARABASI AL, 1992, SURFACE DISORDERING
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1993, PHYSICA A, V200, P200
CSAHOK Z, 1993, PHYSICA A, V200, P136
KARDAR M, 1986, PHYS REV LETT, V56, P889
KESSLER DA, 1991, PHYS REV A, V43, P4551
KOILLER B, 1993, NEW TRENDS MAGNETIC
KRUG J, 1990, PHYS REV LETT, V64, P2332
KRUG J, 1991, SOLIDS FAR EQUILIBRI
LESCHHORN H, 1993, PHYSICA A, V195, P324
MAKSE H, IN PRESS
MEAKIN P, 1993, PHYS REP, V235, P189
NARAYAN O, 1993, PHYS REV B, V48, P7030
NATTERMANN T, 1992, J PHYS II, V2, P1483
NOLLE CS, 1993, PHYS REV LETT, V71, P2074
PARISI G, 1992, EUROPHYS LETT, V17, P673
ROBBINS MO, 1993, GROWTH PATTERNS PHYS
TANG LH, 1992, PHYS REV A, V45, P8309
VICSEK T, 1992, FRACTAL GROWTH PHENO
NR 21
TC 82
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 4
PY 1994
VL 73
IS 1
BP 62
EP 65
PG 4
SC Physics, Multidisciplinary
GA NV631
UT ISI:A1994NV63100016
ER
PT J
AU SUKI, B
BARABASI, AL
LUTCHEN, KR
TI LUNG-TISSUE VISCOELASTICITY - A MATHEMATICAL FRAMEWORK AND ITS
MOLECULAR-BASIS
SO JOURNAL OF APPLIED PHYSIOLOGY
LA English
DT Article
DE STRESS RELAXATION; TISSUE VISCANCE; TISSUE ELASTANCE; MODELING;
FRACTIONAL DERIVATIVES; FIBERS; MICROMECHANICS; POLYMER SYSTEMS
ID STAR-SHAPED POLYMERS; CONSTITUTIVE-EQUATIONS; MECHANICAL-PROPERTIES;
FRACTIONAL CALCULUS; PLEURAL MEMBRANE; ELASTIN FIBERS; IMPEDANCE; RAT;
PARENCHYMA; REPTATION
AB Recent studies indicated that lung tissue stress relaxation is well
represented by a simple empirical equation involving a power law,
t(-beta) (where t is time). Likewise, tissue impedance is well
described by a model having a frequency-independent (constant) phase
with impedance proportional to omega(-alpha) (where omega is angular
frequency and alpha is a constant). These models provide superior
descriptions over conventional spring-dashpot systems. Here we offer a
mathematical framework and explore its mechanistic basis for using the
power law relaxation function and constant-phase impedance. We show
that replacing ordinary time derivatives with fractional time
derivatives in the constitutive equation of conventional spring-dashpot
systems naturally leads to power law relaxation function, the Fourier
transform of which is the constant-phase impedance with alpha = 1 -
beta. We further establish that fractional derivatives have a
mechanistic basis with respect to the viscoelasticity of certain
polymer systems. This mechanistic basis arises from molecular theories
that take into account the complexity and statistical nature of the
system at the molecular level. Moreover, because tissues are composed
of long flexible biopolymers, we argue that these molecular theories
may also apply for soft tissues. In our approach a key parameter is the
exponent beta, which is shown to be directly related to dynamic
processes at the tissue fiber and matrix level. By exploring
statistical properties of various polymer systems, we offer a molecular
basis for several salient features of the dynamic passive mechanical
properties of soft tissues.
C1 BOSTON UNIV,CTR POLYMER,DEPT PHYS,BOSTON,MA 02215.
RP SUKI, B, BOSTON UNIV,DEPT BIOMED ENGN,RESP RES LAB,44 CUMMINGTON
ST,BOSTON,MA 02215.
CR BACHOFEN H, 1968, J APPL PHYSIOL, V24, P296
BAGLEY RL, 1983, J RHEOL, V27, P201
BATES JHT, 1993, FASEB J, V7, A8
BAYLISS LE, 1939, Q J EXP PHYSL, V29, P27
CATES ME, 1987, MACROMOLECULES, V20, P2289
DEBES JC, 1992, J APPL PHYSIOL, V73, P1171
DEGENNES PG, 1971, J CHEM PHYS, V55, P572
DEGENNES PG, 1979, SCALING CONCEPTS POL, P223
DOI M, 1986, THEORY POLYM DYNAMIC
FERRY JD, 1969, VISCOELASTIC PROPERT, P195
FETTERS LJ, 1993, MACROMOLECULES, V26, P647
FINDLEY WN, 1976, CREEP RELAXATION NON
FREDBERG JJ, 1978, J BIOMECH ENG, V100, P57
FREDBERG JJ, 1989, J APPL PHYSIOL, V67, P2408
FREDBERG JJ, 1993, J APPL PHYSIOL, V74, P1387
FUNG YC, 1981, BIOMECHANICS
GUNST SJ, 1983, J APPL PHYSIOL, V55, P749
HAJJI MA, 1979, J APPL PHYSIOL, V47, P175
HANTOS Z, 1987, B EUR PHYSIOPATH S12, V23, S326
HANTOS Z, 1987, J APPL PHYSIOL, V63, P36
HANTOS Z, 1990, J APPL PHYSIOL, V68, P849
HANTOS Z, 1992, J APPL PHYSIOL, V72, P168
HANTOS Z, 1992, J APPL PHYSIOL, V73, P427
HEARST JE, 1966, J CHEM PHYS, V45, P3106
HILDEBRANDT J, 1969, B MATH BIOPHYS, V31, P651
HILDEBRANDT J, 1970, J APPL PHYSIOL, V28, P365
HILDERBRANDT J, 1969, J APPL PHYSIOL, V27, P246
KOELLER RC, 1984, J APPL MECH-T ASME, V51, P299
LANIR Y, 1983, J BIOMECH, V16, P1
LANIR Y, 1986, FRONTIERS BIOMECHANI, P130
LUTCHEN KL, 1994, EUR RESPIR J, V19, P198
LUTCHEN KR, 1990, J APPL PHYSIOL, V68, P2128
MARSHALL R, 1960, CLIN SCI, V20, P19
MCCULLAGH CM, 1992, BIOPOLYMERS, V32, P1685
MERCER RR, 1990, J APPL PHYSIOL, V69, P756
MIJAILOVICH SM, 1993, J APPL PHYSIOL, V74, P665
MOONEY M, 1959, J POLYM SCI, V34, P599
MOUNT LE, 1955, J PHYSIOL-LONDON, V127, P157
NAVAJAS D, 1992, J APPL PHYSIOL, V73, P2681
PEARSON DS, 1984, MACROMOLECULES, V17, P888
PESLIN R, 1990, J APPL PHYSIOL, V69, P1080
ROGERS L, 1983, J RHEOL, V27, P351
ROUSE PE, 1953, J CHEM PHYS, V21, P1272
SAIBENE F, 1969, J APPL PHYSIOL, V26, P732
SHARP JT, 1967, J APPL PHYSIOL, V23, P487
SOBIN SS, 1988, J APPL PHYSIOL, V64, P1659
STAMENOVIC D, 1984, J APPL PHYSIOL, V57, P1189
STAMENOVIC D, 1990, J APPL PHYSIOL, V69, P973
SUKI B, 1989, J APPL PHYSIOL, V67, P1623
SUKI B, 1992, RESPIR PHYSL, V90, P271
SUKI B, 1993, J APPL PHYSIOL, V74, P2574
SUKI B, 1993, J APPL PHYSIOL, V75, P2755
TORVIK PJ, 1984, J APPL MECH-T ASME, V51, P294
ZIMM BH, 1956, J CHEM PHYS, V24, P269
NR 54
TC 46
PU AMER PHYSIOLOGICAL SOC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814
SN 8750-7587
J9 J APPL PHYSIOL
JI J. Appl. Physiol.
PD JUN
PY 1994
VL 76
IS 6
BP 2749
EP 2759
PG 11
SC Physiology; Sport Sciences
GA NR916
UT ISI:A1994NR91600068
ER
PT J
AU SUKI, B
BARABASI, AL
HANTOS, Z
PETAK, F
STANLEY, HE
TI AVALANCHES AND POWER-LAW BEHAVIOR IN LUNG-INFLATION
SO NATURE
LA English
DT Article
ID AIRWAY-CLOSURE; MODEL
AB WHEN lungs are emptied during exhalation, peripheral airways close up1.
For people with lung disease, they may not reopen for a significant
portion of inhalation, impairing gas exchange2,3. A knowledge of the
mechanisms that govern reinflation of collapsed regions of lungs is
therefore central to the development of ventilation strategies for
combating respiratory problems. Here we report measurements of the
terminal airway resistance, R(t), during the opening of isolated dog
lungs. When inflated by a constant flow, R(t) decreases in discrete
jumps. We find that the probability distribution of the sizes of the
jumps and of the time intervals between them exhibit power-law
behaviour over two decades. We develop a model of the inflation process
in which 'avalanches' of airway openings are seen-with power-law
distributions of both the size of avalanches and the time intervals
between them-which agree quantitatively with those seen experimentally,
and are reminiscent of the power-law behaviour observed for
self-organized critical systems4. Thus power-law distributions, arising
from avalanches associated with threshold phenomena propagating down a
branching tree structure, appear to govern the recruitment of terminal
airspaces.
C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
ALBERT SZENT GYORGYI MED UNIV,DEPT MED INFORMAT,SZEGED,HUNGARY.
ALBERT SZENT GYORGY MED UNIV,DEPT EXPTL SURG,SZEGED,HUNGARY.
RP SUKI, B, BOSTON UNIV,DEPT BIOMED ENGN,RESP RES LAB,BOSTON,MA 02215.
CR BAK P, 1989, NATURE, V342, P780
BAK P, 1994, FRACTALS SCI
CRAWFORD ABH, 1989, J APPL PHYSIOL, V66, P2511
DAVEY BLK, 1993, RESP PHYSIOL, V91, P165
ENGEL LA, 1975, J APPL PHYSIOL, V38, P1117
GAVER DP, 1990, J APPL PHYSIOL, V69, P74
HORSFIELD K, 1982, J APPL PHYSIOL, V52, P21
HUGHES JMB, 1970, J APPL PHYSIOL, V29, P340
LAMBERT RK, 1982, J APPL PHYSL RESPIRA, V52, P44
MACKLEM PT, 1970, RESP PHYSIOL, V8, P191
PETAK F, 1993, EUR RESPIR J, V6, S403
SALAZAR E, 1964, J APPL PHYSIOL, V19, P97
SHLESINGER MF, 1991, PHYS REV LETT, V67, P2106
VICSEK T, 1992, FRACTAL GROWTH PHENO
WEST BJ, 1990, AM SCI, V78, P40
WEST BJ, 1990, FRACTAL PHYSL CHAOS
NR 16
TC 106
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW
SN 0028-0836
J9 NATURE
JI Nature
PD APR 14
PY 1994
VL 368
IS 6472
BP 615
EP 618
PG 4
SC Multidisciplinary Sciences
GA NF392
UT ISI:A1994NF39200054
ER
PT J
AU JENSEN, P
BARABASI, AL
LARRALDE, H
HAVLIN, S
STANLEY, HE
TI CONTROLLING NANOSTRUCTURES
SO NATURE
LA English
DT Letter
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
UNIV LYON 1,DEPT PHYS MAT,F-69622 VILLEURBANNE,FRANCE.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
RP JENSEN, P, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR JENSEN P, 1992, PHYSICA A, V185, P104
RODER H, 1993, NATURE, V366, P141
VENABLES JA, 1984, REP PROG PHYS, V47, P399
VICSEK T, 1992, FRACTAL GROWTH PHENO
NR 4
TC 37
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW
SN 0028-0836
J9 NATURE
JI Nature
PD MAR 3
PY 1994
VL 368
IS 6466
BP 22
EP 22
PG 1
SC Multidisciplinary Sciences
GA MY569
UT ISI:A1994MY56900037
ER
PT J
AU AMARAL, LAN
BARABASI, AL
BULDYREV, SV
HAVLIN, S
STANLEY, HE
TI NEW EXPONENT CHARACTERIZING THE EFFECT OF EVAPORATION ON IMBIBITION
EXPERIMENTS
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID IMMISCIBLE DISPLACEMENT; DIRECTED PERCOLATION; POROUS-MEDIA;
DIMENSIONS; INTERFACES; OVERHANGS; GRADIENT; FRONTS; MODEL
AB We report imbibition experiments investigating the effect of
evaporation on the interface roughness and mean interface height. We
observe a new exponent characterizing the scaling of the saturated
surface width. Further, we argue that evaporation can be usefully
modeled by introducing a gradient in the strength of the disorder, in
analogy with the gradient percolation model of Sapoval et al. By
incorporating this gradient we predict a new critical exponent and a
novel scaling relation for the interface width. Both the exponent value
and the form of the scaling agree with the experimental results.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
RP AMARAL, LAN, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BARABASI AL, 1992, SURFACE DISORDERING, P193
BIROVLJEV A, 1991, PHYS REV LETT, V67, P584
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, PHYSICA A, V191, P220
ESSAM JW, 1986, PHYS REV B, V33, P1982
ESSAM JW, 1988, J PHYS A, V21, P3815
GOUYET JF, 1991, FRACTALS DISORDERED
HALPINHEALEY T, IN PRESS PHYS REP
HANSEN A, 1990, J PHYS A-MATH GEN, V23, L145
HANSEN A, 1991, J PHYS A-MATH GEN, V24, P2377
HE SJ, 1992, PHYS REV LETT, V69, P3731
HORVATH VK, 1991, J PHYS A, V24, L25
KARDAR M, 1986, PHYS REV LETT, V56, P889
MEAKIN P, 1993, PHYS REP, V235, P189
ROSSO M, 1986, PHYS REV LETT, V57, P3195
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
SAPOVAL B, 1985, J PHYS LETT-PARIS, V46, L149
TANG LH, 1992, PHYS REV A, V45, P8309
VICSEK T, 1990, PHYSICA A, V167, P315
VICSEK T, 1991, DYNAMICS FRACTAL SUR
VICSEK T, 1992, FRACTAL GROWTH PHE 4
WILKINSON D, 1984, PHYS REV A, V30, P520
WILKINSON D, 1986, PHYS REV A, V34, P1380
NR 23
TC 29
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 31
PY 1994
VL 72
IS 5
BP 641
EP 644
PG 4
SC Physics, Multidisciplinary
GA MU628
UT ISI:A1994MU62800013
ER
PT J
AU BARABASI, AL
TI SURFACTANT-MEDIATED GROWTH OF NONEQUILIBRIUM INTERFACES
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GROWING INTERFACES; KINETIC GROWTH; DIFFUSION;
CONTINUUM; DYNAMICS; MODELS
AB A number of recent experiments have shown that surfactants can modify
the growth mode of an epitaxial film, suppressing islanding and
promoting layer-by-layer growth. Here I introduce a set of coupled
equations to describe the nonequilibrium roughening of an interface
covered with a thin surfactant layer. The surfactant may drive the
system into a novel phase, in which the surface roughness is negative,
corresponding to a flat surface.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP BARABASI, AL, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BARABASI AL, 1992, PHYS REV A, V46, R2977
COPEL M, 1989, PHYS REV LETT, V63, P632
COPEL M, 1990, PHYS REV B, V42, P11682
DASSARMA S, 1991, PHYS REV LETT, V66, P325
DASSARMA S, 1992, PHYS REV LETT, V69, P3762
DEGENNES PG, 1985, REV MOD PHYS, V57, P827
ERTAS D, 1992, PHYS REV LETT, V69, P929
FAMILY F, 1991, D YNAMICS FRACTAL SU
FAMILY F, 1992, SURFACE DISORDERING
FORREST BM, 1990, PHYS REV LETT, V64, P1405
GOLUBOVIC L, 1991, PHYS REV LETT, V66, P321
GRANDJEAN N, 1992, PHYS REV LETT, V69, P796
GRANDJEAN N, 1993, PHYS REV LETT, V70, P1031
KARDAR M, 1986, PHYS REV LETT, V56, P889
KAXIRAS E, 1993, EUROPHYS LETT, V21, P685
KESSLER DA, 1992, PHYS REV LETT, V69, P100
KIM JM, 1989, PHYS REV LETT, V62, P2289
KRUG J, 1991, SOLIDS FAR EQUILIBRI
LAI ZW, 1991, PHYS REV LETT, V66, P2348
MOSER K, 1991, PHYSICA A, V178, P215
ORR BG, 1992, EUROPHYS LETT, V19, P33
OSTEN HJ, 1992, PHYS REV LETT, V69, P450
SIEGERT M, 1992, PHYS REV LETT, V68, P2035
SNYDER CW, 1993, PHYS REV LETT, V70, P1030
SUN T, 1989, PHYS REV A, V40, P6763
TANG LH, 1991, PHYS REV LETT, V66, P2899
TROMP RM, 1992, PHYS REV LETT, V68, P954
VANDERVEGT HA, 1992, PHYS REV LETT, V68, P3335
VICSEK T, 1992, FRACTAL GROWTH PHENO
VILLAIN J, 1991, J PHYS I, V1, P19
WOLF DE, 1990, EUROPHYS LETT, V13, P389
WOLF DE, 1990, KINETICS ORDERING GR
NR 32
TC 15
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 28
PY 1993
VL 70
IS 26
BP 4102
EP 4105
PG 4
SC Physics, Multidisciplinary
GA LJ827
UT ISI:A1993LJ82700019
ER
PT J
AU BULDYREV, SV
BARABASI, AL
HAVLIN, S
KERTESZ, J
STANLEY, HE
XENIAS, HS
TI ANOMALOUS INTERFACE ROUGHENING IN 3D POROUS-MEDIA - EXPERIMENT AND MODEL
SO PHYSICA A
LA English
DT Article
ID GROWTH
AB We report the first imbibition experiments in 2 + 1 dimensions - using
simple materials as the random media and various aqueous suspensions as
wetting fluids. We measure the width w(l, t) of the resulting interface
and find it to scale with length l as w(l, infinity) approximately
l-degrees with alpha = 0.50 +/- 0.05. This value of a is larger than
the value of alpha = 0.40 found for the KPZ universality class in 2 + 1
dimensions. We develop a new imbibition model that describes
quantitatively our experiments. For d = 1 + 1, the model can be mapped
to directed percolation; for d = 2 + 1, it corresponds to a new
anisotropic surface percolation problem. Our model leads to the
exponent alpha = 0.5 +/- 0.05 in excellent agreement with the
experiment.
C1 TECH UNIV BUDAPEST,INST PHYS,H-1521 BUDAPEST 11,HUNGARY.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
BAR ILAN UNIV,DEPT PHYS,RAMAT GAN,ISRAEL.
RP BULDYREV, SV, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BARABASI AL, 1991, PHYS REV A, V44, P2730
BARABASI AL, 1992, 1992 P HOUCH WORKSH
BULDYREV SV, 1992, PHYS REV A, V45, P8313
BULDYREV SV, 1992, SURFACE DISORDERING
HAVLIN S, 1992, 1991 P NATO ADV RES
HEDE B, 1991, J STAT PHYS, V64, P829
KARDAR M, 1986, PHYS REV LETT, V56, P889
KIM JM, 1989, PHYS REV LETT, V62, P2289
KINZEL W, 1983, PERCOLATION STRUCTUR
KINZEL W, 1991, FRACTALS DISORDORED
KRUG J, 1991, SOLIDS FAR EQUILIBRI
MATSUSHITA M, 1989, PHYSICA D, V38, P246
MEDINA E, 1989, PHYS REV A, V39, P3053
TANG LH, 1992, PHYS REV A, V45, P8309
NR 14
TC 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD DEC 15
PY 1992
VL 191
IS 1-4
BP 220
EP 226
PG 7
SC Physics, Multidisciplinary
GA KF666
UT ISI:A1992KF66600036
ER
PT J
AU BARABASI, AL
TI DYNAMIC SCALING OF COUPLED NONEQUILIBRIUM INTERFACES
SO PHYSICAL REVIEW A
LA English
DT Article
ID GROWTH; NOISE
AB We propose a simple discrete model to study the nonequilibrium
fluctuations of two locally coupled (1+1)-dimensional systems
(interfaces). Measuring numerically the tilt-dependent velocity we
construct a set of stochastic continuum equations describing the
fluctuations in the model. The scaling predicted by the equations is
studied analytically using dynamic-renormalization-group theory and
compared with simulation results.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP BARABASI, AL, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BULDYREV SV, 1992, PHYS REV A, V45, P8313
EDWARDS SF, 1982, P ROY SOC LOND A MAT, V381, P17
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FAMILY F, 1992, SURFACE DISORDERING
FORSTER D, 1977, PHYS REV A, V16, P732
HORVATH VK, 1991, J PHYS A, V24, L25
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1988, J PHYS A, V21, P747
KRUG J, 1990, PHYS REV LETT, V64, P2332
KRUG J, 1991, SOLIDS FAR EQUILIBRI
MEAKIN P, 1986, PHYS REV A, V34, P5091
MEDINA E, 1989, PHYS REV A, V39, P3053
PLISCHE M, 1987, PHYS REV B, V35, P3484
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
TANG LH, 1992, PHYS REV A, V45, P7162
VICSEK T, 1992, FRACTAL GROWTH PHENO
VICZEK T, 1990, PHYSICA A, V167, P315
WOLF DE, 1987, EUROPHYS LETT, V4, P561
WOLF DE, 1990, KINETICS ORDERING GR
NR 19
TC 22
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP 15
PY 1992
VL 46
IS 6
BP R2977
EP R2980
PG 4
SC Optics; Physics, Atomic, Molecular & Chemical
GA JQ375
UT ISI:A1992JQ37500002
ER
PT J
AU BULDYREV, SV
BARABASI, AL
CASERTA, F
HAVLIN, S
STANLEY, HE
VICSEK, T
TI ANOMALOUS INTERFACE ROUGHENING IN POROUS-MEDIA - EXPERIMENT AND MODEL
SO PHYSICAL REVIEW A
LA English
DT Note
ID GROWTH
AB We report measurements of the interface formed when a wet front
propagates in paper by imbibition and we find anomalous roughening with
exponent-alpha = 0.63 +/- 0.04. We also formulate an imbibition model
that agrees with the experimental morphology. The main ingredient of
the model is the propagation and pinning of a self-affine interface in
the presence of quenched disorder, with erosion of overhangs. By
relating our model to directed percolation, we find alpha congruent-to
0.63.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
NIH,DIV COMP RES & TECHNOL,BETHESDA,MD 20892.
EOTVOS LORAND UNIV,DEPT ATOM PHYS,H-1445 BUDAPEST,HUNGARY.
RP BULDYREV, SV, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BARBASI AL, 1992, 1992 P LES HOUCH WOR
BUNDE A, 1991, FRACTALS DISORDERED
CHAN KCB, UNPUB
CIEPLAK M, 1990, PHYS REV B, V41, P11508
FORREST BM, 1990, PHYS REV LETT, V64, P1405
HAVLIN S, 1992, 1991 P NATO ADV RES
HEDE B, 1991, J STAT PHYS, V64, P829
HORVATH VK, 1991, J PHYS A, V24, L25
HORVATH VK, 1991, PHYS REV LETT, V67, P3207
HUBER G, UNPUB
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1989, PHYS REV LETT, V62, P2517
KESSLER DA, 1991, PHYS REV A, V43, P4551
KINZEL W, 1983, PERCOLATION STRUCTUR
KRUG J, 1991, SOLIDS FAR EQUILIBRI
MEDINA E, 1989, PHYS REV A, V39, P3053
ROBBINS MO, COMMUNICATION
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
STAUFFER D, 1992, INTRO PERCOLATION TH
TANG LH, 1992, PHYS REV A, V45, P8309
VICSEK T, 1990, PHYSICA A, V167, P315
ZHANG YC, 1990, J PHYS-PARIS, V51, P2113
NR 22
TC 213
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUN 15
PY 1992
VL 45
IS 12
BP R8313
EP R8316
PG 4
SC Optics; Physics, Atomic, Molecular & Chemical
GA JA214
UT ISI:A1992JA21400002
ER
PT J
AU BARABASI, AL
ARAUJO, M
STANLEY, HE
TI 3-DIMENSIONAL TOOM MODEL - CONNECTION TO THE ANISOTROPIC
KARDAR-PARISI-ZHANG EQUATION
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID GROWTH; SYSTEMS
AB A three-dimensional Toom model is defined and the properties of the
interface separating the two stable phases are investigated. Using
symmetry arguments we show that in the zero-noise limit the model has
only nonequilibrium fluctuations and that the scaling is described by
the anisotropic Kardar-Parisi-Zhang equation. The scaling exponents are
determined numerically and good agreement with the theoretical
predictions is found.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP BARABASI, AL, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR ARAUJO M, IN PRESS
BENNETT CH, 1985, PHYS REV LETT, V55, P657
DERRIDA B, 1991, J PHYS A-MATH GEN, V24, P4805
DERRIDA B, 1991, PHYS REV LETT, V67, P165
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FORREST BM, 1990, PHYS REV LETT, V64, P1405
GACS P, 1990, J STAT PHYS, V59, P171
HWA T, THESIS MIT
HWA T, 1989, PHYS REV LETT, V62, P1813
JULLIEN R, 1992, 1992 P LES HOUCH WOR
KARDAR M, 1986, PHYS REV LETT, V56, P889
KIM JM, 1989, PHYS REV LETT, V62, P2289
KRUG J, 1990, PHYS REV LETT, V64, P2332
KRUG J, 1991, SOLIDS FAR EQUILIBRI
LEBOWITZ JL, 1990, J STAT PHYS, V59, P117
MEDINA E, 1989, PHYS REV A, V39, P3053
MOSER K, SURFACE DISORDERING
MOSER K, 1991, PHYSICA A, V178, P215
TOOM AL, 1980, MULTICOMPONENT RANDO
VICSEK T, 1992, FRACTAL GROWTH PHENO
VILLAIN J, 1991, J PHYS I, V1, P19
WOLF DE, 1991, PHYS REV LETT, V67, P1783
WOLF E, 1990, KINETICS ORDERING GR
NR 23
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 22
PY 1992
VL 68
IS 25
BP 3729
EP 3732
PG 4
SC Physics, Multidisciplinary
GA HZ980
UT ISI:A1992HZ98000019
ER
PT J
AU BARABASI, AL
BOURBONNAIS, R
JENSEN, M
KERTESZ, J
VICSEK, T
ZHANG, YC
TI MULTIFRACTALITY OF GROWING SURFACES
SO PHYSICAL REVIEW A
LA English
DT Note
ID INTERFACES; GROWTH; NOISE
AB We have carried out large-scale computer simulations of experimentally
motivated (1 + 1)-dimensional models of kinetic surface roughening with
power-law-distributed amplitudes of uncorrelated noise. The
appropriately normalized qth-order correlation function of the height
differences c(q)(x) = [\h(x + x')-h(x')\q] shows strong multifractal
scaling behavior up to a crossover length depending on the system size,
i.e., c(q)(x) approximately x(qH)q, where H(q) is a continuously
changing nontrivial function. Beyond the crossover length conventional
scaling is found.
C1 KFA JULICH GMBH,FORSCHUNGSZENTRUM,HOCHSTLEISTUNGSRECHENZENTRUM,W-5170 JULICH 1,GERMANY.
NORDITA,DK-2100 COPENHAGEN,DENMARK.
UNIV COLOGNE,INST THEORET PHYS,W-5000 COLOGNE 41,GERMANY.
INST TECH PHYS,H-1325 BUDAPEST,HUNGARY.
IST NAZL FIS NUCL,I-100185 ROME,ITALY.
RP BARABASI, AL, EOTVOS LORAND UNIV,DEPT ATOM PHYS,POB 327,H-1445
BUDAPEST,HUNGARY.
CR AMAR JG, 1991, J PHYS A, V24, L79
ANSELMET F, 1984, J FLUID MECH, V140, P63
BARABASI AL, 1991, J PHYS A, V24, P1013
BARABASI AL, 1991, PHYS REV A, V44, P2730
BARABASI AL, 1991, PHYSICA A, V178, P17
BOURBONNAIS R, 1991, INT J MOD PHYS C, V2, P719
BOURBONNAIS R, 1991, J PHYS II, V1, P493
BULDYREV SV, 1991, PHYS REV A, V43, P7113
FAMILY F, 1985, J PHYS A, V18, L75
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FRISCH U, 1985, TURBULENCE PREDICTAB
HALSEY TC, 1986, PHYS REV A, V33, P1141
HAVLIN S, 1991, J PHYS A, V24, L925
HORVATH VK, 1991, J PHYS A, V24, L25
HORVATH VK, 1991, PHYS REV LETT, V67, P3207
JENSEN MH, 1991, PHYS REV A, V43, P798
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1988, J PHYS A, V21, P747
KERTESZ J, 1989, PHYS REV LETT, V62, P2571
KRUG J, 1991, J PHYS I, V1, P9
LEE J, 1988, PHYS REV LETT, V61, P2945
MANDELBROT BB, 1974, J FLUID MECH, V62, P331
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MEDINA E, 1989, PHYS REV A, V39, P3053
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
STANLEY HE, 1988, RANDOM FLUCTUATIONS
VICSEK T, 1989, FRACTAL GROWTH PHENO
VICSEK T, 1990, PHYSICA A, V167, P315
WOLF D, UNPUB
ZHANG YC, 1990, J PHYS-PARIS, V51, P2129
ZHANG YC, 1990, PHYSICA A, V170, P1
NR 31
TC 42
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAY 15
PY 1992
VL 45
IS 10
BP R6951
EP R6954
PG 4
SC Optics; Physics, Atomic, Molecular & Chemical
GA HV267
UT ISI:A1992HV26700002
ER
PT J
AU BARABASI, AL
SZEPFALUSY, P
VICSEK, T
TI MULTIFRACTAL SPECTRA OF MULTI-AFFINE FUNCTIONS
SO PHYSICA A
LA English
DT Article
ID TURBULENCE; DIMENSION
AB Self-affine functions F(chi) with multiscaling height correlations
C(q)(chi) approximately chi(qH)q are described in terms of the standard
multifractal formalism with a modified assumption for the partition.
The corresponding quantities and expressions are shown to exhibit some
characteristic differences from the standard ones. According to our
calculations the f(alpha) type spectra are not uniquely determined by
the H(q) spectrum, but depend on the particular choice which is made
for the dependence of N on chi, where N is the number of points over
which the average is taken. Our results are expected to be relevant in
the analysis of signal type data obtained in experiments on systems
with an underlying multiplicative process.
C1 EOTVOS LORAND UNIV,INST SOLID STATE PHYS,H-1445 BUDAPEST,HUNGARY.
HUNGARIAN ACAD SCI,CENT RES INST PHYS,H-1525 BUDAPEST,HUNGARY.
INST TECH PHYS,H-1325 BUDAPEST,HUNGARY.
RP BARABASI, AL, EOTVOS LORAND UNIV,DEPT ATOM PHYS,POB 327,H-1445
BUDAPEST,HUNGARY.
CR BARABASI AL, IN PRESS
BECK C, 1990, PHYSICA D, V41, P67
FAMILY F, 1991, DYNAMICS FRACTAL SUR
FRISCH U, 1985, TURBULENCE PREDICTAB
HALSEY TC, 1986, PHYS REV A, V33, P1141
MANDELBROT BB, 1974, J FLUID MECH, V62, P331
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1985, PHYS SCRIPTA, V32, P257
MEAKIN P, 1987, CRC CRIT R SOLID ST, V13, P143
MENEVEAU C, 1987, NUCL PHYS B S, V2, P49
NELKIN M, 1989, J STAT PHYS, V54, P1
PRASAD RR, 1988, PHYS REV LETT, V61, P74
STANLEY HE, 1988, RANDOM FLUCTUATIONS
VICSEK T, 1989, FRACTAL GROWTH PHENO
VOSS RF, 1988, SCI FRACTAL IMAGES, CH1
NR 15
TC 49
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD OCT 1
PY 1991
VL 178
IS 1
BP 17
EP 28
PG 12
SC Physics, Multidisciplinary
GA GM817
UT ISI:A1991GM81700003
ER
PT J
AU BARABASI, AL
TI A MODEL FOR TEMPORAL FLUCTUATIONS OF THE SURFACE WIDTH - A STOCHASTIC
ONE-DIMENSIONAL MAP
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
LA English
DT Letter
ID INTERFACES; GROWTH; NOISE
AB A stochastic one-dimensional map is introduced to model the
steady-state fluctuations of the surface width in far-from-equilibrium
surface roughening. The dynamics of the map and the correlations in
the time sequence are investigated. In particular, for power law
distributed noise a non-trivial multi-affine behaviour is observed.
RP BARABASI, AL, EOTVOS LORAND UNIV,DEPT ATOM PHYS,POB 327,H-1445
BUDAPEST,HUNGARY.
CR AMAR JG, 1991, J PHYS A, V24, L79
BARABASI AL, PREPRINT
BARABASI AL, 1991, IN PRESS PHYS REV A
BOURBONNAIS R, 1991, J PHYS II, V1, P493
BULDYREV SV, 1991, PHYS REV A, V43, P7113
FAMILY F, 1991, DYNAMICS FRACTAL SUR
HAVLIN S, 1991, J PHYS A, V24, L925
HORVATH VK, 1991, J PHYS A, V24, L25
KARDAR M, 1986, PHYS REV LETT, V56, P888
KERTESZ J, 1988, J PHYS A, V21, P747
KRUG J, 1991, J PHYSIQUE, V11, P9
MEDINA E, 1989, PHYS REV A, V39, P3053
RUBIO MA, 1989, PHYS REV LETT, V63, P1685
SANDER LM, PREPRINT
VICSEK T, 1989, FRACTAL GROWTH PHENO
VICSEK T, 1990, PHYSICA A, V167, P315
ZHANG YC, 1990, J PHYS-PARIS, V51, P2129
ZHANG YC, 1990, PHYSICA A, V170, P1
NR 18
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
SN 0305-4470
J9 J PHYS-A-MATH GEN
JI J. Phys. A-Math. Gen.
PD SEP 7
PY 1991
VL 24
IS 17
BP L1013
EP L1019
PG 7
SC Physics, Multidisciplinary; Physics, Mathematical
GA GE979
UT ISI:A1991GE97900009
ER
PT J
AU BARABASI, AL
VICSEK, T
TI MULTIFRACTALITY OF SELF-AFFINE FRACTALS
SO PHYSICAL REVIEW A
LA English
DT Note
ID SINGULARITIES; TURBULENCE; DIMENSION
AB The concept of multifractality is extended to self-affine fractals in
order to provide a more complete description of fractal surfaces. We
show that for a class of iteratively constructed self-affine functions
there exists an infinite hierarchy of exponents H(q) describing the
scaling of the qth order height-height correlation function c(q)(x)
approximately (qH)q. Possible applications to random walks and
turbulent flows are discussed. It is demonstrated on the example of
random walks along a chain that for stochastic lattice models leading
to self-affine fractals H(q) exhibits phase-transition-like behavior.
C1 INST TECH PHYS,H-1325 BUDAPEST,HUNGARY.
RP BARABASI, AL, EOTVOS LORAND UNIV,DEPT ATOM PHYS,POB 327,H-1445
BUDAPEST,HUNGARY.
CR BARABASI AL, UNPUB
BLUMENFELD R, 1989, PHYS REV LETT, V62, P2977
CSORDAS A, 1989, PHYS REV A, V39, P4767
FAMILY F, 1990, PHYSICA A, V168
FEDER J, 1988, FRACTALS
FRISCH U, 1985, TURBULENCE PREDICTAB
HALSEY TC, 1986, PHYS REV A, V33, P1141
KRUG J, 1990, SOLIDS FAR EQUILIBRI
LEE J, 1988, PHYS REV LETT, V61, P2945
MALOY KJ, 1987, TIME DEPENDENT EFFEC, P111
MANDELBROT BB, 1974, J FLUID MECH, V62, P331
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1985, PHYS SCRIPTA, V32, P257
MEAKIN P, 1987, CRC CRIT R SOLID ST, V13, P143
NELKIN M, 1989, J STAT PHYS, V54, P1
PRASAD RR, 1988, PHYS REV LETT, V61, P74
STANLEY HE, 1988, RANDOM FLUCTUATIONS
VICSEK T, 1989, FRACTAL GROWTH PHENO
VOSS RF, 1988, SCI FRACTAL IMAGES, CH1
NR 19
TC 101
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG 15
PY 1991
VL 44
IS 4
BP 2730
EP 2733
PG 4
SC Optics; Physics, Atomic, Molecular & Chemical
GA GC350
UT ISI:A1991GC35000058
ER
PT J
AU VICSEK, T
BARABASI, AL
TI MULTI-AFFINE MODEL FOR THE VELOCITY DISTRIBUTION IN FULLY TURBULENT
FLOWS
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
LA English
DT Letter
ID DEVELOPED TURBULENCE; SINGULARITIES; DIMENSION; FRACTALS; NUMBER
AB A simple multi-affine model for the velocity distribution in fully
developed turbulent flows is introduced to capture the essential
features of the underlying geometry of the velocity field. We show
that in this model the various relevant quantities characterizing
different aspects of turbulence can be readily calculated. A
simultaneous good agreement is found with the available experimental
data for the velocity structure functions, the D(q) spectra obtained
from studies of the velocity derivatives, and the exponent describing
the scaling of the spectrum of the kinetic energy fluctuations. Our
results are obtained analytically assuming a single free parameter.
The fractal dimension of the region where the dominating contribution
to dissipation comes from is estimated to be D conguent-to 2.88.
C1 INST TECH PHYS,H-1325 BUDAPEST,HUNGARY.
RP VICSEK, T, EOTVOS LORAND UNIV,DEPT ATOM PHYS,POB 328,H-1445
BUDAPEST,HUNGARY.
CR ANSELMET F, 1984, J FLUID MECH, V140, P63
BARABASI AL, IN PRESS
BARABASI AL, 1991, IN PRESS PHYS REV A
BATCHELOR GK, 1982, THEORY HOMOGENEOUS T
BENZI R, 1984, J PHYS A-MATH GEN, V17, P3521
FRISCH U, 1978, J FLUID MECH, V87, P719
FRISCH U, 1985, TURBULENCE PREDICTAB
HALSEY TC, 1986, PHYS REV A, V33, P1141
HENTSCHEL HGE, 1983, PHYSICA D, V8, P435
HOSOKAWA I, 1991, PHYS REV LETT, V66, P1054
HUBER G, PREPRINT
KOLMOGOROV AN, 1941, DOKL AKAD NAUK SSSR, V30, P299
LANDAU LD, 1987, FLUID MECHANICS
MANDELBROT BB, 1974, J FLUID MECH, V62, P331
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1985, PHYS SCRIPTA, V32, P257
MANDELBROT BB, 1988, RANDOM FLUCTUATIONS
MENEVEAU C, 1987, NUCL PHYS B S, V2, P49
MENEVEAU C, 1987, PHYS REV LETT, V59, P1424
SREENIVASAN KR, 1988, PHYS REV A, V38, P6287
TONG P, 1988, PHYS FLUIDS, V31, P3253
WU XZ, 1990, PHYS REV LETT, V64, P2140
NR 22
TC 13
PU IOP PUBLISHING LTD
PI BRISTOL
PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
SN 0305-4470
J9 J PHYS-A-MATH GEN
JI J. Phys. A-Math. Gen.
PD AUG 7
PY 1991
VL 24
IS 15
BP L845
EP L851
PG 7
SC Physics, Multidisciplinary; Physics, Mathematical
GA GB645
UT ISI:A1991GB64500010
ER
PT J
AU BARABASI, AL
VICSEK, T
TI SELF-SIMILARITY OF THE LOOP STRUCTURE OF DIFFUSION-LIMITED AGGREGATES
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
LA English
DT Letter
C1 INST TECH PHYS,H-1325 BUDAPEST,HUNGARY.
RP BARABASI, AL, EOTVOS LORAND UNIV,DEPT ATOM PHYS,POB 327,H-1445
BUDAPEST,HUNGARY.
CR AMITRANO C, 1986, PHYS REV LETT, V57, P1016
BLUMENFELD R, 1989, PHYS REV LETT, V62, P2977
BORH T, 1988, EUROPHYS LETT, V6, P445
HARRIS AB, 1990, PHYS REV A, V41, P971
HAVLIN S, 1989, PHYS REV LETT, V63, P1189
HAYAKAWA Y, 1987, PHYS REV A, V36, P1963
KOLB M, 1985, J PHYS LETT-PARIS, V46, P631
LEE J, 1988, PHYS REV LETT, V61, P2945
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1989, J PHYS A-MATH GEN, V22, L377
MEAKIN P, 1985, PHYS REV A, V32, P685
MEAKIN P, 1987, PHASE TRANSITIONS CR, V12
SCHWARZER S, 1990, PREPRINT
STANLEY HE, 1989, RANDOM FLUCTUATIONS
TOLMAN S, 1989, PHYS REV A, V40, P428
VICSEK T, 1989, FRACTAL GROWTH PHENO
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 17
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
SN 0305-4470
J9 J PHYS-A-MATH GEN
JI J. Phys. A-Math. Gen.
PD AUG 7
PY 1990
VL 23
IS 15
BP L729
EP L733
PG 5
SC Physics, Multidisciplinary; Physics, Mathematical
GA DT315
UT ISI:A1990DT31500007
ER
PT J
AU BARABASI, AL
VICSEK, T
TI TRACING A DIFFUSION-LIMITED AGGREGATE - SELF-AFFINE VERSUS SELF-SIMILAR
SCALING
SO PHYSICAL REVIEW A
LA English
DT Article
C1 INST TECH PHYS,H-1325 BUDAPEST,HUNGARY.
RP BARABASI, AL, LORAND EOTVOS UNIV,DEPT ATOM PHYS,POB 327,H-1445
BUDAPEST,HUNGARY.
CR FAMILY F, 1985, J PHYS A, V18, P75
FEDER J, 1988, FRACTALS
HALSEY TC, 1985, PHYS REV A, V32, P2546
HORVATH VK, 1990, J PHYS A, V22, L259
KOLB M, 1985, J PHYS LETT-PARIS, V46, P631
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1983, FRACTALS PHYSICS, P3
MANDELBROT BB, 1985, PHYS SCRIPTA, V32, P257
MATSUSHITA M, 1989, PHYSICA D, V38, P246
MEAKIN P, 1985, PHYS REV A, V32, P685
STANLEY HE, 1988, RANDOM FLUCTUATIONS
TOLMAN S, 1989, PHYS REV A, V40, P428
VICSEK T, 1988, RANDOM FLUCTUATIONS, P312
VICSEK T, 1989, FRACTAL GROWTH PHENO
VOSS RF, 1988, SCI FRACTAL IMAGES, CH1
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
ZIFF RM, 1986, PHYS REV LETT, V56, P545
NR 17
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD JUN 15
PY 1990
VL 41
IS 12
BP 6881
EP 6883
PG 3
SC Optics; Physics, Atomic, Molecular & Chemical
GA DK165
UT ISI:A1990DK16500033
ER
EF
FN ISI Export Format
VR 1.0
PT J
AU Garfield, E
AF Garfield, Eugene
TI The evolution of the Science Citation Index
SO INTERNATIONAL MICROBIOLOGY
LA English
DT Article
DE y
ID IMPACT; JOURNALS
C1 Thomson Sci ISI Philadelphia, Philadelphia, PA USA.
RP Garfield, E, Thomson Sci ISI Philadelphia, Philadelphia, PA USA.
EM garfield@codex.cis.upenn.edu
CR BENSMAN SJ, 1998, LIBR RESOUR TECH SER, V42, P147
BRODMAN E, 1944, B MED LIB ASS, V32, P479
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1972, SCIENCE, V178, P471
GARFIELD E, 1976, RATION BETWEEN CONTE, V2, P419
GARFIELD E, 1998, LONGTERM VS SHORTTER, V12, P10
GARFIELD E, 1998, LONGTERM VS SHORTTER, V12, P12
GONZALEZ L, 2006, J AM SOC INFOR SCI T, V58, P252
HOEFFEL C, 1998, ALLERGY, V53, P1225
LOCK S, 1989, CBE VIEWS, V12, P57
PUDOVKIN AI, 2002, J AM SOC INF SCI TEC, V53, P1113
PUDOVKIN AI, 2004, P ASIST ANNU, V41, P507
NR 12
TC 0
PU VIGUERA EDITORES, S L
PI BARCELONA
PA PLAZA TETUAN, 7, BARCELONA, E-08010, SPAIN
SN 1139-6709
J9 INT MICROBIOL
JI Int. Microbiol.
PD MAR
PY 2007
VL 10
IS 1
BP 65
EP 69
PG 5
SC Biotechnology & Applied Microbiology; Microbiology
GA 156FS
UT ISI:000245634100010
ER
PT S
AU Marion, LS
Garfield, E
Hargens, LL
Lievrouw, LA
White, HD
Wilson, CS
TI Social network analysis and citation network analysis: Complementary
approaches to the study of scientific communication (SIG MET)
SO ASIST 2003: PROCEEDINGS OF THE 66TH ASIST ANNUAL MEETING, VOL 40, 2003
SE PROCEEDINGS OF THE ASIST ANNUAL MEETING
LA English
DT Article
AB The study of networks is gaining prominence in many disciplines as well
as in the popular press. Information scientists, however, have studied
networks for decades. This session will explore the potential of using
citation network analysis and social network analysis to provide
structural assessments of scientific communication. Panelists will
discuss their research and highlight the advantages and challenges of
using these methods to derive a comprehensive portrait of the diffusion
of scientific knowledge.
C1 Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA 19104 USA.
ISI, Philadelphia, PA 19104 USA.
Univ Washington, Dept Sociol, Seattle, WA 98195 USA.
Univ Calif Los Angeles, Dept Informat Studies, Los Angeles, CA 90095 USA.
Univ New S Wales, Sch Informat Syst Technol & Management, Sydney, NSW 2052, Australia.
RP Marion, LS, Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA
19104 USA.
EM Linda.Marion@drexel.edu
Garfield@codex.cis.upenn.edu
hargens@u.washington.edu
llievrou@ucla.edu
whitehd@drexel.edu
c.wilson@unsw.edu.au
CR LIEVROUW LA, 1987, SOC NETWORKS, V9, P217
SANDSTROM PE, 1998, THESIS INDIANA U
WELLMAN B, 1988, SOCIAL STRUCTURES NE
WHITE HD, 2002, DOES CITATION REFLEC
NR 4
TC 0
PU INFORMATION TODAY INC
PI MEDFORD
PA 143 OLD MARLTON PIKE, MEDFORD, NJ 08055 USA
SN 0044-7870
J9 P ASIST ANNU MEET
PY 2003
VL 40
BP 486
EP 487
PG 2
SC Computer Science, Information Systems; Information Science & Library
Science
GA BBZ20
UT ISI:000228354100086
ER
PT J
AU Moed, HF
Garfield, E
TI In basic science the percentage of 'authoritative' references decreases
as bibliographies become shorter
SO SCIENTOMETRICS
LA English
DT Article
ID CITATION
AB The empirical question addressed in this contribution is: How does the
relative frequency at which authors in a research field cite
'authoritative' documents in the reference lists in their papers vary
with the number of references such papers contain? 'Authoritative'
documents are defined as those that are among the ten percent most
frequently cited items in a research field. It is assumed that authors
who write papers with relatively short reference lists are more
selective in what they cite than authors who compile long reference
lists. Thus, by comparing in a research field the fraction of
references of a particular type in short reference lists to that in
longer lists, one can obtain an indication of the importance of that
type. Our analysis suggests that in basic science fields such as
physics or molecular biology the percentage of 'authoritative'
references decreases as bibliographies become shorter. In other words,
when basic scientists are selective in referencing behavior, references
to 'authoritative' documents are dropped more readily than other types.
The implications of this empirical finding for the debate on normative
versus constructive citation theories are discussed.
C1 Leiden Univ, Ctr Sci & Technol Studies, NL-2300 RB Leiden, Netherlands.
Inst Sci Informat, Philadelphia, PA 19104 USA.
RP Moed, HF, Leiden Univ, Ctr Sci & Technol Studies, POB 9555, NL-2300 RB
Leiden, Netherlands.
EM moed@cwts.leidenuniv.nl
CR ABT HA, 2002, J AM SOC INF SCI TEC, V53, P1106
GARFIELD E, 1985, ESSAYS INFORMATION S, V8, P403
GILBERT GN, 1977, SOC STUD SCI, V7, P113
MERTON RK, 1988, ISIS, V79, P606
ROUSSEAU R, 1998, SCIENTOMETRICS, V43, P63
ZUCKERMAN H, 1987, SCIENTOMETRICS, V12, P329
NR 6
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PY 2004
VL 60
IS 3
BP 295
EP 303
PG 9
SC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
GA 835QY
UT ISI:000222501800004
ER
PT J
AU Garfield, E
TI Historiographic mapping of knowledge domains literature
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
DE mapping; knowledge domains; small world concept; DNA structure;
citation analysis; historiography; information visualization; software;
HistCite
ID SCIENTIFIC DISCOVERY
AB To better understand the topic of this colloquium, we have created a
series of databases related to knowledge domains (dynamic systems
[small world/Milgram], information visualization [Tufte], co-citation
[Small], bibliographic coupling [Kessler], and scientometrics
[Scientometrics]). I have used a software package called HistCite(TM)
which generates chronological maps of subject (topical) collections
resulting from searches of the ISI Web of Science(R) or ISI citation
indexes (SCI, SSCI, and/or AHCI) on CD-ROM. When a marked list is
created on WoS, an export file is created which contains all cited
references for each source document captured. These bibliographic
collections, saved as ASCII files, are processed by HistCite in order
to generate chronological and other tables as well as historiographs
which highlight the most-cited works in and outside the collection.
HistCite also includes a module for detecting and editing errors or
variations in cited references as well as a vocabulary analyzer which
generates both ranked word lists and word pairs used in the collection.
Ideally the system will be used to help the searcher quickly identify
the most significant work on a topic and trace its year-by-year
historical development. In addition to the collections mentioned above,
historiographs based on collections of papers that cite the
Watson-Crick 1953 classic paper identifying the helical structure of
DNA were created. Both year-by-year as well as month-by-month displays
of papers from 1953 to 1958 were necessary to highlight the publication
activity of those years.
C1 ISI, Philadelphia, PA 19104 USA.
RP Garfield, E, ISI, 3501 Market St, Philadelphia, PA 19104 USA.
EM garfield@codex.cis.upenn.edu
CR 2003, BIOIT WORLD, V2, P28
ASIMOV A, 1963, GENETIC CODE
AVERY OT, 1944, J EXP MED, V79, P137
GARFIELD E, 1964, UNPUB USE CITATION D
GARFIELD E, 2001, COMPUTATIONAL LINGUI
GARFIELD E, 2002, P ASIST ANNU, V39, P14
GARFIELD E, 2003, J AM SOC INF SCI TEC, V54, P400
GARNER R, 1967, COMPUTER ORIENTED GR
HERSHEY AD, 1953, J GEN PHYSIOL, V36, P777
HUMMON NP, 1989, SOC NETWORKS, V11, P39
LEDERBERG J, 1972, NATURE, V239, P234
LEDERBERG J, 1995, ANN NY ACAD SCI, V758, P176
STENT GS, 1972, SCI AM, V227, P84
STENT GS, 1995, ANN NY ACAD SCI, V758, P25
STENT GS, 2002, PREMATURITY SCI DISC, P22
STRASSER BJ, 2003, NATURE, V42, P803
WATSON JD, 1953, NATURE, V171, P737
ZUCKERMAN H, 1986, NATURE, V324, P629
NR 18
TC 8
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0165-5515
J9 J INFORM SCI
JI J. Inf. Sci.
PY 2004
VL 30
IS 2
BP 119
EP 145
PG 27
SC Computer Science, Information Systems; Information Science & Library
Science
GA 818WL
UT ISI:000221275100003
ER
PT J
AU Garfield, E
Pudovkin, AI
Istomin, VS
TI Mapping the output of topical searches in the Web of Knowledge and the
case of Watson-Crick
SO INFORMATION TECHNOLOGY AND LIBRARIES
LA English
DT Article
ID SCIENCE
AB HistCite(TM) is a system that generates chronological maps of subject
(topical) collections resulting from searches of the Institute for
Scientific Information Web of Science (WoS) or Science Citation Index,
Social Sciences Citation Index, and Arts and Humanities Citation Index
on CD-ROM. WoS export files are created in which all cited references
for source documents are captured. These bibliographic collections are
processed by HistCite, which generates chronological tables as well as
historiographs that highlight the most-cited works in and outside the
collection. Articles citing the 1953 primordial Watson-Crick paper on
the structure of DNA will be used as a demonstration. Real-time dynamic
genealogical historiographs will be shown. HistCite also includes a
module for detecting and editing errors or variations in cited
references. Export Files of five thousand or more records are processed
in minutes on a PC. Ideally the system will be used to help the
searcher quickly identify the most significant work on a topic and
enable the searcher to trace its year-by-year historical development.
C1 Thomson ISI, Philadelphia, PA USA.
Russian Acad Sci, Inst Marine Biol, Vladivostok, Russia.
Washington State Univ, Ctr Teaching Learning & Technol, Pullman, WA 99164 USA.
RP Garfield, E, Thomson ISI, Philadelphia, PA USA.
EM garfield@codex.cis.upenn.edu
aipud@online.ru
vi@mail.wsu.edu
CR ESSAYS INFORMATION S, V9, P324
2003, BIO IT WORLD, V2, P28
AVERY OT, 1944, J EXP MED, V79, P137
CAWKELL AE, 1989, CURR CONTENTS, V44, P4
CAWKELL AE, 2000, WEB KNOWLEDGE FESTSC, P177
GARFIELD E, 1964, AF49 I SCI INF
GARFIELD E, 1969, P 3 INT C MED LIBR A, P187
GARFIELD E, 1971, CURR CONTENTS, V15, M25
GARFIELD E, 1992, CURR CONTENTS, V23, P5
GARFIELD E, 2003, J AM SOC INF SCI TEC, V54, P400
SMALL H, 1985, J INFORM SCI, V11, P147
SMALL H, 1985, SCIENTOMETRICS, V8, P321
SMALL H, 1994, SCIENTOMETRICS, V30, P229
WATSON JD, 1953, NATURE, V171, P737
NR 14
TC 4
PU AMER LIBRARY ASSOC
PI CHICAGO
PA 50 E HURON ST, CHICAGO, IL 60611 USA
SN 0730-9295
J9 INFORM TECHNOL LIBR
JI Inf. Technol. Libr.
PD DEC
PY 2003
VL 22
IS 4
BP 183
EP 187
PG 5
SC Computer Science, Information Systems; Information Science & Library
Science
GA 765GK
UT ISI:000188258600008
ER
PT J
AU Garfield, E
Pudovkin, AI
TI From materials science to nano-ceramics: Citation analysis identifies
the key journals and players
SO JOURNAL OF CERAMIC PROCESSING RESEARCH
LA English
DT Article
DE nano-ceramics; Science citation index; Ctation analysis; Web of
science; ISI
ID BIOLOGY JOURNALS
AB The Science Citation Index was designed primarily to help the scientist
or engineer retrieve relevant literature on specific topics. This
database is now on-line as part of ISIs Web of Science and covers over
thirty million papers containing nearly a half-billion cited
references. For each source paper included, backward and foreward links
are provided to the cited and citing papers. ISI also publishes
additional databases such as the Journal Citation Reports and Journal
Performance Indicators which can provide qualitative and quantitative
information on thousands of journals, including impact factors. Using
these files and a variety of bibliometric techniques we demonstrate how
to identify the core journals of materials science, ceramics, and
nanoceramics. Other ISI resources such as ISI Essential Science
Indicators identify the leading countries, institutions, and authors of
materials science. The output of a WoS search is used to analyze over
10,000 papers on nano-crystals and nano-ceramics. We have identified
dozens of highly-cited papers, which are visualized as a series of
historiographs; and topological maps These HistCite, maps and tables
demonstrate the chronological development of the field [1].
C1 ISI, Philadelphia, PA 19104 USA.
Russian Acad Sci, Inst Marine Biol, Vladivostok 690041, Russia.
RP Garfield, E, ISI, 3501 Market St, Philadelphia, PA 19104 USA.
CR 2003, SCI WATCH, V14, P1
DAUGHTON CG, 2002, SCIENTIST, V16, P12
GARFIELD E, 1980, CURR CONTENTS, V35, P5
GARFIELD E, 1994, J MAT ED, V16, P327
GARFIELD E, 2002, SCIENTIST, V16, P6
GINSBURG I, 2001, SCIENTIST, V15, P51
LAWRENCE S, 2001, NATURE, V411, P521
MABE M, 2001, SCIENTOMETRICS, V51, P147
MABE M, 2003, SERIALS, V16, P491
PUDOVKIN AI, 1992, BIOL MORYA-VLAD, P83
PUDOVKIN AI, 1993, MARINE ECOLOGY PROGR, V100, P207
PUDOVKIN AI, 1995, SCIENTOMETRICS, V32, P227
PUDOVKIN AI, 2002, J AM SOC INF SCI TEC, V53, P1113
NR 13
TC 0
PU KOREAN ASSOC CRYSTAL GROWTH, INC
PI SEOUL
PA SUNGDONG POST OFFICE, P O BOX 27, SEOUL 133-600, SOUTH KOREA
SN 1229-9162
J9 J CERAM PROCESS RES
JI J. Ceram. Process. Res.
PY 2003
VL 4
IS 4
BP 155
EP 167
PG 13
SC Materials Science, Ceramics
GA 759BE
UT ISI:000187717300001
ER
PT J
AU Garfield, E
Pudovkin, AI
Istomin, VS
TI Why do we need algorithmic historiography?
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
AB This article discusses the rationale for creating historiographs of
scholarly topics using a new program called HistCite(TM), which
produces a variety of analyses to aid the historian identify key events
(papers), people (authors), and journals in a field. By creating a
genealogic profile of the evolution, the program aids the scholar in
evaluating the paradigm involved.
C1 Inst Sci Informat, Philadelphia, PA 19104 USA.
Russian Acad Sci, Inst Marine Biol, Vladivostok 690041, Russia.
Washington State Univ, Ctr Teaching Learning & Technol, Pullman, WA 99164 USA.
RP Garfield, E, Inst Sci Informat, 3501 Market St, Philadelphia, PA 19104
USA.
CR GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 2001, LAZ LECT HELD CONJ P
GARFIELD E, 2002, P ASIST ANNU, V39, P14
KESSLER MM, 1963, AM DOC, V14, P10
LANDER ES, 2001, NATURE, V409, P860
LOWRY OH, 1951, J BIOL CHEM, V193, P265
VENTER JC, 2001, SCIENCE, V291, P1304
NR 7
TC 9
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1532-2882
J9 J AM SOC INF SCI TECHNOL
JI J. Am. Soc. Inf. Sci. Technol.
PD MAR
PY 2003
VL 54
IS 5
BP 400
EP 412
PG 13
SC Computer Science, Information Systems; Information Science & Library
Science
GA 649ZR
UT ISI:000181238300007
ER
PT S
AU Garfield, E
Pudovkin, AI
Istomin, VS
TI Algorithmic citation-linked historiography - Mapping the literature of
science
SO ASIST 2002: PROCEEDINGS OF THE 65TH ASIST ANNUAL MEETING, VOL 39, 2002
SE PROCEEDINGS OF THE ASIST ANNUAL MEETING
LA English
DT Article
AB There is a large literature on mapping and visualizing the scholarly
literature (White McCain, 1997; Buter & Noyons, 2001). However, none of
these methods have been used to create historical displays of works on
a given subject. The authors have developed a process and software
called HistCite for generating chronological maps of collections
resulting from searching the ISI Web of Science (WOS), SCI/SSCI/AHCI on
CD-ROM or SciSearch on Dialog. Export files are created in which all
cited references for source documents are captured. These files are
processed by HistCite to generate tables of the most-cited works. Real
time demonstrations of several topics such as bibliographic-coupling,
co-citation analysis, gene flow, etc. will be provided. The HistCite
software includes an expert system for detecting and editing errors or
variations in cited references. Export Files of 1,000 or more records
are processed in minutes on a PC. Ideally the system will be used to
help the searcher quickly identify the most significant work on a topic
and trace its year-by-year development.
C1 ISI, Philadelphia, PA 19104 USA.
Russian Acad Sci, Inst Marine Biol, Vladivostok 690041, Russia.
Washington State Univ, Ctr Teaching Learning & Technol, Pullman, WA 99164 USA.
RP Garfield, E, ISI, 3501 Market St, Philadelphia, PA 19104 USA.
CR BUTER RK, 2001, SCIENTOMETRICS, V51, P55
CAWKELL AE, 1989, ESSAYS INFORMATION S, V12, P4
CAWKELL AE, 2000, WEB KNOWLEDGE FESTSC, P177
GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 1971, ESSAYS INFORMATION S, V1, P158
GARFIELD E, 1988, ESSAYS INFORMATION S, V9, P324
GARFIELD E, 1992, ESSAYS INFORMATION S, V15, P75
GARFIELD E, 2001, S HON C BORK U PITTS
LAWRENCE S, 1999, COMPUTER, V32, P67
SMALL H, 1985, J INFORM SCI, V11, P147
SMALL H, 1985, SCIENTOMETRICS, V8, P321
SMALL H, 1994, SCIENTOMETRICS, V30, P229
WHITE HD, 1997, ANNU REV INFORM SCI, V32, P99
NR 13
TC 2
PU INFORMATION TODAY INC
PI MEDFORD
PA 143 OLD MARLTON PIKE, MEDFORD, NJ 08055 USA
SN 0044-7870
J9 P ASIST ANNU MEET
PY 2002
VL 39
BP 14
EP 24
PG 11
SC Computer Science, Information Systems; Information Science & Library
Science
GA BV87V
UT ISI:000180277800002
ER
PT S
AU Harmon, G
Garfield, E
Paris, G
Marchionini, G
Fagan, J
TI Bioinformatics in information science education
SO ASIST 2002: PROCEEDINGS OF THE 65TH ASIST ANNUAL MEETING, VOL 39, 2002
SE PROCEEDINGS OF THE ASIST ANNUAL MEETING
LA English
DT Article
AB To support the introduction of bioinformatics education into
information science curricula, panel members and other participants
will attempt to define briefly the nature and scope of bioinformatics
and its significance for information science education. Discussions
will also explore emerging opportunities for program graduates in
bioinformatics research, professional practice, and enterprise.
C1 Univ Texas, Grad Sch Lib & Informat Sci, Austin, TX 78712 USA.
Inst Sci Informat, Philadelphia, PA 19104 USA.
Oncol Business Unit, Novartis Inst Biomed Res, Summit, NJ 07901 USA.
Univ N Carolina, Sch Informat & Lib Sci, Chapel Hill, NC 27559 USA.
So Illinois Univ, Morris Lib, Carbondale, IL 62901 USA.
RP Harmon, G, Univ Texas, Grad Sch Lib & Informat Sci, Austin, TX 78712
USA.
CR ARMOUR PG, 2001, COMMUN ACM, V44, P13
BATES MJ, 1999, J AM SOC INFORM SCI, V50, P1043
COLE NJ, 1996, J DOC, V52, P51
LEE C, 1999, BIOINFORMATICS INTER
NR 4
TC 0
PU INFORMATION TODAY INC
PI MEDFORD
PA 143 OLD MARLTON PIKE, MEDFORD, NJ 08055 USA
SN 0044-7870
J9 P ASIST ANNU MEET
PY 2002
VL 39
BP 490
EP 491
PG 2
SC Computer Science, Information Systems; Information Science & Library
Science
GA BV87V
UT ISI:000180277800076
ER
PT J
AU Abt, HA
Garfield, E
TI Is the relationship between numbers of references and paper lengths the
same for all sciences?
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID CITATIONS
AB In each of 41 research journals in the physical, life, and social
sciences there is a linear relationship between the average number of
references and the normalized paper lengths. For most of the journals
in a given field, the relationship is the same within statistical
errors. For papers of average lengths in different sciences the average
number of references is the same within +/-17%. Because papers of
average lengths in various sciences have the same number of references,
we conclude that the citation counts to them can be inter-compared
within that accuracy. However, review journals are different: after
scanning 18 review journals we found that those papers average twice
the number of references as research papers of the same lengths.
C1 Kitt Peak Natl Observ, Tucson, AZ 85726 USA.
Inst Sci Informat, Philadelphia, PA 19104 USA.
RP Abt, HA, Kitt Peak Natl Observ, Box 26732, Tucson, AZ 85726 USA.
CR ABT HA, 1984, PUBL ASTRON SOC PAC, V96, P746
ABT HA, 1987, PUBL ASTRON SOC PAC, V99, P1329
ABT HA, 1998, NATURE, V395, P756
ABT HA, 2000, SCIENTOMETRICS, V49, P443
AYRES I, 2000, J LEGAL STUD 2, V29, P427
DIMITROFF A, 1992, B MED LIBR ASSOC, V80, P340
SEGLEN PO, 1992, REPRESENTATIONS SCI, P240
SENGUPTA IN, 1986, SCIENTOMETRICS, V10, P235
NR 8
TC 3
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1532-2882
J9 J AM SOC INF SCI TECHNOL
JI J. Am. Soc. Inf. Sci. Technol.
PD NOV
PY 2002
VL 53
IS 13
BP 1106
EP 1112
PG 7
SC Computer Science, Information Systems; Information Science & Library
Science
GA 607DP
UT ISI:000178776600004
ER
PT J
AU Pudovkin, AI
Garfield, E
TI Algorithmic procedure for finding semantically related journals
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID CITATION RELATIONSHIPS; SCIENTIFIC JOURNALS; BIOLOGY JOURNALS;
SELF-CITATION
AB Using citations, papers and references as parameters a relatedness
factor (RF) is computed for a series of journals. Sorting these
journals by the RF produces a list of journals most closely related to
a specified starting journal. The method appears to select a set of
journals that are semantically most similar to the target journal. The
algorithmic procedure is illustrated for the journal Genetics.
Inter-journal citation data needed to calculate the RF were obtained
from the 1996 ISI Journal Citation Reports on CD-ROM(C). Out of the
thousands of candidate journals in JCR(C), 30 have been selected. Some
of them are different from the journals in the JCR category for
genetics and heredity. The new procedure is unique in that it takes
varying journal sizes into account.
C1 Russian Acad Sci, Far E Branch, Inst Marine Biol, Vladivostok, Russia.
Inst Informat Sci, ISItm, Philadelphia, PA 19104 USA.
RP Pudovkin, AI, Russian Acad Sci, Far E Branch, Inst Marine Biol,
Vladivostok, Russia.
CR CARPENTER MP, 1973, J AM SOC INFORM SCI, V24, P425
COZZENS SE, 1993, SCI TECHNOLOGY POLIC, P219
EGGHE L, 1999, SCIENTOMETRICS, V45, P217
EGGHE L, 2000, J AM SOC INFORM SCI, V51, P1123
GARFIELD E, 1975, NO GROWTH LIB CITATI, V2, P300
GARFIELD E, 1988, J CITATION STUDIES, V9, P9
GARFIELD E, 1996, SCIENTIST, V10, P13
LEYDESDORFF L, 1994, SCIENTOMETRICS, V31, P59
NARIN F, 1972, J AM SOC INFORM SCI, V23, P323
NARIN F, 2000, WEB KNOWLEDGE FESTSC, P337
PUDOVKIN AI, 1992, BIOL MORYA-VLAD, P83
PUDOVKIN AI, 1993, MARINE ECOLOGY PROGR, V100, P207
PUDOVKIN AI, 1995, SCIENTOMETRICS, V32, P227
ROUSSEAU R, 1999, SCIENTOMETRICS, V44, P521
SHAMA G, 2000, SCIENTOMETRICS, V49, P289
NR 15
TC 17
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1532-2882
J9 J AM SOC INF SCI TECHNOL
JI J. Am. Soc. Inf. Sci. Technol.
PD NOV
PY 2002
VL 53
IS 13
BP 1113
EP 1119
PG 7
SC Computer Science, Information Systems; Information Science & Library
Science
GA 607DP
UT ISI:000178776600005
ER
PT J
AU Garfield, E
TI Recollections of Irving H. Sher 1924-1996: Polymath/information
scientist extraordinaire
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID CITATION
AB Over a 35-year period, Irving H. Sher played a critical role in the
development and implementation of the Science Citation Index (R) and
other ISI (R) products. Trained as a biochemist, statistician, and
linguist, Sher brought a unique combination of talents to ISI as
Director of Quality Control and Director of Research and Development.
His talents as a teacher and mentor evoked loyalty. He was a
particularly inventive but self-taught programmer. In addition to the
SCI,(R) Social Sciences Citation Index,(R) and Arts and Humanities
Citation Index,(R) Sher was involved with the development of the first
commercial SDI system, the Automatic Subject Citation Alert, now called
Research Alert,(R) and Request-A-Print Cards. Together we developed the
journal impact factor and the Journal Citation Reports.(R) Sher was
also the inventor of the SYSTABAR System of coding references and
Sherhand. He was involved in key reports on citation-based
historiography, forecasting Nobel prizes, and served as a referee for
JASIS over a 20-year period.
C1 Inst Sci Informat, Scientist, Philadelphia, PA 19104 USA.
RP Garfield, E, Inst Sci Informat, Scientist, 3501 Market St,
Philadelphia, PA 19104 USA.
CR 1970, NATURE, V228, P698
ASIMOV I, 1963, GENETIC CODE
BACHRACH CA, 1978, MED INFORM, V3, P237
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 1967, J CHEM DOCUMENTATION, V7, P147
GARFIELD E, 1967, J LIBRARY HISTORY, V2, P235
GARFIELD E, 1968, CURR CONTENTS, V2, P5
GARFIELD E, 1969, CURR CONTENTS, V6, P4
GARFIELD E, 1970, NATURE, V227, P669
GARFIELD E, 1972, CURR CONTENTS, V36, P5
GARFIELD E, 1975, CURR CONTENTS, P5
GARFIELD E, 1976, J AM SOC INFORM SCI, V27, P288
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1983, CURRENT CONTENTS, V26, P5
GARFIELD E, 1985, CURR CONTENTS, V43, P3
GARFIELD E, 1998, C HIST HER SCI INF S
GUTTERMAN L, 1967, WISDOM SARNOFF WORLD
KOENIG MED, 1977, B ATOM SCI, V23, P16
LAWRENCE S, 1999, COMPUTER, V32, P67
LEONHARDT J, 2000, NY TIMES 0728
MERTON RK, 1968, SOCIAL THEORY SOCIAL, P27
SHER IH, 1966, RES PROGRAM EFFECTIV, P135
TUKEY JW, 1962, J CHEM DOCUMENTATION, V2, P34
NR 24
TC 0
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 1532-2882
J9 J AM SOC INF SCI TECHNOL
JI J. Am. Soc. Inf. Sci. Technol.
PD DEC
PY 2001
VL 52
IS 14
BP 1197
EP 1202
PG 6
SC Computer Science, Information Systems; Information Science & Library
Science
GA 497HU
UT ISI:000172450000002
ER
PT J
AU Garfield, E
TI From laboratory to information explosions ... the evolution of chemical
information services at ISI
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
AB The experience in locating and coding the steroid literature for the US
Patent Office led to a variety of chemically-based services dealing
with new compounds and intermediates, as well as graphical presentation
of chemical formulas and reactions. The Index Chemicus Registry System
was the first to use the Wiswesser line notation, which became a
standard in the pharmaceutical field. This eventually led to Current
Chemical Reactions Database and Reaction Citation Index.This paper
presents an autobiographical account of Eugene Garfield's involvement
in chemical information systems. It traces his personal evolution from
laboratory chemist transformed into an information scientist who
combined his knowledge of structural linguistics and information
technology into an algorithmic system for identifying molecular
formulas in the literature.
Recognizing the shortcomings of traditional abstracting and indexing
systems like Index Medicus and Chemical Abstracts, he launched Current
Contents, Index Chemicus and Science Citation Index, which were
designed to provide timely, weekly and highly specific retrieval of
chemical information.
The experience in locating and coding the steroid literature for the US
Patent Office led to a variety of chemically-based services dealing
with new compounds and intermediates, as well as graphical presentation
of chemical formulas and reactions.
The Index Chemicus Registry System was the first to use the Wiswesser
line notation, which became a standard in the pharmaceutical field.
This eventually led to Current Chemical Reactions Database and Reaction
Citation Index.
C1 Inst Sci Informat, Philadelphia, PA 19104 USA.
RP Garfield, E, Inst Sci Informat, 3501 Market St, Philadelphia, PA 19104
USA.
CR ANTONY A, 1980, J CHEM INF COMP SCI, V20, P101
BANIK GM, 1994, AM CHEM SOC 208 M 1
BATZIG JH, 1975, ABSTR PAP AM CHEM S, P34
BERNHARD SA, 1954, J AM CHEM SOC, V76, P991
CLARK M, 1997, AM CHEM SOC 214 M 1
CLARK M, 1999, J CHEM INF COMP SCI, V39, P635
COULSON HJ, 1980, AM CHEM SOC 180 M AU
DOU H, 1988, ED INFORM, V6, P91
ELIAS AW, 1968, J CHEM DOC, V8, P74
FOSTER GA, 1979, AM CHEM SOC 178 M SE
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1956, CHEM B, V43, P11
GARFIELD E, 1957, J PATENT OFFICE SOC, V39, P583
GARFIELD E, 1960, CHEM LIT, V12, P7
GARFIELD E, 1961, INDEX CHEM 1 CUMULAT, P1
GARFIELD E, 1961, NATURE, V192, P192
GARFIELD E, 1964, AM CHEM SOC 148 M SE
GARFIELD E, 1967, AM BEHAV SCI, V10, P29
GARFIELD E, 1967, CHEM ENG NEWS, V45, P6
GARFIELD E, 1967, J CHEM DOCUMENTATION, V7, P147
GARFIELD E, 1970, J CHEM DOC, V10, P54
GARFIELD E, 1971, CURRENT CONTENT 0804
GARFIELD E, 1972, AM CHEM SOC 164 M HE
GARFIELD E, 1973, NATURE, V242, P307
GARFIELD E, 1975, CURR CONTENTS, P5
GARFIELD E, 1979, AM CHEM SOC 177 M AP
GARFIELD E, 1979, CURRENT CONTENTS, V45, P5
GARFIELD E, 1980, CURR CONTENTS, V35, P5
GARFIELD E, 1984, CURRENT CONTENTS, V27, P3
GARFIELD E, 1987, CURR CONTENTS, V7, P3
GARFIELD E, 1987, CURR CONTENTS, V7, P3
GARFIELD E, 1998, C HIST HER SCI INF S
GRANITO CE, 1971, J CHEM DOC, V11, P251
GRANITO CE, 1972, AM CHEM SOC 164 M AU, P2
GRANITO CE, 1972, AM CHEM SOC 164 M AU, P20
GRANITO CE, 1972, J CHEM DOC, V12, P190
GRANITO CE, 1973, ABSTR PAP AM CHEM S, P19
GRANITO CE, 1973, J CHEM DOC, V13, P72
GRANITO CE, 1973, NATURWISSENSCHAFTEN, V60, P189
GRANITO CE, 1974, AM CHEM SOC 168 M SE
GRANITO CE, 1979, AM CHEM SOC 117 M AP, P48
KABACK SM, 1999, AM CHEM SOC 218 M 1
KEMP N, 1999, J CHEM INFORMATION C, V38, P644
LAWLOR B, 1982, AM CHEM SOC 183 M
LAWLOR HA, 1976, AM CHEM SOC 172 M SE, P25
LEGGATE P, 1973, J CHEM DOC, V13, P192
LYNCH MF, 1974, J DOC, V30, P445
MEYER D, 1986, AM CLIN PROD REV, V5, P16
NOTESS GR, 1996, DATABASE, V19, P75
REVESZ GS, 1969, J CHEM DOC, V9, P106
REVESZ GS, 1976, AM CHEM SOC 172 M SE, P22
SARKISIAN J, 1984, AM CHEM SOC 188 M AU
WIPKE WT, 1990, TETRAHEDRON COMPUT M, V3, P83
NR 53
TC 1
PU BOWKER-SAUR
PI E GRINSTEAD
PA WINDSOR COURT, EAST GRINSTEAD HOUSE, E GRINSTEAD RH19 1XA, W SUSSEX,
ENGLAND
SN 0165-5515
J9 J INFORM SCI
JI J. Inf. Sci.
PY 2001
VL 27
IS 2
BP 119
EP 125
PG 7
SC Computer Science, Information Systems; Information Science & Library
Science
GA 487EV
UT ISI:000171861400008
ER
PT J
AU Garfield, E
TI A retrospective and prospective view of information retrieval and
artificial intelligence in the 21st century
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY
LA English
DT Article
ID SCIENTIFIC DISCOVERY
C1 ISI, Publisher, The Scientist, Philadelphia, PA 19104 USA.
RP Garfield, E, ISI, Publisher, The Scientist, 3501 Market St,
Philadelphia, PA 19104 USA.
CR CARUSO D, 1997, NY TIMES 0324, C5
GARFIELD E, IN PRESS SCIENTIST
GARFIELD E, 1961, J CHEM DOC, V1, P70
GARFIELD E, 1962, CURRENT CONTENTS, V1
GARFIELD E, 1963, 6 ANN SESS MED WRIT
GARFIELD E, 1965, STAT ASS METHODS MEC, P189
GARFIELD E, 1966, KARGER GAZETTE 0305, V13, P2
GARFIELD E, 1967, AM BEHAV SCI, V10, P29
GARFIELD E, 1969, CURRENT CONTENTS, V3
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1979, CURRENT CONTENTS, V45, P5
GARFIELD E, 1990, CURR CONTENTS, V33, P5
GARFIELD E, 1990, CURRENT CONTENT 0212, P3
GARFIELD E, 1993, J AM SOC INFORM SCI, V44, P298
GARFIELD E, 1997, NY TIMES 0414
GARFIELD E, 1999, SCIENTIST, V13, P14
GLEICK J, 1997, NY TIMES MAGAZI 0323, P32
LAWRENCE S, 1999, COMPUTER, V32, P67
LENHOFF HM, 2000, SCIENTIST, V14, P35
OCNNOR J, 1965, J ACM, V12, P490
ROTH D, 1999, COMMUNICATION
SCHMID R, 1984, TAXON, V33, P636
SMALL H, 1978, SOC STUD SCI, V8, P317
SONG F, 1999, MED INFORM INTERNET, V24, P223
SWANSON DR, 1997, ARTIF INTELL, V91, P183
SWANSON DR, 1999, LIBR TRENDS, V48, P48
WATTERS PA, 1999, INTERNET RES, V9, P153
NR 27
TC 1
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 1532-2882
J9 J AM SOC INF SCI TECHNOL
JI J. Am. Soc. Inf. Sci. Technol.
PD JAN
PY 2001
VL 52
IS 1
BP 18
EP 21
PG 4
SC Computer Science, Information Systems; Information Science & Library
Science
GA 404KX
UT ISI:000167097900004
ER
PT J
AU Garfield, E
TI Use of Journal Citation Reports and Journal Performance Indicators in
measuring short and long term journal impact
SO CROATIAN MEDICAL JOURNAL
LA English
DT Article
DE bibliometrics; citation analysis; impact factor; journal article;
library science; medical informatics; medical literature analysis and
retrieval system
AB The impact factor has become the subject of widespread controversy. It
has gradually developed to mean both journal and author impact. The
emphasis on impact factors obscures the main purpose of bibliographic
databases created at the Institute for Scientific Information. I will
here show how two of these databases, Journal Citation Reports and the
Journal Performance Indicators, can be used to study scientific
journals and the articles they publish, as well as the evolution of
scientific fields.
C1 Inst Sci Informat, Philadelphia, PA 19104 USA.
RP Garfield, E, The Scientist, 3501 Market St, Philadelphia, PA 19104 USA.
CR BENSMAN SJ, 1998, LIBR RESOUR TECH SER, V42, P147
BROADY A, 1995, LANCET, V346, P1300
BRODMAN E, 1960, B MED LIB ASS, V32, P479
FENTON JE, 2000, CLIN OTOLARYNGOL, V25, P40
FOSTER WR, 1995, LANCET, V346, P1301
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1972, CURRENT CONTENT 0628
GARFIELD E, 1973, CURR CONTENTS, P5
GARFIELD E, 1976, CURRENT CONTENT 0209
GARFIELD E, 1986, ANN INTERN MED, V105, P313
GARFIELD E, 1998, SCIENTIST, V12, P10
GARFIELD E, 1998, SCIENTIST, V12, P12
GARFIELD E, 1999, CAN MED ASSOC J, V161, P979
HANSEN HB, 1997, CLIN PHYSIOL, V17, P409
HOEFFEL C, 1998, ALLERGY, V53, P1225
LOBO RA, 2000, J SOC GYNECOL INVEST, V7, P3
OPTHOF T, 1999, CARDIOVASC RES, V41, P1
OREOPOULOS DG, 2000, PERITON DIALYSIS INT, V20, P5
PICUS D, 2000, J VASC INTERV RADI 1, V11, P147
PITTLER MH, 2000, J CLIN EPIDEMIOL, V53, P485
REN SL, 1999, SCIENCE, V286, P1683
SEMENZATO G, 2000, SARCOIDOSIS VASC DIF, V17, P22
SORRENTINO D, 2000, DIGESTION, V61, P77
VANLEEUWEN TN, 1997, CHEM INTELL, V3, P32
NR 24
TC 19
PU PABST SCIENCE PUBLISHERS
PI LENGERICH
PA EICHENGRUND 28, D-49525 LENGERICH, GERMANY
SN 0353-9504
J9 CROAT MED J
JI Croat. Med. J.
PD DEC
PY 2000
VL 41
IS 4
BP 368
EP 374
PG 7
SC Medicine, General & Internal
GA 381TJ
UT ISI:000165779300003
ER
PT J
AU Garfield, E
TI The diverse roles of citation indexes in scientific research
SO REVISTA DE INVESTIGACION CLINICA
LA English
DT Article
ID IMPACT FACTOR; JOURNALS
C1 Inst Sci Informat, Philadelphia, PA 19104 USA.
RP Garfield, E, Inst Sci Informat, 3501 Market St, Philadelphia, PA 19104
USA.
CR BRACHORIQUELME RL, 1997, REV INVEST CLIN, V49, P369
BUTLER D, 1998, NATURE, V394, P309
GARFIELD E, ESSAYS INFORMATION S, V1
GARFIELD E, 1976, RECHERCHE, V7, P757
GARFIELD E, 1997, CURR SCI INDIA, V73, P639
GARFIELD E, 1998, 150 ANN M AAAS PHIL
GARFIELD E, 1998, SCIENTIST, V12, P10
GARFIELD E, 1998, SCIENTIST, V12, P12
GARFIELD E, 1998, UNFALLCHIRURG, V101, P413
KOREN G, 1997, CLIN INVEST MED, V20, P354
LINDNER UK, 1997, UNFALLCHIRURG, V100, P253
OESTERN HJ, 1997, UNFALLCHIRURG, V100, P838
SEGLEN PO, 1997, BRIT MED J, V314, P498
SHER IH, 1965, RES PROGRAM EFFECTIV
SPIRIDIONE G, 1995, PESO QUALITA ACCADEM, P123
NR 15
TC 9
PU INST NACIONAL NUTRICION
PI TLALPAN
PA VASCO DE QUIROZA #15, TLALPAN 14000 D F, MEXICO
SN 0034-8376
J9 REV INVEST CLIN
JI Rev. Invest. Clin.
PD NOV-DEC
PY 1998
VL 50
IS 6
BP 497
EP 504
PG 8
SC Medicine, General & Internal
GA 167EF
UT ISI:000078619100008
ER
PT J
AU Garfield, E
TI Random thoughts on citationology. Its theory and practice - Comments on
theories of citation?
SO SCIENTOMETRICS
LA English
DT Article
AB Theories of citation are as elusive as theories of information science,
which have been debated for decades. But as a basis for discussion I
offer the term citationology as the theory and practice of citation,
including its derivative disciplines citation analysis and
bibliometrics. Several maxims, commandments if you will, have been
enunciated. References are the result of a specialized symbolic
language with a citation syntax and grammar. References, like words,
have multiple meanings which are related to the aposteriori quality of
citation indexes. Therefore, citation relevance cannot be predicted.
Mathematical microtheories in bibliometrics abound, including the
apposite laws of scattering and concentration. Citation behavior is a
vast sub-set of citation theory, which like citation typology, can
never be complete. Deviant citation behavior preoccupies certain
authors but it is rarely significant in well-designed citation
analyses, where proper cohorts are defined. Myths about uncitedness and
the determinants of impact are discussed, as well as journal impact
factors as surrogates and observation's on scientists of Nobel Class.
After two years at Johns Hopkins investigating "machine documentation,"
and another year as a student of library science, I became,
fortuitously, a documentation consultant. By 1954, I called myself an
information engineer, which was an apt description of my professional
consulting activities. However, Pennsylvania licensing law requires
that engineers be graduates of engineering schools. So I became an
information scientist! I've never thought of myself as an information
theoretician and have been skeptical about a need for a theory of
information science. I've practiced information science and engineering
without explicit theoretical support. But undoubtedly there are
underlying principles which can guide information scientists who, like
myself, could be called "citationists" or "citationologists.'' If there
is a theory and practice of citation, it should probably be called
citationology.
C1 Inst Sci Informat, Philadelphia, PA 19104 USA.
The Scientist, Philadelphia, PA 19104 USA.
RP Garfield, E, Inst Sci Informat, 3501 Market St, Philadelphia, PA 19104
USA.
EM garfield@aurora.cis.upenn.edu
CR BRADFORD SC, 1934, ENGINEERING-LONDON, V137, P85
BRADFORD SC, 1950, DOCUMENTATION
CAWKELL AE, 1980, EINSTEIN 1ST HUNDRED, P31
CLEVERDON CW, 1967, ASLIB P, V19, P173
GARFIELD E, 1962, UNPUB PROGR REPORT C
GARFIELD E, 1971, CURRENT CONTENT 0804, P5
GARFIELD E, 1976, CURRENT CONTENT 0209, P5
GARFIELD E, 1976, J AM SOC INFORM SCI, V27, P288
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1979, CITATION INDEXING
GARFIELD E, 1981, CURRENT CONTENTS, V13, P5
GARFIELD E, 1985, CURR CONTENTS, V43, P3
GARFIELD E, 1996, LIB Q, V66, P499
GARFIELD E, 1997, CELL DEATH DIFFER, V4, P352
GARFIELD E, 1998, 150 ANN M AAAS PHIL
GARFIELD E, 1998, CELL DEATH DIFFER, V5, P127
GARFIELD E, 1998, SCIENTIST, V12, P11
HAMILTON DP, 1990, SCIENCE, V250, P1331
KELLY K, 1995, SOCIAL SYSTEMS EC WO
KESSLER MM, 1963, AM DOC, V14, P10
LOWRY OH, 1951, J BIOL CHEM, V193, P265
PENDLEBURY DA, 1991, SCIENCE, V251, P1410
PERT C, 1997, MOL EMOTION WHY FEEL
SEGLEN PO, 1990, P INT C SCI TECHN IN
SEGLEN PO, 1997, BRIT MED J, V314, P498
SHER IH, 1966, RES PROGRAM EFFECTIV, P135
SMALL HG, 1978, SOC STUD SCI, V8, P327
WADE N, 1997, NY TIMES 1007, F4
WOUTERS P, 1998, SCIENTOMETRICS, V41, P225
ZUCKERMAN H, 1996, SCI ELITE NOBEL LAUR
NR 30
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PD SEP
PY 1998
VL 43
IS 1
BP 69
EP 76
PG 8
SC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
GA 119CL
UT ISI:000075877700007
ER
PT J
AU Garfield, E
TI From citation indexes to informetrics: Is the tail now wagging the dog?
SO LIBRI
LA English
DT Article
ID CO-CITATION; DEPARTMENTS; DOCUMENTS; MODEL
AB This article provides a synoptic review and history of citation indexes
and their evolution into research evaluation tools including a
discussion of the use of bibliometric data for evaluating U.S.
institutions (academic departments) by the National Research Council
(NRC). The review covers the origin and uses of journal impact factors,
validation studies of citation analysis, information retrieval and
dissemination (current awareness), citation consciousness,
historiography and science mapping, Citation Classics,(R) and the
history of contemporary science. Retrieval of information by cited
reference searching is illustrated, especially as it applies to
avoiding duplicated research. The fifteen-year cumulative impacts of
journals and the percentage of uncitedness, the emergence of
scientometrics, old boy networks, and citation frequency distributions
are discussed. The paper concludes with observations about the future
of citation indexing.
C1 Inst Sci Informat, Philadelphia, PA 19104 USA.
RP Garfield, E, 3501 Market St, Philadelphia, PA 19104 USA.
EM garfield@aurora.cis.upenn.edu
CR *NAT SCI BOARD, 1993, SCI ENG IND 1993
ADAIR WC, 1955, AM DOC, V6, P31
ASTIN HS, 1991, OUTER CIRCLE WOMEN S, P57
BIDDLE J, 1996, HIST POLIT ECON, V28, P137
CAMPANARIO JM, 1993, SOC STUD SCI, V23, P347
COZZENS SE, 1989, SCIENTOMETRICS, V15, P437
CRONIN B, 1984, CITATION PROCESS
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1959, P INT C SCI INF WASH, V1, P461
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 1967, AM BEHAV SCI, V10, P29
GARFIELD E, 1967, J CHEM DOCUMENTATION, V7, P147
GARFIELD E, 1970, CURR CONTENTS, V16, P5
GARFIELD E, 1971, CURR CONTENTS, V27, P5
GARFIELD E, 1972, SCIENCE, V178, P471
GARFIELD E, 1975, CURR CONTENTS, P5
GARFIELD E, 1976, J AM SOC INFORM SCI, V27, P288
GARFIELD E, 1976, NATURE, V264, P689
GARFIELD E, 1978, CURRENT CONTENT 0710, P5
GARFIELD E, 1979, CITATION INDEXING, P58
GARFIELD E, 1980, CURR CONTENTS, V35, P5
GARFIELD E, 1983, CURRENT CONTENTS, V26, P5
GARFIELD E, 1985, CURR CONTENTS, V43, P3
GARFIELD E, 1987, CURR CONTENTS, V7, P3
GARFIELD E, 1988, CURR CONTENTS, V35, P3
GARFIELD E, 1992, THEORETICAL MED, V13, P117
GARFIELD E, 1993, CURRENT CONTENT 1108
GARFIELD E, 1993, J AM SOC INFORM SCI, V44, P298
GARFIELD E, 1994, J MAT ED, P327
GARFIELD E, 1996, LIBR QUART, V66, P449
GOLDBERGER ML, 1995, RES DOCTORATE PROGRA
HAGSTROM WO, 1971, SOCIOL EDUC, V44, P375
HAMILTON DP, 1990, SCIENCE, V250, P1331
HANSEN HB, 1997, CLIN PHYSIOL, V17, P409
HAUPTMANN R, 1994, J INFORMATION ETHICS, V3
KAPLAN N, 1965, AM DOC, V16, P179
KESSLER MM, 1963, AM DOC, V14, P10
KOENIG MED, 1983, J AM SOC INFORM SCI, V34, P136
KOENIG MED, 1983, RES POLICY, V12, P15
LAFOLLETTE MC, 1994, J INFORMATION ETHICS, V3, P25
LEPAIR C, 1995, INT FORUM INFORM DOC, V20, P16
LUNDBERG GD, 1984, JAMA-J AM MED ASSOC, V252, P812
MARGOLIS J, 1967, SCIENCE, V155, P123
MARSHAKOVA IV, 1973, NAUCHNO TEKHNICHESKA, V2, P3
MARTYN J, 1964, NEW SCI, V21, P388
MAZUR RH, 1962, J BIOL CHEM, V237, P3315
MERTON RK, 1968, SOCIAL THEORY SOCIAL, P27
MOTLUK A, 1997, NEW SCI, V154, P2083
NICOLINI C, 1995, SCIENTOMETRICS, V32, P93
OPPENHEIM C, 1995, J DOC, V51, P18
OPPENHEIM C, 1997, J DOC, V53, P477
PAO ML, 1993, INFORM PROCESS MANAG, V29, P95
PENDLEBURY DA, 1991, SCIENCE, V251, P1410
PRICE DJ, 1986, LITTLE SCI BIG SCI
SACHS F, 1997, NATURE, V390, P203
SCHWARTZ DP, 1958, ANAL CHEM, V30, P219
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265
SMALL HG, 1977, SOC STUD SCI, V7, P139
SMALL HG, 1978, SOC STUD SCI, V8, P327
SMITH RL, 1981, J IND ECON, V30, P1
SPENCER CC, 1967, AM DOC, V18, P87
STEINBACH HB, 1967, SCIENCE, V145, P142
STENT GS, 1972, SCI AM, V227, P84
VIRGO JA, 1977, LIBRARY Q, V47, P415
WENNERAS C, 1997, NATURE, V387, P341
WHITE HD, 1989, ANNU REV INFORM SCI, V24, P119
NR 67
TC 25
PU MUNKSGAARD INT PUBL LTD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0024-2667
J9 LIBRI
JI Libri
PD JUN
PY 1998
VL 48
IS 2
BP 67
EP 80
PG 14
SC Information Science & Library Science
GA 103AT
UT ISI:000074959000001
ER
PT J
AU Garfield, E
TI The Impact Factor and using it correctly
SO UNFALLCHIRURG
LA German
DT Article
C1 Inst Sci Informat, Philadelphia, PA 19101 USA.
RP Garfield, E, Inst Sci Informat, 3501 Market St, Philadelphia, PA 19101
USA.
NR 0
TC 9
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 0177-5537
J9 UNFALLCHIRURG
JI Unfallchirurg
PD JUN
PY 1998
VL 101
IS 6
BP 413
EP 414
PG 2
SC Emergency Medicine; Surgery
GA ZZ507
UT ISI:000074736300001
ER
PT J
AU Garfield, E
TI When to cite
SO LIBRARY QUARTERLY
LA English
DT Article
ID CITATION ANALYSIS
AB Although the Modern Language Association and other style manuals
describe in exquisite detail ''how'' to cite the literature, explicit
tutorials on ''when'' to cite are nonexistent. Most journals provide
instructions to authors but also fail to give explicit guidance on when
to cite. In spite of numerous studies of citation behavior and the wide
recognition by editors of the need to acknowledge intellectual debts,
authors and referees need explicit reminders as to when formal
references or acknowledgments are appropriate. Since referencing is
both subjective and culturally based, there can be no absolutes about
when to cite. Hence, it is unlikely that algorithmic documentation of
texts can ever meet the competing requirements for relevance,
selectivity, and comprehensiveness. What is common wisdom in one domain
may be new or unique in another. A three-year experiment involving
graduate students demonstrated the varying perceptions of the need for
documentation of terminology, ideas, methods, and so forth. A tentative
tutorial is suggested for journal editors that should be modified in
each scholarly context.
RP Garfield, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR 1976, WEBSTERS 3 NEW INT D
1982, CHICAGO STYLE MANUAL
*EARLH COLL, 1993, HUM PROGR EARLH COLL
BARZUN J, 1985, MODERN RESEARCHER
BONITZ M, 1995, 4 SCI TECHN IND C OC, P163
CHERNIN E, 1988, BRIT MED J, V297, P1062
CRONIN B, 1984, CITATION PROCESS
CRONIN B, 1994, J DOC, V50, P165
FAIRCHILD RP, 1981, CHRONICLE HIGHE 0505, V3, P24
GARFIELD E, 1961, J CHEM DOC, V1, P70
GARFIELD E, 1965, NBS, V269, P189
GARFIELD E, 1970, CURRENT CONTENT 0304, P4
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1980, CURR CONTENTS, V35, P5
GARFIELD E, 1982, CURRENT CONTENTS, V47, P5
GARFIELD E, 1985, CURR CONTENTS, V43, P3
GARFIELD E, 1989, CURRENT CONTENT 0501, P3
GARFIELD E, 1989, CURRENT CONTENT 0501, P3
GARFIELD E, 1990, CURRENT CONTENT 0212, P3
GIBALDI J, 1995, MODERN LANGUAGE ASS
HALBWACHS M, 1925, CADRES SOCIAUX MEMOI
HAUPTMANN R, 1994, J INFORMATION ET 1 2, V3
KAPLAN N, 1965, AM DOC, V16, P170
KLING R, 1994, ASIS INTERNET B BOAR
KOCHEN M, 1987, J DOC, V43, P54
LANGHAM T, 1995, J DOC, V51, P360
LEGGETT G, 1985, PRENTICE HALL HDB WR
LOWRY OH, 1951, J BIOL CHEM, V193, P265
MERTON RK, 1968, SCIENCE, V159, P56
MERTON RK, 1968, SOCIAL THEORY SOCIAL
MERTON RK, 1988, ISIS, V79, P606
MERTON RK, 1993, SHOULDERS GIANTS SHA
REISS P, 1984, THEORY FOOTNOTE
SMITH LC, 1981, LIBR TRENDS, V30, P83
SWANSON DR, 1986, LIBR QUART, V56, P103
SWANSON DR, 1987, J AM SOC INFORM SCI, V38, P228
ZUCKERMAN H, 1987, SCIENTOMETRICS, V12, P329
NR 37
TC 13
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 5720 S WOODLAWN AVE, CHICAGO, IL 60637
SN 0024-2519
J9 LIBR QUART
JI Libr. Q.
PD OCT
PY 1996
VL 66
IS 4
BP 449
EP 458
PG 10
SC Information Science & Library Science
GA VK164
UT ISI:A1996VK16400004
ER
PT J
AU Garfield, E
TI How can impact factors be improved?
SO BRITISH MEDICAL JOURNAL
LA English
DT Article
AB Impact factors are widely used to rank and evaluate journals. They are
also often used inappropriately as surrogates in evaluation exercises.
The inventor of the Science Citation Index warns against the
indiscriminate use of these data. Fourteen year cumulative impact data
for 10 leading medical journals provide a quantitative indicator of
their long term influence. In the final analysis, impact simply
reflects the ability of journals and editors to attract the best papers
available.
RP Garfield, E, THE SCIENTIST,3600 MARKET ST,SUITE 450,PHILADELPHIA,PA
19104.
CR ABOULKER JP, 1993, LANCET, V341, P889
FLEISCHMANN M, 1989, J ELECTROANAL CHEM, V261, P301
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1984, ESSAYS INFORMATION S, V6, P354
GARFIELD E, 1986, ANN INTERN MED, V105, P313
GARFIELD E, 1987, ESSAYS INFORMATION S, V10, P7
GARFIELD E, 1990, ESSAYS INFORMATION S, V13, P185
GROSS PLK, 1927, SCIENCE, V66, P385
LOCK SP, 1990, ESSAYS INFORMATION S, V13, P19
LOWRY OH, 1951, J BIOL CHEM, V193, P265
MARSHALL BJ, 1984, LANCET, V1, P1311
VANTRIGT AM, 1995, SOC SCI MED, V41, P893
NR 12
TC 156
PU BRITISH MED JOURNAL PUBL GROUP
PI LONDON
PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON, ENGLAND WC1H 9JR
SN 0959-8138
J9 BRIT MED J
JI Br. Med. J.
PD AUG 17
PY 1996
VL 313
IS 7054
BP 411
EP 413
PG 3
SC Medicine, General & Internal
GA VD206
UT ISI:A1996VD20600032
ER
PT J
AU GARFIELD, E
TI SCIENCE IN SPAIN FROM THE POINT-OF-VIEW OF CITATIONS (1981-1992)
SO ARBOR-CIENCIA PENSAMIENTO Y CULTURA
LA Spanish
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19104.
NR 0
TC 2
PU LIBRERIA CIENTIFICA MEDINACELI
PI MADRID
PA DUQUE DE MEDINACELI 4, 14 MADRID, SPAIN
SN 0210-1963
J9 ARBOR-CIEN PENSAM CULT
JI Arbor-Cienc. Pensam. Cult.
PD JAN-FEB
PY 1994
VL 147
IS 577-78
BP 111
EP 133
PG 23
SC Humanities, Multidisciplinary
GA ND401
UT ISI:A1994ND40100008
ER
PT J
AU GARFIELD, E
TI WHAT CITATIONS TELL US ABOUT CANADIAN RESEARCH
SO CANADIAN JOURNAL OF INFORMATION AND LIBRARY SCIENCE-REVUE CANADIENNE
DES SCIENCES DE L INFORMATION ET DE BIBLIOTHECONOMIE
LA English
DT Article
AB The Ian P. Sharp Lecture an Information Science was established in 1990
with an endowment from Reuters Information Services (Canada) Limited in
honour of its founding president and former chief executive officer The
lectureship is intended to provide a forum for distinguished figures in
information science and related fields. I.P. Sharp Associates, one of
the world's leading numeric database companies, was founded by Ian P.
Sharp and seven colleagues. The Canadian company soon expanded
establishing a timesharing service and pioneering the use of electronic
mail in 1976, the company installed its own private, packet-switched
network, and today it supplies the world's major financial and economic
centres with historical information and financial products. In June
1987, I.P. Sharp Associates was acquired by Reuter Holdings PLC of
London, the world's largest electronic publisher.
Dr. Garfield, the fourth I.P. Sharp lecturer, delivered the address
that follows at the University of Toronto on April 8, 1993. He was
introduced by his longtime colleague Professor Charles Meadow, Faculty
of Library and Information Science, University of Toronto.
RP GARFIELD, E, INST SCI INFORMAT, 3501 MARKET ST, PHILADELPHIA, PA 19104
USA.
CR GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1979, CITATION INDEXING
GARFIELD E, 1983, CURRENT CONTENTS, V26, P5
GARFIELD E, 1983, CURRENT CONTENTS, V26, P5
GARFIELD E, 1986, CURRENT CONTENT DEC, P3
GARFIELD E, 1990, CURRENT CONTENT 0212, P3
GARFIELD E, 1992, SCI PUBL POLICY, V19, P321
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265
SMALL H, 1985, J INFORM SCI, V11, P147
NR 9
TC 4
PU CANADIAN ASSOC INFORMATION SCIENCE
PI OTTAWA
PA PO BOX 6174, STATION J, OTTAWA ON K2A 1T2, CANADA
SN 1195-096X
J9 CAN J INFORM LIB SCI
JI Can. J. Inf. Libr. Sci.-Rev. Can. Sci. Inf. Bibl.
PD DEC
PY 1993
VL 18
IS 4
BP 14
EP 35
PG 22
SC Computer Science, Information Systems; Information Science & Library
Science
GA MN435
UT ISI:A1993MN43500002
ER
PT J
AU GARFIELD, E
WELLJAMSDOROF, A
TI THE MICROBIOLOGY LITERATURE - LANGUAGES OF PUBLICATION AND THEIR
RELATIVE CITATION IMPACT
SO FEMS MICROBIOLOGY LETTERS
LA English
DT Article
DE CITATION ANALYSIS; SCIENCE CITATION INDEX; LANGUAGE TRENDS; IMPACT
TRENDS; SCIENTOMETRICS
AB This study examined trends in the number of papers published annually
in various languages in 78 microbiology journals indexed in the Science
Citation Index(R) (SCI(R)), 1981-1991. Trends in the average number of
citations per paper (impact) for each language were also tracked. In
addition, interlingual citation patterns were examined. The results
showed that English is the lingua franca of microbiology research,
accounting for 90-95 percent of all SCI-indexed papers in this time
period. Also, the impact of English-language papers was greater than
that of other languages by factors ranging from 2.4 to 14.4. Lastly,
the majority of citations to papers published in English, German,
French, or Italian were from English-language papers. The exception
were papers in Russian: more than 90 percent of citations they received
were from Russian-language papers.
C1 INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR GARFIELD E, 1976, RECHERCHE, V7, P757
GARFIELD E, 1985, ESSAYS INFORMATION S, V7, P138
GARFIELD E, 1986, ANN INTERN MED, V105, P313
GARFIELD E, 1989, ESSAYS INFORMATION S, V10, P342
GARFIELD E, 1990, ANN AM ACAD POLIT SS, V511, P10
NR 5
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-1097
J9 FEMS MICROBIOL LETT
JI FEMS Microbiol. Lett.
PD DEC 15
PY 1992
VL 100
IS 1-3
BP 33
EP 37
PG 5
SC Microbiology
GA KE540
UT ISI:A1992KE54000008
ER
PT J
AU GARFIELD, E
TI THE RELATIONSHIP BETWEEN MECHANICAL INDEXING, STRUCTURAL LINGUISTICS
AND INFORMATION-RETRIEVAL
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MKT ST,PHILADELPHIA,PA 19104.
CR BERNIER CL, 1948, IND ENG CHEM, V40, P725
BUSA R, 1957, NACHR DOK, V8, P20
CASEY RS, 1958, PUNCHED CARDS THEIR
GARFIELD E, 1953, MAR S MACH TECHN SCI
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1957, 1957 P INT STUD C CL, P91
HARRIS Z, 1957, LANGUAGE, V33, P283
HARRIS ZS, 1951, METHODS STRUCTURAL L
HARRIS ZS, 1959, 1958 P INT SCI INF, V2, P937
HARRIS ZS, 1959, ANTHROPOL LINGUIST, V1, P27
HARRIS ZS, 1959, TRANSFORMATIONS DISC
LARKEY SV, 1953, B MED LIB ASS, V41, P32
LINDERSTROMLANG K, 1954, BIOCHIM BIOPHYS ACTA, V15, P156
LUHN HP, 1958, IBM J RES DEV, V2, P159
LUHN HP, 1959, ASDD RC127 REP
NEWMAN JSM, 1956, PROBLEMS MECHANIZING
NEWMAN SM, 1957, MONOGRAPH GEORGETOWN, V10
PERRY JW, 1958, TOOLS MACHINE LITERA, P489
TAUBE M, 1953, STUDIES COORDINATE I
WELT ID, 1958, B MED LIBR ASSOC, V46, P60
NR 20
TC 0
PU BOWKER-SAUR LTD
PI E GRINSTEAD
PA MAYPOLE HOUSE, MAYPOLE RD, E GRINSTEAD, W SUSSEX, ENGLAND RH19 1HH
SN 0165-5515
J9 J INFORM SCI
JI J. Inf. Sci.
PY 1992
VL 18
IS 5
BP 343
EP 354
PG 12
SC Computer Science, Information Systems; Information Science & Library
Science
GA JV725
UT ISI:A1992JV72500003
ER
PT J
AU GARFIELD, E
WELLJAMSDOROF, A
TI OF NOBEL CLASS - A CITATION PERSPECTIVE ON HIGH-IMPACT RESEARCH AUTHORS
SO THEORETICAL MEDICINE
LA English
DT Article
DE CITATION ANALYSIS; CITATION IMPACT; NOBEL PRIZE; SCIENCE CITATION
INDEX; SCIENTOMETRICS
ID SCIENTIFIC LITERATURE
AB The purpose of this paper was to determine if quantitative rankings of
highly cited research authors confirm Nobel prize awards. Six studies
covering different time periods and author sample sizes were reviewed.
The number of Nobel laureates at the time each study was published was
tabulated, as was the number of high impact authors who later became
laureates. ne Nobelists and laureates-to-be were also compared with
non-Nobelists to see if they differed in terms of impact and
productivity. The results indicate that high rankings by citation
frequency identify researchers of Nobel class - that is, a small set of
authors that includes a high proportion of actual Nobelists and
laureates-to-be. Also, the average impact (citations per author) of
Nobelists and laureates-to-be is sufficiently high to distinguish them
from non-Nobelists in these rankings. In conclusion, a simple,
quantitative, and objective algorithm based on citation data can
effectively corroborate - and even forecast - a complex, qualitative,
and subjective selection process based on human judgement.
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR BAYER AE, 1966, SOCIOL EDUC, V39, P381
COLE JR, 1973, SOCIAL STRATIFICATIO
COLE S, 1967, AM SOCIOL REV, V32, P377
GARFIELD E, 1970, NATURE, V227, P669
GARFIELD E, 1977, ESSAYS INFORMATION S, V1, P487
GARFIELD E, 1977, ESSAYS INFORMATION S, V2, P611
GARFIELD E, 1980, ESSAYS INFORMATION S, V3, P326
GARFIELD E, 1981, ESSAYS INFORMATION S, V4, P609
GARFIELD E, 1983, ESSAYS INFORMATION S, V5, P269
GARFIELD E, 1985, ESSAYS INFORMATION S, V7, P175
GARFIELD E, 1986, ESSAYS INFORMATION S, V8, P132
GARFIELD E, 1988, ESSAYS INFORMATION S, V9, P55
GARFIELD E, 1990, CURR CONTENTS, V12, P3
GARFIELD E, 1990, CURRENT CONTENT 0212, P3
GARFIELD E, 1990, CURRENT CONTENT 0212, P3
LOWRY OH, 1951, J BIOL CHEM, V193, P265
MERTON RK, 1965, SHOULDERS GIANTS SHA
PENDLEBURY D, 1989, SCIENTIST 1002
PENDLEBURY D, 1989, SCIENTIST 1016
PENDLEBURY D, 1989, SCIENTIST 1019
SHER IH, 1966, RES PROGRAM EFFECTIV, P135
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265
SMALL H, 1985, J INFORM SCI, P147
WATSON JD, 1953, NATURE, V171, P737
ZUCKERMAN H, 1977, SCI ELITE NOBEL LAUR
ZUCKERMAN H, 1986, NATURE, V324, P629
NR 26
TC 31
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0167-9902
J9 THEOR MED
JI Theor. Med.
PD JUN
PY 1992
VL 13
IS 2
BP 117
EP 135
PG 19
SC Medicine, Legal; Social Issues
GA JL941
UT ISI:A1992JL94100002
ER
PT J
AU GARFIELD, E
TI A CITATION ANALYSIS OF AUSTRIAN MEDICAL-RESEARCH AND
WIENER-KLINISCHE-WOCHENSCHRIFT
SO WIENER KLINISCHE WOCHENSCHRIFT
LA English
DT Article
DE CITATION ANALYSIS; AUSTRIAN MEDICAL RESEARCH; SCIENTIFIC PRODUCTIVITY
AB Criteria for the prediction of Nobel price winners based on citation
and predictor prizes are presented. The position of Austrian medical
research and the role of the "Wiener klinische Wochenschrift" are
compared to international standards.
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR GARFIELD E, 1986, ANN INTERN MED, V105, P313
NR 1
TC 5
PU SPRINGER-VERLAG WIEN
PI VIENNA
PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 VIENNA, AUSTRIA
SN 0043-5325
J9 WIEN KLIN WOCHENSCHR
JI Wien. Klin. Wochen.
PY 1991
VL 103
IS 11
BP 318
EP 325
PG 8
SC Medicine, General & Internal
GA FQ610
UT ISI:A1991FQ61000001
ER
PT J
AU GARFIELD, E
SMALL, H
TI MORAVCSIK,MICHAEL,J. - MULTIDIMENSIONAL SCHOLAR AND HERO OF THIRD-WORLD
SCIENCE
SO SCIENTOMETRICS
LA English
DT Article
ID PARTICLE PHYSICS; METHODOLOGY; TECHNOLOGY; CITATIONS; COUNTRIES;
QUALITY; CRISIS
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19104.
CR BLICKENSTAFF J, 1982, SCIENTOMETRICS, V4, P135
MORAVCSIK M, 1987, SCIENTIST, V1, P11
MORAVCSIK MJ, 1964, MINERVA, V2, P197
MORAVCSIK MJ, 1965, PHYS TODAY, V18, P23
MORAVCSIK MJ, 1966, MINERVA, V4, P381
MORAVCSIK MJ, 1968, PHYS TODAY, V19, P62
MORAVCSIK MJ, 1968, PHYS TODAY, V19, P65
MORAVCSIK MJ, 1968, PHYS TODAY, V21, P48
MORAVCSIK MJ, 1973, RES POLICY, V2, P266
MORAVCSIK MJ, 1974, LEONARDO, V7, P255
MORAVCSIK MJ, 1974, RES POLICY, V3, P88
MORAVCSIK MJ, 1975, PHYS TODAY, V28, P9
MORAVCSIK MJ, 1975, RES POLICY, V4, P80
MORAVCSIK MJ, 1975, SOC STUD SCI, V5, P86
MORAVCSIK MJ, 1977, J SCI IND RES INDIA, V36, P195
MORAVCSIK MJ, 1977, RES POLICY, V6, P78
MORAVCSIK MJ, 1979, RES POLICY, V8, P26
MORAVCSIK MJ, 1980, B ATOM SCI, V36, P56
MORAVCSIK MJ, 1983, RES POLICY, V12, P287
MORAVCSIK MJ, 1984, SCIENTOMETRICS, V6, P75
MORAVCSIK MJ, 1985, CURRENT CONTENTS SOC, V17, P18
MORAVCSIK MJ, 1985, JUL PHIL WORKSH DISC
MORAVCSIK MJ, 1985, SCIENTOMETRICS, V7, P143
MORAVCSIK MJ, 1985, SCIENTOMETRICS, V7, P165
MORAVCSIK MJ, 1986, RES POLICY, V15, P1
MORAVCSIK MJ, 1986, SOC STUD SCI, V16, P534
MORAVCSIK MJ, 1988, RES POLICY, V17, P293
MORAVCSIK MJ, 1988, SOC STUD SCI, V18, P515
NICHOLLS PT, 1989, CANADIAN LIB J, V46, P257
WEINBERG AM, 1963, MINERVA, V1, P159
NR 30
TC 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PD JAN
PY 1991
VL 20
IS 1
BP 19
EP 24
PG 6
SC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
GA EY261
UT ISI:A1991EY26100003
ER
PT J
AU GARFIELD, E
TI MAPPING CHOLERA RESEARCH AND THE IMPACT OF DE,SAMBHU,NATH OF CALCUTTA
(REPRINTED FROM CURRENT-CONTENTS, VOL 14, PG 3-11, 7 APRIL 1986)
SO CURRENT SCIENCE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR ARUNACHALAM S, 1985, UNPUB MAY ANN M AM A
ARUNACHALAM S, 1986, COMMUNICATION 0206
AZURIN JC, 1974, B WORLD HEALTH ORGAN, V51, P19
BLAKE PA, 1980, NEW ENGL J MED, V302, P305
DE SN, 1953, J PATHOL BACTERIOL, V66, P559
DE SN, 1956, J PATHOL BACTERIOL, V71, P201
DE SN, 1959, NATURE, V183, P1533
DE SN, 1960, J PATHOL BACTERIOL, V79, P373
FEELEY JC, 1980, CHOLERA RELATED DIAR, P204
GARFELD E, 1986, CURR CONTENTS, V10, P3
GARFIELD E, 1985, CURR CONTENTS, V36, P3
GARFIELD E, 1985, CURR CONTENTS, V37, P3
GARFIELD E, 1985, CURRENT CONTENTS PHY, V25, P3
GARFIELD E, 1986, CURR CONTENTS, V9, P3
GLASS RI, 1982, AM J EPIDEMIOL, V116, P959
KAPER JB, 1984, NATURE, V308, P655
KHAN M, 1981, INT J EPIDEMIOL, V10, P23
KHAN MU, 1982, T R SOC TROP MED HYG, V76, P373
KUSTNER HG, 1981, S AFR MED J, V60, P87
LONGMATE N, 1966, KING CHOLERA BIOGRAP
MACKAY DM, 1980, PUBLIC HLTH, V94, P283
MILLER CJ, 1982, LANCET, V1, P1216
MORIRS RJ, 1971, NEW SOC, V18, P52
MORRIS RJ, 1976, CHOLERA 1832 SOCIAL, P17
MOSLEY WH, 1968, B WORLD HEALTH ORGAN, V38, P327
NARAYANAN EK, 1964, INDIAN J MED RES, V52, P916
RAHMAN ASMM, 1985, LANCET, V2, P539
ROSENBERG CE, 1966, COMP STUDIES SOC HIS, V8, P452
SAMADI AR, 1983, LANCET, V1, P805
SENGUPTA PG, 1978, B WORLD HEALTH ORGAN, V56, P323
SHANDERA WX, 1983, AM J TROP MED HYG, V32, P812
SNOW J, 1936, SNOW CHOLERA REPRINT, P1
VANHEYNINGEN WE, 1983, CHOLERA AM SCI EXPER, P61
WEISSMAN JB, 1975, AM J EPIDEMIOL, V100, P487
NR 34
TC 0
PU CURRENT SCIENCE ASSN
PI BANGALORE
PA C V RAMAN AVENUE, PO BOX 8005, BANGALORE 560 080, INDIA
SN 0011-3891
J9 CURR SCI
JI Curr. Sci.
PD JUL 25
PY 1990
VL 59
IS 13-14
BP 643
EP 649
PG 7
SC Multidisciplinary Sciences
GA DY529
UT ISI:A1990DY52900007
ER
PT J
AU GARFIELD, E
WELLJAMSDOROF, A
TI LANGUAGE USE IN INTERNATIONAL RESEARCH - A CITATION ANALYSIS
SO ANNALS OF THE AMERICAN ACADEMY OF POLITICAL AND SOCIAL SCIENCE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,EDITORIAL SERV,PHILADELPHIA,PA 19104.
CR GARFIELD E, 1976, RECHERCHE, V7, P757
GARFIELD E, 1984, CURR CONTENTS, V7, P3
GARFIELD E, 1987, CURR CONTENTS, V7, P3
NR 3
TC 16
PU SAGE SCIENCE PRESS
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320
SN 0002-7162
J9 ANN AMER ACAD POLIT SOC SCI
JI Ann. Am. Acad. Polit. Soc. Sci.
PD SEP
PY 1990
VL 511
BP 10
EP 24
PG 15
SC Political Science; Social Sciences, Interdisciplinary
GA DW661
UT ISI:A1990DW66100002
ER
PT J
AU GARFIELD, E
TI THE MOST-CITED PAPERS OF ALL TIME, SCI 1945-1988 .2. THE 2ND 100
CITATION-CLASSICS
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD JUN 25
PY 1990
IS 26
BP 3
EP &
PG 0
SC Multidisciplinary Sciences
GA DH015
UT ISI:A1990DH01500001
ER
PT J
AU GARFIELD, E
TI THE RUSSIAN ARE COMING .2. THE TOP 50 SOVIET PAPERS MOST-CITED IN THE
1973-1988 SCIENCE-CITATION-INDEX AND A LOOK AT 1988 RESEARCH FRONTS
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD JUN 18
PY 1990
IS 25
BP 3
EP &
PG 0
SC Multidisciplinary Sciences
GA DF961
UT ISI:A1990DF96100001
ER
PT J
AU GARFIELD, E
TI THE RUSSIANS ARE COMING .1. THE RED HOT 100 SOVIET SCIENTISTS, 1973-1988
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD JUN 11
PY 1990
IS 24
BP 3
EP &
PG 0
SC Multidisciplinary Sciences
GA DF009
UT ISI:A1990DF00900001
ER
PT J
AU GARFIELD, E
TI A PUBLISHERS PERSPECTIVE ON LAUNCHING NEW JOURNALS
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD JUN 4
PY 1990
IS 23
BP 3
EP &
PG 0
SC Multidisciplinary Sciences
GA DD756
UT ISI:A1990DD75600001
ER
PT J
AU GARFIELD, E
TI HOW ISI SELECTS JOURNALS FOR COVERAGE - QUANTITATIVE AND QUALITATIVE
CONSIDERATIONS
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD MAY 28
PY 1990
IS 22
BP 3
EP &
PG 0
SC Multidisciplinary Sciences
GA DC829
UT ISI:A1990DC82900001
ER
PT J
AU GARFIELD, E
TI BEAVEN,D.W. ON THE DANGERS OF ALTERNATIVE MEDICINE
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD MAY 21
PY 1990
IS 21
BP 3
EP 3
PG 1
SC Multidisciplinary Sciences
GA DB798
UT ISI:A1990DB79800001
ER
PT J
AU GARFIELD, E
TI RESPONSE TO THE PANEL ON EVALUATION OF SCIENTIFIC-INFORMATION AND THE
IMPACT OF NEW INFORMATION TECHNOLOGY
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19104.
CR GARFIELD E, 1983, ESSAYS INFORMATION S, V5
GARFIELD E, 1988, SCIENTIST, V2, P11
KOCHEN M, 1987, J DOC, V43, P54
SHER IH, 1966, RES PROGRAM EFFECTIV, P135
NR 4
TC 2
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0002-8231
J9 J AMER SOC INFORM SCI
JI J. Am. Soc. Inf. Sci.
PD APR
PY 1990
VL 41
IS 3
BP 229
EP 230
PG 2
SC Computer Science, Information Systems; Information Science & Library
Science
GA CZ961
UT ISI:A1990CZ96100015
ER
PT J
AU GARFIELD, E
TI THE MOST-CITED PHYSICAL-SCIENCES PUBLICATIONS IN THE 1945-1954 SCIENCE
CITATION INDEX .1. 52 CITATION CLASSICS IN PHYSICS AND CHEMISTRY
SO CURRENT COMMENTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 29
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
J9 CURR COMMENT
PD MAY 14
PY 1990
IS 20
BP 3
EP &
PG 0
SC Multidisciplinary Sciences
GA DA624
UT ISI:A1990DA62400001
ER
PT J
AU GARFIELD, E
WELLJAMSDOROF, A
TI THE IMPACT OF FRAUDULENT RESEARCH ON THE SCIENTIFIC LITERATURE - THE
BREUNING,STEPHEN,E. CASE
SO JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION
LA English
DT Article
C1 INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR AMAN MG, 1986, J MENT DEFIC RES, V30, P203
AMAN MG, 1987, J MENT DEFIC RES, V31, P121
ANDERSON A, 1988, NATURE, V335, P389
ANDERSON A, 1989, NATURE, V340, P3
BREUNING SE, 1982, DRUGS MENTAL RETARDA
CULLITON BJ, 1988, SCIENCE, V242, P657
CULLITON BJ, 1989, SCIENCE, V245, P24
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1987, SCIENTIST, V1, P9
GARFIELD E, 1989, SCIENTIST, V3, P12
HOLDEN C, 1986, SCIENCE, V234, P1488
HOLDEN C, 1987, SCIENCE, V235, P1566
LEWIN B, 1989, CELL, V57, P699
RENNIE D, 1989, JAMA-J AM MED ASSOC, V261, P2543
ROMAN MB, 1988, DISCOVER, V9, P50
SHAPIRO MF, 1989, JAMA-J AM MED ASSOC, V261, P2505
SPRAGUE RL, 1984, PSYCHOPHARMACOL BULL, V20, P328
THOMASSON P, 1955, SCIENCE, V121, P610
WOOLF PK, 1987, JAMA-J AM MED ASSOC, V258, P3424
NR 19
TC 25
PU AMER MEDICAL ASSOC
PI CHICAGO
PA 515 N STATE ST, CHICAGO, IL 60610
SN 0098-7484
J9 JAMA-J AM MED ASSN
JI JAMA-J. Am. Med. Assoc.
PD MAR 9
PY 1990
VL 263
IS 10
BP 1424
EP 1426
PG 3
SC Medicine, General & Internal
GA CQ724
UT ISI:A1990CQ72400021
ER
PT J
AU GARFIELD, E
TI ROLE OF INFORMATION SCIENTISTS AND THE TRANSFORMATION OF SOCIETY
SO BULLETIN OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
NR 0
TC 0
PU AMER SOC INFORM SCI MEMBER #110113
PI SILVER SPRING
PA 8720 GEORGIA AVE SUITE 501, SILVER SPRING, MD 20910
SN 0095-4403
J9 BULL AMER SOC INFORM SCI
JI Bull. Amer. Soc. Inf. Sci.
PD JUN-JUL
PY 1988
VL 14
IS 5
BP 38
EP 40
PG 3
SC Information Science & Library Science
GA Q6039
UT ISI:A1988Q603900008
ER
PT J
AU GARFIELD, E
TI 100 CITATION-CLASSICS FROM THE
JOURNAL-OF-THE-AMERICAN-MEDICAL-ASSOCIATION
SO JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR AVERY OT, 1944, J EXP MED, V79, P137
BARRETT JT, 1986, CONT CLASSICS LIFE S
BISTRIAN BR, 1976, JAMA-J AM MED ASSOC, V235, P1567
BLUMBERG BS, 1965, JAMA-J AM MED ASSOC, V191, P541
BLUMBERG BS, 1967, ANN INTERN MED, V66, P924
BLUMBERG BS, 1979, CURR CONTENTS LIFE S, V22, P14
GARFIELD E, 1984, CURR CONTENTS, V47, P3
LEWIS D, 1899, T SECT OBSTET D 0616, P453
LUNDBERG GD, 1984, JAMA-J AM MED ASSOC, V252, P812
MERTON RK, 1968, SOCIAL THEORY SOCIAL, P27
MEYER HS, 1985, 51 LANDMARK ARTICLES
SABIN AB, 1960, JAMA-J AM MED ASSOC, V173, P1521
SALK JE, 1955, JAMA-J AM MED ASSOC, V158, P1239
SAMMONS JH, 1983, JAMA-J AM MED ASSOC, V250, P236
WATSON JD, 1953, NATURE, V171, P737
NR 15
TC 34
PU AMER MEDICAL ASSOC
PI CHICAGO
PA 515 N STATE ST, CHICAGO, IL 60610
SN 0098-7484
J9 JAMA-J AM MED ASSN
JI JAMA-J. Am. Med. Assoc.
PD JAN 2
PY 1987
VL 257
IS 1
BP 52
EP 59
PG 8
SC Medicine, General & Internal
GA F3846
UT ISI:A1987F384600025
ER
PT J
AU GARFIELD, E
TI AN INVESTMENT IN THE FUTURE
SO CHEMTECH
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR 1973, EVALUATING CHILDRENS
1979, COMMUNITY SOLUTIONS
1980, CHILD CARE CTR SPONS
1981, BUS WEEK, V2719, P60
1981, BUS WEEK, V2719, P63
ARDMAN C, 1982, J COMMERCE 0809, A7
CARRO G, 1982, LADIES HOME J, V99, P103
CARRO G, 1982, LADIES HOME J, V99, P69
CLARKESTEWART A, 1982, DAYCARE
ERIKSON EH, 1963, CHILDHOOD SOC, P247
EVANS EB, 1971, DAY CARE PLAN DEV OP
GARFIELD E, 1977, ESSAYS INFORMATION S, V2, P535
GARFIELD E, 1980, ESSAYS INFORMATION S, V3, P116
GARFIELD E, 1981, ESSAYS INFORMATION S, V4, P351
GARFIELD E, 1983, ESSAYS INFORMATION 1, V5, P164
GARFIELD E, 1983, ESSAYS INFORMATION S, V5, P15
GARFIELD E, 1986, CURR CONTENTS, V24, P3
GARFIELD E, 1986, CURRENT CONTENTS, V22, P3
GARFIELD E, 1986, CURRENT CONTENTS, V33
GLOVER ME, 1978, EARLY LAP EARLY LEAR
KAMERMAN S, 1980, MON LABOR REV, V103, P23
LEVY MZ, 1976, NEW YORK, V9, P73
MCCROSKEY J, 1982, PERS J, V61, P30
MURPHY EF, 1978, CROWN TREASURY RELEV, P140
PIAGET J, 1950, PSYCHOL INTELLIGENCE
VERZAROLAWRENCE M, 1982, YOUNG CHILDREN, V37, P4
NR 26
TC 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0009-2703
J9 CHEMTECH
JI Chemtech
PD AUG
PY 1986
VL 16
IS 8
BP 458
EP 461
PG 4
SC Chemistry, Applied
GA E1025
UT ISI:A1986E102500003
ER
PT J
AU SMALL, H
GARFIELD, E
TI THE GEOGRAPHY OF SCIENCE - DISCIPLINARY AND NATIONAL MAPPINGS
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
RP SMALL, H, INST SCI INFORMAT,UNIV CITY SCI CTR,PHILADELPHIA,PA 19104.
CR BRADFORD SC, 1948, DOCUMENTATION, P137
BUSH V, 1945, SCI ENDLESS FRONTIER
CRANE D, 1972, INVISIBLE COLLEGES D
GARFIELD E, 1964, ISI MONOGRAPH
GOULD P, 1974, MENTAL MAPS
KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P1
PRICE DJD, 1965, SCIENCE, V149, P510
PRICE DJD, 1966, MED OPINION REV, V1, P88
SALTON G, 1979, IEEE T PROF COMMUN, V22, P146
SMALL H, 1973, J AM SOC INFORM SCI, V24, P265
SMALL H, 1982, PROGR COMMUNICATION, V3, P287
SMALL H, 1985, SCIENTOMETRICS, V7, P391
SMALL H, 1985, SCIENTOMETRICS, V8, P321
NR 13
TC 82
PU BOWKER-SAUR LTD
PI E GRINSTEAD
PA MAYPOLE HOUSE, MAYPOLE RD, E GRINSTEAD, W SUSSEX, ENGLAND RH19 1HH
SN 0165-5515
J9 J INFORM SCI
JI J. Inf. Sci.
PY 1985
VL 11
IS 4
BP 147
EP 159
PG 13
SC Computer Science, Information Systems; Information Science & Library
Science
GA D5573
UT ISI:A1985D557300001
ER
PT J
AU GARFIELD, E
TI WHICH MEDICAL JOURNALS HAVE THE GREATEST IMPACT
SO ANNALS OF INTERNAL MEDICINE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,UNIV CITY SCI
CTR,PHILADELPHIA,PA 19104.
CR GARFIELD E, 1970, NATURE, V227, P669
GARFIELD E, 1972, SCIENCE, V178, P471
GARFIELD E, 1976, RECHERCHE, V7, P757
GARFIELD E, 1977, ESSAYS INFORMATION S, P467
INGELFINGER FJ, 1974, AM J MED, V56, P686
LOCK S, 1985, DIFFICULT BALANCE, P15
MISSET JL, 1981, NEW ENGL J MED, V304, P1544
MUNDY DJ, 1984, ANN INTERN MED, V100, P61
OUSLANDER J, 1981, N ENGL J MED, V304, P428
PRICE DJD, 1965, NATURE, V206, P233
ROLAND CG, 1975, NEW ENGL J MED, V292, P1273
THORN MD, 1985, AM J HOSP PHARM, V42, P1077
NR 12
TC 97
PU AMER COLL PHYSICIANS
PI PHILADELPHIA
PA INDEPENDENCE MALL WEST 6TH AND RACE ST, PHILADELPHIA, PA 19106-1572
SN 0003-4819
J9 ANN INTERN MED
JI Ann. Intern. Med.
PD AUG
PY 1986
VL 105
IS 2
BP 313
EP 320
PG 8
SC Medicine, General & Internal
GA D5018
UT ISI:A1986D501800068
ER
PT J
AU GARFIELD, E
TI MAPPING THE WORLD OF BIOMEDICAL-ENGINEERING - ALZA LECTURE (1985)
SO ANNALS OF BIOMEDICAL ENGINEERING
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,PHILADELPHIA,PA 19104.
CR 1985, SCI SCI CITATION IND
GARFIELD E, 1977, ESSAYS INFORMATION S, V1, P222
PRICE DJD, 1963, LITTLE SCI BIG SCI
SMALL H, 1974, SCI STUD, V4, P17
NR 4
TC 5
PU BLACKWELL SCIENCE INC
PI MALDEN
PA 350 MAIN ST, MALDEN, MA 02148
SN 0090-6964
J9 ANN BIOMED ENG
JI Ann. Biomed. Eng.
PY 1986
VL 14
IS 2
BP 97
EP 108
PG 12
SC Engineering, Biomedical
GA D1090
UT ISI:A1986D109000002
ER
PT J
AU FISHER, J
GARFIELD, E
TI INFORMATION-SCIENCE AND THE PLASTIC SURGEON
SO PLASTIC AND RECONSTRUCTIVE SURGERY
LA English
DT Article
C1 UNIV CALIF SAN DIEGO,MED CTR,SAN DIEGO,CA 92103.
INST SCI INFORMAT,PHILADELPHIA,PA 19104.
CR GARFIELD E, 1984, CURRENT CONTENTS, V8, P3
NR 1
TC 1
PU WILLIAMS & WILKINS
PI BALTIMORE
PA 351 WEST CAMDEN ST, BALTIMORE, MD 21201-2436
SN 0032-1052
J9 PLAST RECONSTR SURG
JI Plast. Reconstr. Surg.
PY 1985
VL 75
IS 6
BP 914
EP 920
PG 7
SC Surgery
GA AJY19
UT ISI:A1985AJY1900027
ER
PT J
AU GARFIELD, E
TI IN TRIBUTE TO PRICE,DEREK,JOHN,DESOLLA - A CITATION ANALYSIS OF LITTLE
SCIENCE, BIG SCIENCE
SO SCIENTOMETRICS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,UNIV CITY SCI
CTR,PHILADELPHIA,PA 19104.
CR ANDERSON S, 1970, BIOSCIENCE, V20, P949
BAYER AE, 1982, J MARRIAGE FAM, V44, P527
BLASHFIELD RK, 1982, SCHIZOPHRENIA BULL, V8, P1
CAMPBELL WH, 1968, RADIO SCI, V3, P726
CHILDS B, 1967, AM J DIS CHILD, V114, P464
CLEMENTE F, 1973, GERONTOLOGIST, V13, P106
COX C, 1982, INT J NURS STUD, V19, P1
FEIGHNER JP, 1972, ARCH GEN PSYCHIAT, V26, P57
GARFIELD E, 1984, CURRENT CONTENTS, V27, P3
GERBER LS, 1965, J AM VET MED ASS, V147, P1530
GIBSON SS, 1982, J LIBR HIST, V17, P144
GOSS DJ, 1973, FOOD DRUG COSMET LAW, V28, P407
JENKIN JG, 1981, J ELECTRON SPECTROSC, V23, P187
KAPITSA PL, 1979, SOV STUD PHIL ENGL T, V18, P52
LUKASIEWICZ J, 1971, ENG EDUC, V61, P880
MIDDLETON GV, 1974, J SEDIMENTARY PETROL, V44, P3
MORAN BT, 1981, TECHNOL CULT, V22, P253
NEEDHAM J, 1956, NATURE, V177, P600
NEEDHAM J, 1960, HEAVENLY CLOCKWORK G
OCONNOR ME, 1980, AUSTR NZ J CRIMINOL, V13, P11
PRICE DJD, 1953, B BRIT SOC HIST SCI, V1, P223
PRICE DJD, 1955, EQUATORIE PLANETIS
PRICE DJD, 1959, SCI AM, V200, P60
PRICE DJD, 1960, AM PHILOS SOC YB 195, P618
PRICE DJD, 1961, SCI BABYLON
PRICE DJD, 1963, LITTLE SCI BIG SCI
PRICE DJD, 1965, SCIENCE, V149, P510
PRICE DJD, 1966, AM PSYCHOL, V21, P1011
PRICE DJD, 1969, P ISRAEL ACADEMY SCI, V4, P98
PRICE DJD, 1970, COMMUNICATION SCI EN, P3
PRICE DJD, 1974, GEARS GREEKS ANTIKYT
PRICE DJD, 1976, J AM SOC INFORM SCI, V27, P292
ROGGE AE, 1976, AM ANTHROPOL, V78, P829
RUSSETT BM, 1967, INT STUD Q, V11, P12
SCHOPF TJM, 1967, SYST ZOOL, V16, P318
STEARNS SC, 1980, OIKOS, V35, P266
WEISS W, 1968, ARCH ENV HLTH, V16, P307
WHITE HD, 1981, J AM SOC INFORM SCI, V32, P163
YANKAUER A, 1975, AM J PUBLIC HEALTH, V65, P877
NR 39
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PY 1985
VL 7
IS 3-6
BP 487
EP 503
PG 17
SC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
GA AHA38
UT ISI:A1985AHA3800024
ER
PT J
AU GARFIELD, E
TI EXCERPTS FROM IS PUBLIC CONFIDENCE IN SCIENCE DECLINING (REPRINTED)
SO JOURNAL OF PUBLIC HEALTH DENTISTRY
LA English
DT Article
CR GARFIELD E, 1982, CURRENT CONTENTS, V47, P5
HOROWITZ HS, 1982, EDIT J PUB HLTH DENT, V42, P290
TRACHTMAN LE, 1982, SIPISCOPE, V10, P1
NR 3
TC 0
PU AAPHD NATIONAL OFFICE
PI RICHMOND
PA J PUBLIC HEALTH DENT 10619 JOUSTING LANE, RICHMOND, VA 23235
SN 0022-4006
J9 J PUBLIC HEALTH DENT
JI J. Public Health Dent.
PY 1984
VL 44
IS 2
BP 80
EP 82
PG 3
SC Dentistry, Oral Surgery & Medicine; Public, Environmental &
Occupational Health
GA SU481
UT ISI:A1984SU48100005
ER
PT J
AU GARFIELD, E
TI DJERASSI,CARL - CHEMIST AND ENTREPRENEUR
SO CHEMTECH
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19104.
CR BARTH G, 1981, TETRAHEDRON, V37, P4123
BROWN P, 1967, ANGEW CHEM B, V6, P477
BUDZIKIEWICZ H, 1963, J AM CHEM SOC, V85, P3688
BUDZIKIEWICZ H, 1964, INTERPRETATION MASS
BUDZIKIEWICZ H, 1964, STRUCTURE ELUCIDATIO, V1
BUDZIKIEWICZ H, 1964, STRUCTURE ELUCIDATIO, V2
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
BUDZIKIEWICZ H, 1982, CURRENT CONTENTS PHY, V22, P18
BYLINSKY G, 1973, FORTUNE, V88, P94
CARLSON RMK, 1980, FRONTIERS BIOORGANIC, P211
CONNELL EB, 1981, B ATOM SCI, V37, P46
DIXON JS, 1977, J AM CHEM SOC, V99, P3432
DJERASSI C, 1954, J AM CHEM SOC, V76, P6410
DJERASSI C, 1956, J AM CHEM SOC, V78, P6362
DJERASSI C, 1956, J ORG CHEM, V21, P1547
DJERASSI C, 1958, J AM CHEM SOC, V80, P4001
DJERASSI C, 1962, J AM CHEM SOC, V84, P870
DJERASSI C, 1962, J CHEM SOC, P4929
DJERASSI C, 1975, CHEM IND LONDON, V14, P593
DJERASSI C, 1975, PURE APPL CHEM, V41, P113
DJERASSI C, 1979, NATURWISSENSCHAFTEN, V66, P9
DJERASSI C, 1980, MODERN SCI ENG, V1, P294
DJERASSI C, 1981, POLITICS CONTRACEPTI
DJERASSI C, 1981, PURE APPL CHEM, V53, P873
DJERASSI C, 1982, COMMUNICATION
GARFIELD EA, 1979, CURR CONTENTS, V26, P5
LINDSAY RK, 1980, APPLICATIONS ARTIFIC
MASSEY IJ, 1979, J ORG CHEM, V44, P2448
MOFFITT W, 1961, J AM CHEM SOC, V83, P4013
MOSCOWITZ A, 1962, J AM CHEM SOC, V84, P1945
PARTRIDGE LG, 1977, J AM CHEM SOC, V99, P7686
PETERSON I, 1981, SCI NEWS, V120, P264
PRICE DJD, 1974, BRITANNICA 1975 YB S, P409
ROSENKRANZ G, 1951, J AM CHEM SOC, V73, P4055
SHAPIRO RH, 1964, J AM CHEM SOC, V86, P2825
TOKES L, 1968, J AM CHEM SOC, V90, P5465
WELLMAN KM, 1975, J AM CHEM SOC, V87, P60
NR 37
TC 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0009-2703
J9 CHEMTECH
JI Chemtech
PY 1983
VL 13
IS 9
BP 534
EP 538
PG 5
SC Chemistry, Applied
GA RF443
UT ISI:A1983RF44300005
ER
PT J
AU GARFIELD, E
TI THE LITERATURE OF MARINE BIOLOGY
SO BIOLOGIYA MORYA-MARINE BIOLOGY
LA Russian
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19104.
CR GARFIELD E, ANESTHESIOLOGY
GARFIELD E, TRENDS BIOCH SOC
GARFIELD E, 1972, SCIENCE, V178, P471
GARFIELD E, 1974, CURR CONT, V42, P5
GARFIELD E, 1975, CURR CONTENTS, V20, P5
GARFIELD E, 1976, NATURE, V264, P609
GARFIELD E, 1979, CITATION INDEXING
NR 7
TC 4
PU NAUKA
PI MOSCOW
PA 103717 GSP K-62 PODSOSENSKII PER 21, MOSCOW, RUSSIA
SN 0134-3475
J9 BIOL MORYA
PY 1980
IS 3
BP 3
EP 20
PG 18
SC Marine & Freshwater Biology
GA KJ713
UT ISI:A1980KJ71300001
ER
PT J
AU GARFIELD, E
TI THE HAZARDS OF SUNBATHING
SO CHEMTECH
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,UNIV CITY SCI CTR,3501 MARKET
ST,PHILADELPHIA,PA 19104.
CR 1976, SENSE SUN
1978, CONSUMERS UNION NEWS, V3, P7
1978, SCI NEWS, V114, P407
AHMED AK, 1975, ENVIRONMENT, V17, P6
BLUM HF, 1959, CARCINOGENESIS ULTRA
CICERONE RJ, 1974, SCIENCE, V185, P1165
CLARK WH, 1977, ADV CANCER RES, V24, P267
DANIELS F, 1959, J INVEST DERMATOL, V32, P147
DANIELS F, 1968, SCI AM, V219, P38
EDSON L, 1971, NY TIMES 0808, P13
EDSON L, 1971, NY TIMES 0808, P21
EIGNER J, 1975, ENVIRONMENT, V17, P15
ELLSAESSER HW, 1978, ATMOS ENV, V12, P1849
FITZPATRICK TB, 1971, P ROY SOC MED, V64, P861
FORBES PD, 1977, RES PHOTOBIOLOGY, P469
GIBBIN J, 1978, NEW SCI, V80, P94
HARRIS M, 1973, NAT HIST, V82, P20
HOUCK C, 1978, NEW YORK, V11, P118
KENWARD M, 1978, SCI GOV REP, V8, P8
SCHULZE R, 1974, P INT C STRUCTURE CO, V1, P479
SCOTTO S, 1974, CANCER, V34, P133
SETLOW RB, 1977, RES PHOTOBIOLOGY, P449
TIPTON JB, 1978, PLAST RECONSTR SURG, V62, P223
URBACH F, 1976, ADV BIOL SKIN, V7, P195
WURTMAN RJ, 1975, ANNU REV PHYSIOL, V37, P467
WURTMAN RJ, 1975, SCI AM, V233, P69
NR 26
TC 0
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0009-2703
J9 CHEMTECH
JI Chemtech
PY 1980
VL 10
IS 6
BP 337
EP 339
PG 3
SC Chemistry, Applied
GA JV406
UT ISI:A1980JV40600003
ER
PT J
AU GARFIELD, E
TI IS INFORMATION-RETRIEVAL IN THE ARTS AND HUMANITIES INHERENTLY
DIFFERENT FROM THAT IN SCIENCE - EFFECT THAT
ISIS-CITATION-INDEX-FOR-THE-ARTS-AND-HUMANITIES IS EXPECTED TO HAVE ON
FUTURE SCHOLARSHIP
SO LIBRARY QUARTERLY
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR FRYE N, 1973, DAEDALUS, V102, P11
GARFIELD E, CURRENT CONTENTS
GARFIELD E, TRENDS BIOCH SCI
GARFIELD E, 1955, NOV ANN M AM DOC I P
GARFIELD E, 1964, AM BEHAV SCI, V7, P58
GARFIELD E, 1975, CURRENT CONTENTS, V26, P5
GARFIELD E, 1978, CURR CONTENTS, V28, P5
GARFIELD E, 1978, CURR CONTENTS, V35, P5
GARFIELD E, 1978, CURRENT CONTENTS, V47, P5
GARFIELD E, 1978, CURRENT CONTENTS, V48, P5
GARFIELD E, 1978, CURRENT CONTENTS, V49, P5
GOMBRICH EH, 1973, DAEDALUS, V102, P1
KUHN TS, 1970, STRUCTURE SCI REVOLU
LANGRIDGE DW, 1976, CLASSIFICATION INDEX
WEIL E, 1973, DAEDALUS, V102, P27
NR 15
TC 44
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 5720 S WOODLAWN AVE, CHICAGO, IL 60637
SN 0024-2519
J9 LIBR QUART
JI Libr. Q.
PY 1980
VL 50
IS 1
BP 40
EP 57
PG 18
SC Information Science & Library Science
GA JD184
UT ISI:A1980JD18400004
ER
PT J
AU GARFIELD, E
TI 2001 - INFORMATION-SOCIETY
SO JOURNAL OF INFORMATION SCIENCE
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,3501 MARKET ST,UNIV CITY SCI
CTR,PHILADELPHIA,PA 19104.
CR 1979, BUSINESS WEEK APR, V16, P121
BRANSCOMB LM, 1979, SCIENCE, V203, P143
CAWKELL AE, 1978, WIRELESS WORLD, V84, P38
CAWKELL AE, 1978, WIRELESS WORLD, V84, P69
GARFIELD E, 1971, J AM SOC INFORMATION, V22, P71
GARFIELD E, 1977, CURRENT CONTENTS, V41, P5
GARFIELD E, 1978, CURR CONTENTS, V29, P5
GARFIELD E, 1978, KNOWLEDGE DEV RESHAP, P307
HOKENDOLPH E, 1979, NY TIMES 0407, P29
LINDSEY R, 1979, NY TIMES 0329, C1
LINDSEY R, 1979, NY TIMES 0329, C3
LINDSEY R, 1979, NY TIMES 0405, B15
REED F, 1979, WASHINGTON POST 0330, A23
SAWYER K, 1979, WASHINGTON POST 0404, A3
NR 14
TC 18
PU BOWKER-SAUR LTD
PI E GRINSTEAD
PA MAYPOLE HOUSE, MAYPOLE RD, E GRINSTEAD, W SUSSEX, ENGLAND RH19 1HH
SN 0165-5515
J9 J INFORM SCI
JI J. Inf. Sci.
PY 1979
VL 1
IS 4
BP 209
EP 215
PG 7
SC Computer Science, Information Systems; Information Science & Library
Science
GA HZ686
UT ISI:A1979HZ68600003
ER
PT J
AU VLADUTZ, G
GARFIELD, E
TI KWPSI - ALGORITHMICALLY DERIVED KEY WORD-PHRASE SUBJECT INDEX
SO PROCEEDINGS OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
LA English
DT Article
RP VLADUTZ, G, INST SCI INFORMAT,325 CHESTNUT ST,PHILADELPHIA,PA 19106.
CR *NY IBM CORP, 1959, RC127 REP
ARMITAGE JE, 1967, J CHEMICAL DOCUMENTA, V7, P170
AUSTIN D, 1974, J DOC, V30, P47
COHEN SM, 1976, J CHEM INFORMATION C, V16, P93
CRAVEN TC, 1977, J AM SOC INFORM SCI, V28, P107
FARRADANE J, 1977, STRING INDEXING RELA
FENICHEL C, 1971, 34TH P AM SOC INF SC, P349
GARFIELD E, 1969, 3RD P INT C MED LIBR
GARFIELD E, 1976, J AM SOC INFORM SCI, V27, P288
HALLER J, 1978, NACHR DOKUM, V29, P177
RESNIKOF HL, 1965, MECHANICAL TRANSLATI, V8, P84
SAGER N, 1973, NATURAL LANGUAGE PRO
SAGER N, 1975, J AM SOC INFORM SCI, V26, P10
STEINACKER I, 1974, J AM SOC INFORMATION, V25, P237
NR 14
TC 2
PU LEARNED INFORMATION LTD
PI OXFORD
PA WOODSIDE, HINKSEY HILL, OXFORD, ENGLAND OX1 5AU
SN 0044-7870
J9 PROC AMER SOC INFORM SCI
PY 1979
VL 16
BP 236
EP 245
PG 10
SC Computer Science, Information Systems; Information Science & Library
Science
GA HR725
UT ISI:A1979HR72500031
ER
PT J
AU GARFIELD, E
TI MAKING CONTACTS AT CONFERENCES
SO IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,325 CHESTNUT ST,PHILADELPHIA,PA 19106.
CR 1977, ASS TRANSNAT, V12, P532
BONDS W, 1978, FORUM, V2, P1
FREEDMAN R, 1977, NEW SCI, V76, P98
GARFIELD E, 1976, CURRENT CONTENT 0209, P5
GUTFREUND H, 1976, TRENDS BIOCHEM SCI, V1, P198
JUDGE AJN, 1976, ASS INT, V1, P34
KINDLER HS, 1960, ORG TECHNICAL C
LAITINEN H, 1978, ANAL CHEM, V50, P833
MANTEN AA, 1976, S S PUBLICATIONS
WELT I, 1978, COMMUNICATION 0913
WHELAN WJ, 1976, TRENDS BIOCH SCI, V1, P25
NR 11
TC 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017-2394
SN 0361-1434
J9 IEEE TRANS PROF COMM
JI IEEE Trans. Prof. Commun.
PY 1979
VL 22
IS 3
BP 131
EP 133
PG 3
SC Communication; Engineering, Multidisciplinary
GA HL569
UT ISI:A1979HL56900002
ER
PT J
AU GARFIELD, E
TI IS CITATION ANALYSIS A LEGITIMATE EVALUATION TOOL
SO SCIENTOMETRICS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,325 CHESTNUT ST,PHILADELPHIA,PA 19106.
CR AGARWAL JC, 1976, J MET, V28, P33
ALTSTETTER CJ, 1976, J MET, V28, P33
ARBITER N, 1976, J MET, V28, P33
BAYER AE, 1966, SOCIOL EDUC, V39, P381
BERNIER CL, 1975, CHEM ENGINEERING ED, V9, P94
CARTER GM, 1974, R1583HEW RAND CORP R
COLE JR, 1972, SCIENCE, V178, P368
COLE JR, 1973, SOCIAL STRATIFICATIO, P32
CROSBIE GG, 1976, J MET, V28, P27
GARFIELD E, 1963, AM DOC, V14, P289
GARFIELD E, 1970, NATURE, V227, P669
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, ESSAYS INFORMATION S, V2, P419
GARFIELD E, 1977, TRENDS BIOCH SCI, V2
GARFIELD E, 1978, CURRENT CONTENT 0710, P5
GELLER NL, SOCIAL SCI RES
GELLER NL, 1975, P AM STAT ASS SOC ST, P429
GRIFFITH BC, 1974, SCI STUD, V4, P339
GUSTAFSON T, 1975, SCIENCE, V190, P1060
JOHNSON AA, 1975, J MET, V27, P28
KLERER M, 1975, SCIENCE, V188, P1064
KOSHY GP, 1976, APR P NE REG C AM I, P224
LEDERBERG J, 1960, SCIENCE, V131, P269
LINDSEY D, UNPUBLISHED
LOWRY OH, 1951, J BIOL CHEM, V193, P265
LOWRY OH, 1969, COMMUNICATION 1111
MARTINO JP, 1971, IEEE T ENG MANAGE, V18, P146
MEADOWS AJ, 1974, COMMUNICATION SCI, P45
MERTON RK, 1965, SHOULDERS GIANTS SHA, P218
NARIN F, 1976, NTISPB252339AS, P500
PRICE DJD, 1963, LITTLE SCI BIG SCI
PRICE DJD, 1966, AM PSYCHOL, V21, P1011
ROY R, 1976, J MET, V28, P29
ROY R, 1977, APPROXIMATING TOTAL
SHAPLEY D, 1975, SCIENCE, V189, P622
SHAPLEY D, 1976, SCIENCE, V191, P53
SHER IH, 1966, RES PROGRAM EFFECTIV, P135
SMALL H, 1974, SCI STUD, V4, P17
SMALL HG, 1974, C795 CONTR
VIRGO JA, 1977, LIBRARY Q, V47, P415
WADE N, 1975, SCIENCE, V188, P429
WERT CA, 1975, J MET, V27, P20
NR 47
TC 92
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0138-9130
J9 SCIENTOMETRICS
JI Scientometrics
PY 1979
VL 1
IS 4
BP 359
EP 375
PG 17
SC Computer Science, Interdisciplinary Applications; Information Science &
Library Science
GA GV844
UT ISI:A1979GV84400004
ER
PT J
AU GARFIELD, E
TI RADIO - NEGLECTED MEDIUM FOR SCIENTIFIC COMMUNICATION
SO IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,325 CHESTNUT ST,PHILADELPHIA,PA 19106.
CR *FED COMM COMM, 1977, 17 B
*FED COMM COMM, 1977, 3 B
GARFIELD E, 1977, CURR CONTENTS, P5
NR 3
TC 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017-2394
SN 0361-1434
J9 IEEE TRANS PROF COMM
JI IEEE Trans. Prof. Commun.
PY 1979
VL 22
IS 1
BP 14
EP 15
PG 2
SC Communication; Engineering, Multidisciplinary
GA GN792
UT ISI:A1979GN79200002
ER
PT J
AU GARFIELD, E
TI WHERE IS CHEMICAL INFORMATION-SCIENCE GOING
SO JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR BROOKS H, 1977, SCIENCE, V195, P536
COLE JR, 1972, SCIENCE, V178, P368
DEBRE M, 1976, RECHERCHE, V7, P956
GARFIELD E, 1962, CURR CONTENTS 0807, P32
GARFIELD E, 1974, B AM SOC INF SCI, V1, P32
GARFIELD E, 1974, B AM SOC INFORM SCI, V1, P10
GARFIELD E, 1974, CURR CONTENTS, P5
GARFIELD E, 1975, J CHEM INFORMATION C, V15, P153
GARFIELD E, 1976, 1ST C BIOM PRESS IT
GARFIELD E, 1976, NATURE, V264, P609
GARFIELD E, 1976, RECHERCHE, V7, P757
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
GARFIELD E, 1977, CURR CONTENTS, P5
MARTYN J, 1964, NEW SCI, V21, P388
MAZELLA A, 1977, BIBLIOMETRIC STUDY R
MERTON RK, 1968, SCIENCE, V199, P55
SKOLNIK H, 1976, J CHEM INF COMPUT SC, V16, P187
TURNER S, 1976, SOC SCI INFORM, V15, P657
WOODWARD AM, 1974, ASLIB P, V26, P367
NR 21
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0095-2338
J9 J CHEM INFORM COMPUT SCI
JI J. Chem. Inf. Comput. Sci.
PY 1978
VL 18
IS 1
BP 1
EP 4
PG 4
SC Chemistry, Multidisciplinary; Computer Science, Information Systems;
Computer Science, Interdisciplinary Applications
GA EM267
UT ISI:A1978EM26700001
ER
PT J
AU GARFIELD, E
TI WHAT THIS COUNTRY NEEDS IS A FREE PHONE CALL
SO BULLETIN OF THE ATOMIC SCIENTISTS
LA English
DT Article
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR 1977, CONSUMER REPORTS, V42, P40
BENJAMIN MR, 1977, NY TIMES MAGAZI 1128, P33
CERRA F, 1977, NY TIMES 0425, P55
FARBER D, 1977, SCIENCE, V195, P1166
IRWIN MR, 1977, SCIENCE, V195, P1170
MONEYHUN G, 1977, CHRISTIAN SCI MONITO, V69, P13
NR 6
TC 0
PU EDUC FOUNDATION NUCLEAR SCI
PI CHICAGO
PA 6042 SOUTH KIMBARK, CHICAGO, IL 60637
SN 0096-3402
J9 BULL ATOM SCI
JI Bull. Atom. Scient.
PY 1978
VL 34
IS 2
BP 56
EP 59
PG 4
SC International Relations; Social Issues
GA EL279
UT ISI:A1978EL27900018
ER
PT J
AU GARFIELD, E
SIM, M
TI INDEX CHEMICUS REGISTRY SYSTEM - PAST, PRESENT AND FUTURE
SO PURE AND APPLIED CHEMISTRY
LA English
DT Article
C1 INST SCI INFORMAT,UXBRIDGE,MIDDLESEX,ENGLAND.
RP GARFIELD, E, INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR ASH JE, 1975, CHEMICAL INFORMATION, P73
DEFOREIT H, 1976, OCT ICRS US M LOND, P1
EAKIN DR, 1976, JUN ICRS US M PHIL
GARFIELD E, 1970, J CHEM DOC, V10, P54
GARFIELD E, 1976, NATURE, V264, P609
GRANITO CE, 1971, J CHEM DOC, V11, P251
GRANITO CE, 1972, J CHEM DOC, V12, P190
GRANITO CE, 1973, J CHEM DOC, V13, P72
GRANITO CE, 1973, NATURWISSENSCHAFTEN, V60, P189
HYDE E, 1968, J CHEM DOCUM, V8, P138
NUBLING W, 1970, ANGEW CHEM INT EDIT, V9, P596
REVESZ GS, 1969, J CHEM DOC, V9, P106
SMITH EG, 1968, WISWESSER LINE FORMU
SMITH EG, 1976, WISWESSER LINE FORMU
STEIDLE W, 1957, PHARMAZEUTISCHE INDU, V19, P88
THOMSON LH, 1967, J CHEM DOC, V7, P204
WARD E, 1976, CNA UK NEWSLETTER
WISWESSER NH, 1954, LINE FORMULA CHEMICA
NR 18
TC 3
PU BLACKWELL SCIENCE LTD
PI OXFORD
PA OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL
SN 0033-4545
J9 PURE APPL CHEM
JI Pure Appl. Chem.
PY 1977
VL 49
IS 12
BP 1803
EP 1805
PG 3
SC Chemistry, Multidisciplinary
GA EG971
UT ISI:A1977EG97100005
ER
PT J
AU GARFIELD, E
TI CAN ITALIAN BIOMEDICAL JOURNALS SURVIVE
SO JOURNAL OF NUCLEAR MEDICINE AND ALLIED SCIENCES
LA English
DT Article
C1 INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR GARFIELD E, 1977, CURRENT CONTENT 0124
GARFIELD E, 1977, CURRENT CONTENT 0207
NR 2
TC 0
PU EDIZIONI MINERVA MEDICA
PI TURIN
PA CORSO BRAMANTE 83-85 INT JOURNALS DEPT., 10126 TURIN, ITALY
SN 0392-0208
J9 J NUCL MED ALLIED SCI
PY 1977
VL 21
IS 3
BP 121
EP 122
PG 2
SC Radiology, Nuclear Medicine & Medical Imaging
GA EA155
UT ISI:A1977EA15500007
ER
PT J
AU GARFIELD, E
KOENIG, M
DIRENZO, T
TI ISI DATA-BASE-PRODUCED INFORMATION-SERVICES
SO IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION
LA English
DT Article
C1 INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR GARFIELD E, IN PRESS
GARFIELD E, 1970, 35TH C DOC INT FED D
GARFIELD E, 1975, CURR CONTENTS, P5
GARFIELD E, 1976, NATURE, V264, P609
GARFIELD E, 1977, 1ST INT C SCIENT ED
WEINSTOCK M, 1971, ENCY LIBRARY INFORMA, V5, P16
NR 6
TC 3
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017-2394
SN 0361-1434
J9 IEEE TRANS PROF COMM
JI IEEE Trans. Prof. Commun.
PY 1977
VL 20
IS 2
BP 95
EP 99
PG 5
SC Communication; Engineering, Multidisciplinary
GA DU890
UT ISI:A1977DU89000020
ER
PT J
AU GARFIELD, E
TI SCIENTIST USES CITATION INDEXING TO PREDICT WINNERS OF NOBEL-PRIZE
SO TEXAS MEDICINE
LA English
DT Article
C1 INST SCI INFORMAT,PHILADELPHIA,PA 19106.
NR 0
TC 0
PU TEXAS MED ASSN
PI AUSTIN
PA 1801 N LAMAR BLVD, AUSTIN, TX 78701
SN 0040-4470
J9 TEX MED
PY 1977
VL 73
IS 6
BP 87
EP 88
PG 2
SC Medicine, General & Internal
GA DJ283
UT ISI:A1977DJ28300007
ER
PT J
AU GARFIELD, E
TI PERMUTERM SUBJECT INDEX - AUTOBIOGRAPHICAL REVIEW
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
LA English
DT Article
C1 INST SCI INFORMAT,PHILADELPHIA,PA 19106.
CR 1959, AM DOCUMENTATION, V11, P288
*INT BUS MACH CORP, 1959, RC127 REP
CITRON J, 1959, PERMUTATION INDEX PR
FENICHEL C, 1971, 34TH P AM SOC INF SC, P349
GARFIELD E, 1969, CURRENT CONTENT 0603, P22
GARFIELD E, 1970, 3RD P INT C MED LIBR, P187
GARFIELD E, 1971, 4TH WORLD C INT ASS, P107
GARFIELD E, 1972, J DOC, V28, P344
HEUMANN K, 1954, CHEMICAL BIOLOGICAL, P18
OHLMAN H, 1975, COMMUNICATION NOV
STEVENS ME, 1965, NBS91 MON WASH
WEINSTOCK M, 1970, 7TH ANN NAT C INF RE, P181
WEINSTOCK M, 1971, ENCY LIBRARY INFORMA, V5, P16
NR 13
TC 14
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0002-8231
J9 J AMER SOC INFORM SCI
JI J. Am. Soc. Inf. Sci.
PY 1976
VL 27
IS 5-6
BP 288
EP 291
PG 4
SC Computer Science, Information Systems; Information Science & Library
Science
GA CT063
UT ISI:A1976CT06300003
ER
PT J
AU GARFIELD, E
TI SCIENCE IN FRANCE - TOO PROVINCIAL
SO RECHERCHE
LA French
DT Article
C1 INST SCI INFORMATION,PHILADELPHIA,PA 19106.
CR GARFIELD E, 1970, NATURE, V227, P669
GARFIELD E, 1972, SCIENCE, V178, P471
GARFIELD E, 1976, CURRENT CONTENT 0209, P5
NARIN F, 1975, J AM SOC INFORMATION, P80
NR 4
TC 27
PU SOC ED SCIENTIFIQUES
PI PARIS 06
PA 57 RUE DE SEINE, 75280 PARIS 06, FRANCE
SN 0029-5671
J9 RECHERCHE
JI Recherche
PY 1976
VL 7
IS 70
BP 757
EP 760
PG 4
SC Multidisciplinary Sciences
GA CC478
UT ISI:A1976CC47800006
ER
PT J
AU GARFIELD, E
TI CITATION ANALYSIS, MECHANICAL TRANSLATION OF CHEMICAL NOMENCLATURE, AND
MACROSTRUCTURE OF SCIENCE
SO JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES
LA English
DT Article
C1 INST SCI INFORMATION,PHILADELPHIA,PA 19106.
CR 1969, CHEM ENG NEWS, V47, P45
BAKER DB, 1971, CHEMICAL ENGINEERING, V49, P37
COLE JR, 1972, SCIENCE, V178, P368
GARFIELD E, UNPUBLISHED
GARFIELD E, 1961, ALGORITHM TRANSLATIN
GARFIELD E, 1961, NATURE, V192, P192
GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 1972, CURRENT CONTENT 1101, P5
GARFIELD E, 1975, CURR CONTENTS, P5
LOWRY O, 1973, CURRENT CONTENT 0131, P5
OPLER A, 1956, CHEM ENG NEWS 0604, V34, P2812
ORTEGAYGASSET J, 1932, REVOLT MASSES, P84
PARRY AA, 1974, INFO SCIENTIST, V8, P179
SAGER N, 1972, AFIPS C P, V41, P791
STEMMLE JT, 1975, CHEM ENG NEWS, V53, P33
SUSSENGUTH EH, 1965, J CHEM DOCUMENTATION, V5, P36
VANDERSTOUW GG, 1967, J CHEM DOC, V7, P165
VANDERSTOUW GG, 1974, J CHEM DOC, V14, P185
WATSON JD, 1953, NATURE, V171, P737
NR 19
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0095-2338
J9 J CHEM INFORM COMPUT SCI
JI J. Chem. Inf. Comput. Sci.
PY 1975
VL 15
IS 3
BP 153
EP 155
PG 3
SC Chemistry, Multidisciplinary; Computer Science, Information Systems;
Computer Science, Interdisciplinary Applications
GA AN369
UT ISI:A1975AN36900005
ER
PT J
AU GARFIELD, E
MALIN, MV
SMALL, H
TI SYSTEM FOR AUTOMATIC CLASSIFICATION OF SCIENTIFIC LITERATURE
SO JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE
LA English
DT Article
C1 INST SCI INFORMATION,325 CHESTNUT ST,PHILADELPHIA,PA 19106.
CR GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1965, STATISTICAL ASSOC ME, V269, P189
GARFIELD E, 1972, SCIENCE, V178, P471
MALIN MV, 1968, LIBR TRENDS, V16, P374
SALTON G, 1963, J ACM, V10, P440
SMALL H, 1974, SCI STUD, V4, P17
SPARCKJONES K, 1970, J DOCUMENTATION, V26
WEINSTOCK M, 1971, ENCY LIBRARY INFORMA, V5, P16
NR 9
TC 11
PU INDIAN INSTITUTE OF SCIENCE
PI BANGALORE
PA BANGALORE 560012, INDIA
J9 J INDIAN INST SCI
PY 1975
VL 57
IS 2
BP 61
EP 74
PG 14
SC Engineering, Multidisciplinary; Multidisciplinary Sciences
GA AE853
UT ISI:A1975AE85300001
ER
PT J
AU GARFIELD, E
TI WEEKLY SUBJECT INDEX TO CURRENT CONTENTS
SO METHODS OF INFORMATION IN MEDICINE
LA English
DT Article
C1 INST SCI INFORMATION,325 CHESTNUT ST,PHILADELPHIA,PA 19106.
CR GARFIELD E, 1971, SCIENCE CITATION IND
WOOD DN, 1970, METHODS INFORMATION, V9, P46
NR 2
TC 0
PU F K SCHATTAUER VERLAG GMBH
PI STUTTGART
PA P O BOX 10 45 45, LENZHALDE 3, D-70040 STUTTGART, GERMANY
SN 0026-1270
J9 METHODS INFORM MED
JI Methods Inf. Med.
PY 1974
VL 13
IS 2
BP 106
EP 109
PG 4
SC Computer Science, Information Systems; Health Care Sciences & Services;
Medical Informatics
GA S8849
UT ISI:A1974S884900010
ER
PT J
AU GARFIELD, E
TI WHAT SCIENTIFIC JOURNALS CAN TELL US ABOUT SCIENTIFIC JOURNALS
SO IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION
LA English
DT Article
C1 INST SCI INFORMATION,PHILADELPHIA,PA 19106.
CR 1972, CURRENT CONTENT 0607, M1
CAWKELL AE, 1968, RADIO ELECTRONIC ENG, V35, P352
CAWKELL AE, 1970, CHEMISTRY BRIT, V6
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1963, AM DOC, V14, P195
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1969, CURRENT CONTENTS, V12, P6
GARFIELD E, 1970, J LIBRARY HISTORY, V5, P184
GARFIELD E, 1972, CURRENT CONTENT 1101, P5
GARFIELD E, 1972, CURRENT CONTENT 1101, P5
GARFIELD E, 1972, CURRENT CONTENT 1101, P5
GARFIELD E, 1972, CURRENT CONTENTS, P6
GARFIELD E, 1972, SCIENCE, V178, P471
HAGSTROM WO, 1971, SOCIOL EDUC, V44, P375
MALIN MV, 1968, LIBR TRENDS, V16, P374
MARGOLIS J, 1967, SCIENCE, V155, P1213
MYERS CR, 1970, AM PSYCHOL, V25, P1041
PRICE DJD, 1965, SCIENCE, V149, P510
SPENCER CC, 1967, AM DOC, V18, P87
NR 19
TC 13
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017-2394
SN 0361-1434
J9 IEEE TRANS PROF COMM
JI IEEE Trans. Prof. Commun.
PY 1973
VL PC16
IS 4
BP 200
EP 203
PG 4
SC Communication; Engineering, Multidisciplinary
GA S0330
UT ISI:A1973S033000002
ER
PT J
AU GRANITO, CE
GARFIELD, E
TI SUBSTRUCTURE SEARCH AND CORRELATION IN MANAGEMENT OF CHEMICAL
INFORMATION
SO NATURWISSENSCHAFTEN
LA English
DT Article
C1 INST SCI INFORMATION,PHILADELPHIA,PA 19106.
CR 1950, METHOD CODING CHEMIC
1960, 1733 CHEM STRUCT INF
1964, 1150 NAT RES COUNC N
1965, 1278 EUR NONC CHEM N
ARNETT EM, 1970, SCIENCE, V170, P1370
BAKER DB, 1971, J CHEM DOCUMENTATION, V11, P90
BOWMAN CM, 1967, J CHEM DOC, V7, P43
BOWMAN CM, 1968, J CHEM DOC, V8, P133
BOWMAN CM, 1970, J CHEM DOC, V10, P50
BRASIE WC, 1965, CHEM ENG PROG, V61, P102
BRASIE WC, 1965, CHEM ENG PROGR, V61, P16
CASEY RS, 1958, PUNCHED CARDS
COREY EJ, 1969, SCIENCE, V166, P178
COSSUM WE, 1964, P AM DOC I, V1, P270
DEVLIN TJ, 1967, ENCYCLOPEDIA CHEMICA, V12, P511
FARRELL CD, 1971, J CHEM DOC, V11, P52
FELDMANN RJ, 1971, J CHEM DOC, V11, P154
GARFIELD E, 1970, J CHEM DOC, V10, P54
GELBERG A, 1971, ENCYCLOPEDIA LIBRARY
GELBERG AJ, 1966, J CHEM DOCUMENTATION, V6, P60
GLUCK DJ, 1965, J CHEM DOC, V5, P43
GRANITO CE, 1965, J CHEM DOC, V5, P229
GRANITO CE, 1966, J CHEM DOC, V6, P252
GRANITO CE, 1968, 155 NAT M AM CHEM SO
GRANITO CE, 1971, 162 NAT M AM CHEM SO
GRANITO CE, 1971, J CHEM DOC, V11, P106
GRANITO CE, 1971, J CHEM DOC, V11, P251
HANSCH C, 1964, J AM CHEM SOC, V86, P1616
HUBER ML, 1965, J CHEM DOC, V5, P4
HYDE E, 1967, J CHEM DOC, V7, P200
HYDE E, 1968, J CHEM DOCUM, V8, P138
LEITER DP, 1965, J CHEM DOC, V5, P238
MEYER E, 1965, ANGEW CHEM INT EDIT, V4, P347
MORGAN HL, 1965, J CHEM DOC, V5, P107
MULLEN JM, 1967, J CHEM DOCUMENTATION, V7, P88
OATFIELD H, 1967, J CHEM DOC, V7, P37
REVESZ GS, 1969, J CHEM DOC, V9, P106
SMITH EG, 1968, WISWESSER LINE FORMU
STEIDLE W, 1957, PHARMAZEUTISCHE INDU, V19, P88
THOMSON LH, 1967, J CHEM DOC, V7, P204
VANDERSTOUW GG, 1967, J CHEM DOC, V7, P165
WISWESSER WH, 1954, LINE FORMULA CHEMICA
NR 42
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0028-1042
J9 NATURWISSENSCHAFTEN
JI Naturwissenschaften
PY 1973
VL 60
IS 4
BP 189
EP 179
PG 11
SC Multidisciplinary Sciences
GA P5035
UT ISI:A1973P503500004
ER
PT J
AU GARFIELD, E
REVESZ, GS
BATZIG, JH
TI SYNTHETIC CHEMICAL LITERATURE FROM 1960-TO-1969
SO NATURE
LA English
DT Article
C1 INST SCI INFORMATION,PHILADELPHIA,PA 19106.
CR BAKER DB, 1971, CHEM ENG NEWS, V49, P36
BRADFORD SC, 1948, DOCUMENTATION
ELIAS AW, 1968, J CHEM DOC, V8, P74
GARFIELD E, IN PRESS
GARFIELD E, 1964, 148 AM CHEM SOC M
GARFIELD E, 1972, CURRENT CONTENTS
REVESZ GS, 1969, J CHEM DOC, V9, P106
WEINSTOCK M, 1971, NATURE, V233, P434
WOOD JL, 1966, PARAMETERS DOCUMENT
NR 9
TC 14
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW
SN 0028-0836
J9 NATURE
JI Nature
PY 1973
VL 242
IS 5396
BP 307
EP 309
PG 3
SC Multidisciplinary Sciences
GA P1991
UT ISI:A1973P199100028
ER
PT J
AU GARFIELD, E
TI CITATION ANALYSIS AS A TOOL IN JOURNAL EVALUATION - JOURNALS CAN BE
RANKED BY FREQUENCY AND IMPACT OF CITATIONS FOR SCIENCE POLICY STUDIES
SO SCIENCE
LA English
DT Article
CR ALLEN ES, 1929, SCIENCE, V70, P552
ANDERSON PK, 1966, BIOSCIENCE, V16, P794
BARRETT RL, 1957, J CHEM EDUC, V34, P35
BAYER AE, 1966, SOCIOL EDUC, V39, P382
BECK LN, 1971, J AM SOC INFORM SCI, V22, P85
BRADFORD SC, 1953, DOCUMENTATION, P2
BROWN CH, 1956, ACRL16 MON
BURTON RE, 1959, AM DOC, V10, P135
BURTON RE, 1959, AM DOC, V10, P209
BURTON RE, 1959, AM DOC, V10, P70
CHADWICK RW, 1968, AM BEHAV SCI, V11, NS9
COILE RC, 1952, J DOC, V8, P209
COLE J, 1971, AM SOCIOL, V6, P23
COLE S, 1967, AM SOCIOL REV, V32, P377
COLE S, 1970, AM J SOCIOL, V76, P286
CREAGER JA, 1966, 26 NAT AC SCIENC NAT
DAVIS RA, 1964, 195 DREX I TECHN PRO
DEBROV GM, 1967, ANALIZ TENDENTSII PR, P5
DEBROV GM, 1968, CIBA F SCIENCE SCIEN, P189
EAST H, 1969, ASLIB P, V21, P160
FUSSLER HH, 1949, LIBRARY Q, V19, P119
FUSSLER HH, 1949, LIBRARY Q, V19, P19
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1967, J CHEM DOCUMENTATION, V7, P147
GARFIELD E, 1970, 3RD P INT C MED LIBR, P187
GARFIELD E, 1971, CURRENT CONTENT 0804, P5
GARFIELD E, 1972, 164 NAT M AM CHEM SO
GILIAREVSKII RS, 1968, PRIKLADNAIA DOKUMENT, P32
GROSS PLK, 1927, SCIENCE, V66, P385
GROSS PLK, 1931, SCIENCE, V73, P660
HAGSTROM WO, 1971, SOCIOL EDUC, V44, P375
HALL AM, 1970, R704 I EL ENG REP
HENKLE HH, 1938, B MED LIBR ASSOC, V27, P139
HOOKER RH, 1935, REV SCI INSTRUM, V6, P333
KORENNOI AA, 1968, NAUCH TEKH INFORM 2, P3
LARABI J, 1969, REV FRANC INFORM REC, V3, P103
LOWRY OH, 1951, J BIOL CHEM, V193, P265
LOWRY OH, 1951, J BIOLOGICAL CHEMIST
MACRAE D, 1969, AM SOCIOL REV, V34, P361
MARGOLIS J, 1967, SCIENCE, V155, P1213
MARTINO JP, 1971, IEEE T ENGINEERING M, EM18, P146
MARTYN J, 1968, EVALUATION BRIT SCIE
MEADOWS AJ, 1967, J DOC, V23, P28
MYERS CR, 1970, AM PSYCHOL, V25, P1041
NALIMOV VV, 1969, NAUKOMETRIIA
PARKER EB, 1967, BIBLIOGRAPHICAL CITA
PRICE DJD, 1965, SCIENCE, V149, P510
PRICE DJD, 1969, ASLIB P, V21, P328
PRICE DJD, 1969, P ISRAEL ACADEMY SCI, V4, P98
ROTHMAN H, 1971, J DOC, V27, P287
SCOTT C, 1969, DISCOVERY, P110
TRIMBLE RF, 1963, J CHEM DOCUM, V3, P79
WEINBERG AM, 1963, MINERVA, V1, P159
WHITLEY RD, 1969, SOCIOL REV, V17, P219
WOOD JL, 1966, 8 AM U ANN I INF STO
NR 56
TC 672
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005
SN 0036-8075
J9 SCIENCE
JI Science
PY 1972
VL 178
IS 4060
BP 471
EP +
PG 0
SC Multidisciplinary Sciences
GA N8310
UT ISI:A1972N831000009
ER
PT J
AU GARFIELD, E
TI COMMUNICATION, ENGINEERING, AND ENGINEERS
SO IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION
LA English
DT Article
NR 0
TC 0
PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
PI NEW YORK
PA 345 E 47TH ST, NEW YORK, NY 10017-2394
SN 0361-1434
J9 IEEE TRANS PROF COMM
JI IEEE Trans. Prof. Commun.
PY 1972
VL PC15
IS 2
BP 49
EP &
PG 0
SC Communication; Engineering, Multidisciplinary
GA N1395
UT ISI:A1972N139500007
ER
PT J
AU GARFIELD, E
TI NEW METHODS FOR DOCUMENTATION IN SYNTHETIC CHEMISTRY
SO CHEMIKER-ZEITUNG
LA German
DT Article
CR 1964, 1150 NAT AC SCIENC P
1965, 1278 NAT AC SCIENC P
1969, 1733 NAT AC SCIENC P
BONNETT HT, 1963, J CHEM DOC, V3, P235
COSSUM WE, 1965, J CHEM DOCUMENTATION, V5, P33
DYSON GM, 1963, INFORM STOR RETR, V1, P69
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1963, J CHEM DOC, V3, P97
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1970, NATURE, V227, P669
GRANITO CE, 1965, J CHEM DOC, V5, P229
GRANITO CE, 1971, J CHEM DOC, V11, P251
HUBER ML, 1965, J CHEM DOC, V5, P4
HYDE E, 1967, J CHEM DOC, V7, P200
MARGOLIS J, 1967, SCIENCE, V155, P1213
MARTYN J, 1965, ASLIB P, V17, P184
SMITH EG, 1968, WISWESSER LINE FORMU
SPENCER CC, 1967, AM DOC, V18, P87
TATE FA, 1967, ANN REV INFORMATION, V2, P285
THOMSON LH, 1967, J CHEM DOC, V7, P204
NR 20
TC 0
PU DR ALFRED HUTHIG VERLAG GMBH
PI HEIDELBERG 1
PA POSTFACH 102869, W-69018 HEIDELBERG 1, GERMANY
SN 0009-2894
J9 CHEM ZTG
PY 1972
VL 96
IS 6
BP 334
EP &
PG 0
SC Chemistry, Multidisciplinary; Engineering, Chemical
GA M7122
UT ISI:A1972M712200004
ER
PT J
AU GARFIELD, E
TI INTRODUCING MALIN,MV,PHD ISIRS VICE PRESIDENT FOR CORPORATE PLANNING
AND INTERNATIONAL RELATIONS
SO CURRENT CONTENTS/LIFE SCIENCES
LA English
DT Article
CR GARFIELD E, 1971, CURRENT CONTENT 0804, P5
GARFIELD E, 1972, CURRENT CONTENT 1101, P5
NR 2
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
SN 0011-3409
J9 CC/LIFE SCIENCES
PY 1972
VL 15
IS 17
BP 3
EP &
PG 0
SC Multidisciplinary Sciences; Social Sciences, Interdisciplinary
GA ZZ183
UT ISI:A1972ZZ18300001
ER
PT J
AU GARFIELD, E
TI WHO IS PUBLISHING IN SCIENCE-AND HOW MUCH
SO CURRENT CONTENTS/LIFE SCIENCES
LA English
DT Article
CR GARFIELD E, 1969, CURRENT CONTENTS LIF, V12, P9
GARFIELD E, 1971, CURRENT CONTENTS LIF, V14, P4
NR 2
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
SN 0011-3409
J9 CC/LIFE SCIENCES
PY 1971
VL 14
IS 17
BP 4
EP &
PG 0
SC Multidisciplinary Sciences; Social Sciences, Interdisciplinary
GA ZZ235
UT ISI:A1971ZZ23500001
ER
PT J
AU GARFIELD, E
TI INFORMATION SCIENCE AND INFORMATION-CONSCIOUS SOCIETY
SO JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
LA English
DT Article
C1 INST SCIENTIFIC INFORMATION,PHILADELPHIA,PA.
CR LAURITIS E, 1970, LEGAL AID BRIEFCASE, V28, P205
NR 1
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0002-8231
J9 J AMER SOC INFORM SCI
JI J. Am. Soc. Inf. Sci.
PY 1971
VL 22
IS 2
BP 71
EP 73
PG 3
SC Computer Science, Information Systems; Information Science & Library
Science
GA Y1560
UT ISI:A1971Y156000001
ER
PT J
AU GARFIELD, E
REVESZ, GS
GRANITO, CE
DORR, HA
CALDERON, MM
WARNER, A
TI INDEX CHEMICUS REGISTRY SYSTEM . PRAGMATIC APPROACH TO SUBSTRUCTURE
CHEMICAL RETRIEVAL
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR 1969, RADIICAL USERS MANUA
FINLAY AC, PRIVATE COMMUNICATIO
FRACTION GF, 1968, 432 NATL BUR STD TEC
GRANITO CE, 1965, J CHEM DOC, V5, P229
HYDE E, 1967, J CHEM DOC, V7, P200
KULPINSKI S, C467 NSF CONTR
KULPINSKI S, 1967, STUDY IMPLEMENTATION, V1
KULPINSKI S, 1967, STUDY IMPLEMENTATION, V2
REVESZ GS, 1969, J CHEM DOC, V9, P106
SMITH EG, 1968, WISWESSER LINE FORMU
WISWESSER WJ, 1954, LINE FORMULA CHEMICA
NR 11
TC 25
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1970
VL 10
IS 1
BP 54
EP &
PG 0
SC Computer Science, Interdisciplinary Applications
GA F4684
UT ISI:A1970F468400017
ER
PT J
AU GARFIELD, E
TI METHODS AND OBJECTIVES IN JUDGING INFORMATION CONTENT OF DOCUMENT TITLES
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR BOTTLE RT, 1962, USE CHEMICAL LITERAT
BOTTLE RT, 1965, J DOC, V21, P177
GARFIELD E, CITED INDIRECTLY
GARFIELD E, 1967, AM BEHAV SCI, V10, P29
GARFIELD E, 1967, J CHEM DOCUMENTATION, V7, P147
GARFIELD E, 1970, CURRENT CONTENTS, V14, P4
LAKEY SV, 1949, B MED LIBR ASSOC, V37, P121
OCONNOR J, 1964, J ASSOC COMPUT MACH, V11, P437
RESNICK A, 1961, SCIENCE, V134, P1004
STEVENS ME, 1964, STATISTICAL ASSOCIAT, P189
WOOD DN, 1970, METHODS INFORMATION, V9, P46
NR 11
TC 6
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1970
VL 10
IS 4
BP 260
EP &
PG 0
SC Computer Science, Interdisciplinary Applications
GA I0269
UT ISI:A1970I026900008
ER
PT J
AU REVESZ, GS
GRANITO, CE
GARFIELD, E
TI ONE-LETTER NOTATION FOR CALCULATING MOLECULAR FORMULAS AND SEARCHING
LONG-CHAIN PEPTIDES IN INDEX-CHEMICUS-REGISTRY-SYSTEM
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR 1968, NATURE, V218, P10
BRAND E, 1945, J AM CHEM SOC, V67, P1524
DAYHOFF MO, 1965, ATLAS PROTEIN SEQUEN
DAYHOFF MO, 1968, ATLAS PROTEIN SEQUEN
ECK RV, 1966, ATLAS PROTEIN SEQUEN
GAMOV G, 1958, S INFORMATION THEORY
GARFIELD E, 1970, J CHEM DOC, V10, P54
GRANITO CE, 1965, J CHEM DOC, V5, P229
REID KBM, 1968, BIOCHEM J, V110, P289
REVESZ GS, 1968, NATURE ENGLAND, V219, P1113
REVESZ GS, 1969, J CHEM DOC, V2, P106
SMITH EG, 1968, WISWESSER LINE FORMU
SORM F, 1961, COLLECT CZECH CHEM C, V26, P531
SORTER PF, 1964, J CHEM DOC, V4, P56
WEBER U, 1968, Z PHYSIOL CHEM, V349, P1431
WISWESSER WJ, 1954, LINE FORMULA CHEMICA
WISWESSER WJ, 1964, CHEM ENG NEWS, V42, P4
NR 17
TC 3
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1970
VL 10
IS 3
BP 212
EP &
PG 0
SC Computer Science, Interdisciplinary Applications
GA H1166
UT ISI:A1970H116600011
ER
PT J
AU GARFIELD, E
TI CITATION INDEXING FOR STUDYING SCIENCE
SO NATURE
LA English
DT Article
CR 1969, NATURE, V224, P529
BAYER AE, 1966, SOCIOL EDUC, V39, P381
COLE S, 1967, AM SOCIOL REV, V32, P377
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1957, J PATENT OFFICE SOC, V39, P583
GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 1967, DIAGONAL DISPLAY NEW
GARFIELD E, 1968, 135 M AM ASS ADV SCI
GARFIELD E, 1968, F ACCESS KNOWLEDGE, P169
GIULIANO VE, 1963, IEEE T MIL ELEC, MIL7, P221
MALIN MV, 1968, LIBR TRENDS, V16, P374
MARTINO JP, IN PRESS
MARTINO JP, 1967, AD656366D DOC, P226
MARTYN J, 1965, ASLIB P, V17, P184
MARTYN J, 1968, ASLIB1 OCC PUB
PARKER EB, 1967, REPORT STANFORD U PR
PRICE DJD, 1965, B ATOM SCI, V21, P2
PRICE DJD, 1965, SCIENCE, V149, P510
SPENCER CC, 1967, AM DOC, V18, P87
WATSON JD, 1968, DOUBLE HELIX
ZIRKLE C, 1964, J HERED, V55, P65
NR 21
TC 134
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PY 1970
VL 227
IS 5259
BP 669
EP &
PG 0
SC Multidisciplinary Sciences
GA H0226
UT ISI:A1970H022600017
ER
PT J
AU GARFIELD, E
TI WHO AND WHY OF ISI
SO CURRENT CONTENTS/LIFE SCIENCES
LA English
DT Article
CR GARFIELD E, 1964, AM BEHAV SCI, V7, P58
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1964, USE CITATION DATA WR, P75
GARFIELD E, 1967, AM BEHAV SCI, V10, P29
GARFIELD E, 1967, J LIBRARY HISTORY, V2, P235
GARFIELD E, 1968, CHEMISTRY, V41, P24
MALIN MV, 1968, LIBR TRENDS, V16, P374
NR 7
TC 0
PU INST SCI INFORM INC
PI PHILADELPHIA
PA 3501 MARKET ST, PHILADELPHIA, PA 19104
SN 0011-3409
J9 CC/LIFE SCIENCES
PY 1969
VL 12
IS 12
BP 5
EP &
PG 0
SC Multidisciplinary Sciences; Social Sciences, Interdisciplinary
GA ZZ290
UT ISI:A1969ZZ29000002
ER
PT J
AU GARFIELD, E
TI ROLE OF MEDICAL LIBRARIAN IN SDI SYSTEMS
SO BULLETIN OF THE MEDICAL LIBRARY ASSOCIATION
LA English
DT Article
CR BROWN WS, 1967, SCIENCE, V158, P1153
DORR HA, 1968, AM J PHARMACEUTICAL, V32, P177
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1967, AM BEHAV SCI, V10, P29
GARFIELD E, 1967, J CHEM DOCUMENTATION, V7, P147
GARFIELD E, 1968, CURR CONTENTS, V2, P5
MALIN MV, 1968, LIBR TRENDS, V16, P374
NR 7
TC 7
PU MEDICAL LIBRARY ASSOC
PI CHICAGO
PA 65 EAST WACKER PLACE, STE 1900, CHICAGO, IL 60601-7298
SN 0025-7338
J9 BULL MED LIBR ASSN
JI Bull. Med. Libr. Assoc.
PY 1969
VL 57
IS 4
BP 348
EP &
PG 0
SC Information Science & Library Science
GA E4518
UT ISI:A1969E451800005
ER
PT J
AU GARFIELD, E
TI WORLD BRAIN OR MEMEX - MECHANICAL AND INTELLECTUAL REQUIREMENTS FOR
UNIVERSAL BIBLIOGRAPHIC CONTROL
SO FRONTIERS OF LIBRARIANSHIP-SYRACUSE UNIVERSITY
LA English
DT Article
CR 1965, 5164019A I SCIENT IN
AVAKIAN E, 1957, SPEC LIBR, V48, P145
BECKER J, 1963, INFORMATION STORAGE, P144
BECKER J, 1963, INFORMATION STORAGE, P236
BECKER J, 1963, INFORMATION STORAGE, P371
BORKO H, 1964, TM1763 TECHN MEM
BUSH V, 1945, ATLANTIC MONTHLY, V176, P101
CARLSON G, 1964, SEARCH STRATEGY REFE
CLAPP VW, 1964, FUTURE RESEARCH LIBR, P18
CLAPP VW, 1964, FUTURE RESEARCH LIBR, P19
CLARKE BL, 1964, SCIENCE, V143, P822
CROW JF, 1965, SCIENCE, V148, P1579
DOYLE LB, 1963, SP1262 SYST DEV CORP
FAIRTHORNE RA, 1961, TOWARDS INFORMATION, P192
FANO RM, 1956, DOCUMENTATION ACTION, P238
GARFIELD E, 1959, 1958 P INT C SCI INF, P461
GARFIELD E, 1961, J CHEM DOC, V1, P70
GARFIELD E, 1963, 1 ANN S BIOM COMP SC
GARFIELD E, 1963, AUTOMATION SCIENTI 3, P419
GARFIELD E, 1964, AM BEHAV SCI, V7, P58
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1964, USE CITATION DATA WR
GARFIELD E, 1965, 269 NAT BUR STAND MI, P189
GARNER R, 1965, THESIS DREXEL I TECH
KAREL L, 1965, SCIENCE WASHINGTON, V148, P766
KAREL L, 1965, SCIENCE, V148, P1257
KESSLER MM, 1963, AM DOC, V14, P10
KESSLER MM, 1965, PHYS TODAY, V18, P28
LEDERBERG J, 1963, NATURE, V198, P428
LEDERBERG J, 1964, MAN HIS FUTURE, P263
LINEWEAVER H, 1934, J AM CHEM SOC, V56, P658
MARON ME, 1960, J ACM, V7, P216
MARRON H, 1963, PHYS TODAY, V16, P34
MONTGOMERY C, 1962, AM DOC, V13, P359
MOOERS C, 1951, AM DOC, V2, P20
MUELLER G, 1965, NATURE, V205, P1200
OCONNOR J, 1964, J ASSOC COMPUT MACH, V11, P437
PARKERRHODES AF, 1960, THEORY CLUMPS
PRICE DJD, 1965, SCIENCE, V149, P510
RICE CN, 1965, J CHEM DOC, V5, P163
SAGE CR, 1965, AM DOCUMENTATION, V16, P185
SALTON G, 1963, J ACM, V10, P440
SHER IH, 1965, 2 OFF NAV RES C RES
SHERA JH, 1956, DOCUMENTATION ACT ED, P238
SOKAL RR, 1963, PRINCIPLES NUMERICAL
STEVENS ME, 1964, AFIPS C P, V25, P563
SWENSON S, 1965, SPEC LIBR, V56, P239
TAUBER MR, 1953, SUBJECT ANALYSIS LIB
TAYLOR RS, 1962, AM DOC, V13, P391
TUKEY JW, 1962, J CHEM DOCUMENTATION, V2, P34
UREY HC, 1952, PLANETS
UREY HC, 1962, SCIENCE, V137, P623
VEANER AB, 1965, J MEDICAL EDUCATION, V40, P43
WARBURG O, 1965, KLINISCH WOCHENSCHR, V43, P289
WELLS HG, 1938, WORLD BRAIN
WOLSTENHOLME G, 1964, MAN HIS FUTURE ED, P263
NR 56
TC 14
J9 FRONT LIBRARIANSH-SYRACUSE U
PY 1968
IS 8
BP 169
EP &
PG 0
SC Computer Science, Information Systems; Instruments & Instrumentation
GA C7672
UT ISI:A1968C767200016
ER
PT J
AU GARFIELD, E
SHER, IH
TI ISIS EXPERIENCES WITH ASCA - A SELECTIVE DISSEMINATION SYSTEM
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1965, 8 SYR U SCH LIBR SCI
GORN S, 1962, P S PURE MATHEMATICS, V5, P201
KEEN EM, 1964, ASLIB P, V16, P246
LUHN HP, 1961, AM DOC, V12, P131
RICE CN, 1965, J CHEM DOC, V5, P163
ROGERS FB, 1966, B MED LIBR ASS, V54, P1
SAGE CR, 1965, AM DOCUMENTATION, V16, P185
SIMKINS MA, 1967, CHEM IND LONDON, V3, P122
NR 10
TC 26
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1967
VL 7
IS 3
BP 147
EP &
PG 0
SC Computer Science, Interdisciplinary Applications
GA 97738
UT ISI:A19679773800013
ER
PT J
AU GARFIELD, E
SHER, IH
TI ASCA (AUTOMATIC SUBJECT CITATION ALERT) - A NEW PERSONALIZED CURRENT
AWARENESS SERVICE FOR SCIENTISTS
SO AMERICAN BEHAVIORAL SCIENTIST
LA English
DT Article
CR GARFIELD E, 1964, AM BEHAV SCI, V7, P58
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1966, KARGER GAZETTE, P2
GARFIELD E, 1966, SCIENCE, V154, P762
SMITH JF, 1964, CHEM ENG NEWS, V42, P55
NR 5
TC 25
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320
SN 0002-7642
J9 AMER BEHAV SCI
JI Am. Behav. Sci.
PY 1967
VL 10
IS 5
BP 29
EP &
PG 0
SC Psychology, Clinical; Social Sciences, Interdisciplinary
GA 92641
UT ISI:A19679264100007
ER
PT J
AU GARFIELD, E
TI PATENT CITATION INDEXING AND NOTIONS OF NOVELTY SIMILARITY AND RELEVANCE
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR ADAIR WC, 1955, AM DOC, V63, P31
GARFIELD E, 1957, J PATENT OFFICE SOC, V39, P583
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1965, JUL S F ACC KNOWL SY
HART HC, 1949, J PAT OFF SOC, V37, P714
KESSLER MM, 1963, AM DOC, V14, P10
SALTON G, 1963, J ACM, V10, P440
SEIDEL AH, 1949, J PATENT OFFICE SOC, V31, P554
SOKAL RR, 1963, PRINCIPLES NUMERICAL
SPENCER RA, 1964, PRIVATE COMMUNICATIO
TAYLOR RS, 1962, AM DOC, V13, P31
NR 11
TC 15
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1966
VL 6
IS 2
BP 63
EP &
PG 0
SC Computer Science, Interdisciplinary Applications
GA 78423
UT ISI:A19667842300003
ER
PT J
AU GARFIELD, E
TI SCIENCE CITATION INDEX - ANSWERS TO FREQUENTLY ASKED QUESTIONS
SO REVUE INTERNATIONALE DE LA DOCUMENTATION
LA English
DT Article
CR BRADFORD SC, 1946, ROYAL SOC EMPIRE SCI, P729
CLEVERDON C, 1964, NATURE, V203, P446
CLEVERDON CW, 1964, REV I DOCUMENTATION, V31, P161
COLE PF, 1962, J DOC, V18, P58
GARFIELD E, ABSTRACTS PAPERS, G12
GARFIELD E, 1964, 148 M AM CHEM SOC DI
GARFIELD E, 1964, AM BEHAV SCI, V7, P58
GARFIELD E, 1964, MAR NAT BUR STAND DO
GARFIELD E, 1964, NSFC332 NAT SCIENC F
GARFIELD E, 1964, SCIENCE, V144, P649
GARFIELD E, 1965, SCITECH NEWS, V18, P133
GARFIELD E, 1965, SCITECH NEWS, V18, P142
KEENAN S, 1964, AIPDRPPA1 AM I PHYS
STONEHILL HI, 1965, CHEM INDUS, V10, P416
NR 14
TC 3
J9 REV INT DOC
PY 1965
VL 32
IS 3
BP 112
EP &
PG 0
SC Computer Science, Information Systems
GA 69932
UT ISI:A19656993200006
ER
PT J
AU GARFIELD, E
STEVENS, LJ
TI ON THE SCIENCE-CITATION-INDEX (SCI) AND RELATED RECENT DEVELOPMENTS
SO NACHRICHTEN FUR DOKUMENTATION
LA German
DT Article
CR GARFIELD E, 1963, AM DOC, V14, P289
GARFIELD E, 1964, SCIENCE, V144, P649
MODEL F, 1964, NACHR DOKUMENTATION, V15, P122
NR 3
TC 1
PU VERLAG HOPPENSTEDT & CO
PI DARMSTADT 1
PA POSTFACH 40 06, HAVELSTR 9, D-6100 DARMSTADT 1, GERMANY
SN 0027-7436
J9 NACHR DOK
JI Nachr. Dok.
PY 1965
VL 16
IS 3
BP 130
EP 140
PG 11
SC Information Science & Library Science
GA CEP90
UT ISI:A1965CEP9000003
ER
PT J
AU GARFIELD, E
TI SCIENCE CITATION INDEX-NEW DIMENSION IN INDEXING - UNIQUE APPROACH
UNDERLIES VERSATILE BIBLIOGRAPHIC SYSTEMS FOR COMMUNICATING +
EVALUATING INFORMATION
SO SCIENCE
LA English
DT Article
CR 1961, PROPOSAL MEDLARS
1962, J BIOL CHEM, V237, P3315
1963, NATIONAL INFORMATION
ADAIR WC, 1955, AM DOC, V6, P31
ATHERTON P, 1962, 3 EXP CIT IND BIBL C
AVAKIAN EA, 1956, SPEC LIBRARIES, V48, P145
BENNETT G, 1961, SCITECH NEWS, V15, P129
BERNAL JD, 1963, SCIENTIST SPECULATES, P11
BORING EG, 1955, SCI MONTHLY, V80, P101
BUSH V, 1945, ATLANTIC MONTHLY, V176, P101
CEZAIRLIYAN AO, 1960, 11 THERM PROP RES CE
CLARKE BL, 1964, SCIENCE, V143, P822
CROSS LC, 1964, PERSONAL COMMUNICATI
ERNST HA, 1959, THESIS MASSACHUSETTS
FANO RM, 1959, PRIVATE MEMORANDUM
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1956, CHEM B, V43, P11
GARFIELD E, 1956, SCIENCE, V123, P62
GARFIELD E, 1957, J PATENT OFFICE SOC, V39, P583
GARFIELD E, 1957, P INTERNATIONAL STUD, P98
GARFIELD E, 1959, 1958 P INT C SCI INF, P461
GARFIELD E, 1961, J CHEM DOC, V1, P70
GARFIELD E, 1963, AM DOC, V14, P289
GARFIELD E, 1963, GENETICS CITATION IN
GARFIELD E, 1963, NATIONAL INFORMATION, P226
GARFIELD E, 1963, P AM DOC I 1, P45
GARFIELD E, 1963, SCIENCE CITATION IND
GOOD IJ, 1963, SCIENTIST SPECULATES, P11
HANSON CW, 1960, J DOCUMENTATION, V16, P65
HART HC, 1949, J PATENT OFFICE SOC, V31, P714
HERNER S, 1956, SCI MONTHLY, V83, P82
HOAGLAND H, 1964, SCIENCE, V143, P111
HUMPHREY HH, 1963, INTERAGENCY COORDINA
KESSLER MM, 1961, P W JOINT COMP C CAM, P247
KESSLER MM, 1963, AM DOC, V14, P10
LIPETZ BA, 1962, AM DOC, V13, P251
LOWRY OH, 1951, J BIOL CHEM, V193, P265
LYKOUDIS PS, 1959, P INTERNATIONAL C SC, V1, P351
MADDOX J, 1963, B ATOMIC SCI, V19, P14
MAZUR RH, 1962, J BIOL CHEM, V237, P1619
MURRA KO, 1951, BIBLIOGRAPHIC ORGANI, P24
REIF F, 1961, SCIENCE, V134, P1957
SALTON G, 1963, J ACM, V10, P440
SAVAGE IR, 1962, BIBLIOGRAPHY NONPARA
SCHOENBACH UH, 1956, SCIENCE, V123, P61
SCHWARTZ DP, 1958, ANAL CHEM, V30, P219
SEIDEL AH, 1949, J PATENT OFFICE SOC, V31, P554
SENDERS JW, 1963, SCIENCE, V141, P1067
SHERA JH, 1951, BIBLIOGRAPHIC ORGANI
SHERA JH, 1951, BIBLIOGRAPHIC ORGANI, P24
TUKEY JW, 1962, J CHEM DOCUMENTATION, V2, P34
TUKEY JW, 1962, PRINCETON U STATISTI
WEINBERG AM, 1963, SCIENCE GOVERNMENT I
WELLS HG, 1938, WORLD BRAIN
NR 54
TC 109
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005
SN 0036-8075
J9 SCIENCE
JI Science
PY 1964
VL 144
IS 361
BP 649
EP &
PG 0
SC Multidisciplinary Sciences
GA 3060C
UT ISI:A19643060C00065
ER
PT J
AU GARFIELD, E
SHER, IH
TI NEW FACTORS IN EVALUATION OF SCIENTIFIC LITERATURE THROUGH CITATION
INDEXING
SO AMERICAN DOCUMENTATION
LA English
DT Article
CR COLE PF, 1962, J DOC, V18, P58
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1958, P INT C SCI INFORMAT, V1, P461
GROSS PLK, 1927, SCIENCE, V66, P385
RAISIG LM, 1960, SCIENCE, V131, P1417
WESTBROOK JH, 1960, SCIENCE, V132, P1229
NR 6
TC 78
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0096-946X
J9 AMER DOCUMEN
PY 1963
VL 14
IS 3
BP 195
EP &
PG 0
SC Computer Science, Information Systems; Information Science & Library
Science
GA 2557A
UT ISI:A19632557A00003
ER
PT J
AU GARFIELD, E
TI CITATION INDEXES IN SOCIOLOGICAL AND HISTORICAL RESEARCH
SO AMERICAN DOCUMENTATION
LA English
DT Article
CR ADAIR WC, 1955, AM DOC, V6, P31
ALLEN G, PRIVATE COMMUNICATIO
ALLEN GL, 1962, RESEARCH EVALUATION
BERNAL JD, PRIVATE COMMUNICATIO
BERNAL JD, 1953, SCIENCE INDUSTRY NIN, P230
BRODMAN E, 1944, MED LIB ASS B, V32, P479
EINSTEIN A, 1906, ANN PHYS-BERLIN, V19, P289
ELWORTHY PH, 1959, J CHEM SOC, P1951
GARFIELD E, 1955, SCIENCE, V122, P108
GARFIELD E, 1963, AM DOC, V14, P195
GROSS PLK, 1927, SCIENCE, V66, P385
KAHN AB, 1962, COMMUN ACM, V5, P558
KESSLER MM, 1963, AM DOC, V14, P10
LASSER DJ, 1961, CACM, V4, P167
LEAKE CD, PRIVATE COMMUNICATIO
LOWRY OH, 1951, J BIOL CHEM, V193, P265
MERTON RK, PRIVATE COMMUNICATIO
NEWELL A, PRIVATE COMMUNICATIO
PRICE DD, PRIVATE COMMUNICATIO
PRICE DD, 1963, LITTLE SCI BIG SCI, P41
RAISIG LM, 1960, SCIENCE, V131, P1417
SHRYOCK R, PRIVATE COMMUNICATIO
SWANSON DR, 1962, SPEC LIBRARIES, V53, P466
WESTBROOK JH, 1960, SCIENCE, V132, P1229
WHITNAH CH, 1959, J DAIRY SCI, V42, P227
NR 25
TC 69
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0096-946X
J9 AMER DOCUMEN
PY 1963
VL 14
IS 4
BP 289
EP &
PG 0
SC Computer Science, Information Systems; Information Science & Library
Science
GA 2556A
UT ISI:A19632556A00005
ER
PT J
AU GARFIELD, E
TI GENERIC SEARCHING BY USE OF ROTATED FORMULA INDEXES
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR ANSCHUTZ L, 1927, ANN, V454, P71
DYSON GM, 1952, CHEM IND, P676
FLETCHER JH, 1956, CHEM ENG NEWS, V34, P5888
GARFIELD E, 1954, COMMUNICATION 0901
GARFIELD E, 1961, 139TH NAT M AM CHEM, Q1
GARFIELD E, 1961, INDEX CHEM 1 CUMULAT, P1
PAULING L, 1952, J AM CHEM SOC, V74, P1111
PAULING L, 1952, J AM CHEM SOC, V74, P3172
PAULING L, 1962, COMMUNICATION 0804
RONWIN E, 1951, J AM CHEM SOC, V73, P5141
RONWIN E, 1954, COMMUNICATION 0924
SKOLNIK H, 1958, J CHEM EDUC, V35, P150
NR 12
TC 8
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1963
VL 3
IS 2
BP 97
EP 103
PG 7
SC Computer Science, Interdisciplinary Applications
GA XG088
UT ISI:A1963XG08800015
ER
PT J
AU GARFIELD, E
TI AN ALGORITHM FOR TRANSLATING CHEMICAL NAMES TO MOLECULAR FORMULAS
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR GARFIELD E, 1961, ALGORITHM TRANSLATIN
GARFIELD E, 1961, NATURE, V192, P192
NR 2
TC 19
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1962
VL 2
IS 3
BP 177
EP 179
PG 3
SC Computer Science, Interdisciplinary Applications
GA XG085
UT ISI:A1962XG08500021
ER
PT J
AU GARFIELD, E
TI INFORMATION THEORY AND OTHER QUANTITATIVE FACTORS IN CODE DESIGN FOR
DOCUMENT CARD SYSTEMS
SO JOURNAL OF CHEMICAL DOCUMENTATION
LA English
DT Article
CR 1955, UNITERM SYSTEM INDEX
1957, AM DOCUMENTATION, V8, P330
ANDREWS DD, 1957, ADV DOCUMENTATION LI, V2, P447
AVAKIAN E, 1957, SPEC LIBR, V48, P145
BAILY ME, 1953, J PATENT OFFICE SOC, V35, P566
BALL NT, 1955, AM DOC, V6, P88
BATTEN WE, 1951, PUNCHED CARDS, P169
BEARD RL, 1952, SCIENCE, V116, P553
BERKSON J, 1936, AM J PUBLIC HEALTH, V26, P606
CASEY RS, 1958, PUNCHED CARDS THEIR
CAWKELL AE, ELECTRONIC ENGINEE 1, V39, P212
CAWKELL AE, ELECTRONIC ENGINEE 2, V39, P302
CAWKELL AE, INFORMATION PROCESSI, V11, P243
COSTELLO JC, 1961, AM DOC, V12, P20
CRISTINA SX, 1958, HOSPITAL MANAGEMEN 1, V72, P111
CRISTINA SX, 1958, HOSPITAL MANAGEMEN 2, V86, P82
GARFIELD E, 1954, AM DOC, V5, P7
GARFIELD E, 1961, NATURE, V192, P192
HAYES RM, 1959, MAGNACARD SYSTEM
HEUMANN KF, 1955, SEP AM CHEM SOC M
HILDEBRAND JH, STRUCTURE PROPERTY R, P1
HIMWICH WA, 1955, FINAL REPORT MACHINE
LUHN HP, 1959, EMERGING SOLUTIONS M, V5, P112
MOOERS C, 1951, AM DOC, V2, P20
MOOERS CN, 1951, 66 ZAT TECHN B
MOOERS CN, 1952, AUG INT C MATH HARV, P572
MOOERS CN, 1956, ASLIB PROC 1, V8, P3
MOOERS CS, 1950, AM DOC, V1, P225
NOLAN JJ, 1959, AM DOC, V10, P27
OTLET P, 1934, TRAITE DOCUMENTATION, P388
PERRY JW, 1958, TOOLS MACHINE LITERA, P489
REES TH, 1958, PUNCHED CARDS THEIR, P30
SAMAIN J, 1952, FILMOREX NOUVELLE TE
SCHULTZ CK, 1958, PUNCHED CARDS THEIR, P232
SHANNON CE, 1948, BELL SYST TECH J, V27, P379
SHANNON CE, 1948, BELL SYST TECH J, V27, P623
SHANNON CE, 1949, BELL SYST TECH J, V28, P656
SHANNON CE, 1949, MATHEMATICAL THEORY
SHANNON CE, 1958, ENCYCL BRITANNICA, V12, P350
SHAW RR, 1949, J DOC, V5, P164
STEIDLE W, 1957, PHARMAZEUTISCHE INDU, V19, P88
TAUBE M, 1953, STUDIES COORDINATE I
TAUBE M, 1953, STUDIES COORDINATE I, V1
TAUBE M, 1957, MECHANIZATION DATA R, V5, P55
TAUBE M, 1959, P INT C SCIENTIFIC I, V2, P1245
WHALEY FR, 1961, AM DOC, V12, P101
WISE CS, 1952, AM DOC, V3, P223
WISWESSER WJ, 1954, LINE FORMULA CHEMICA
NR 48
TC 10
PU J CHEMICAL DOCUMENTATION
PI WASHINGTON
PA WASHINGTON, DC
SN 0021-9576
J9 J CHEM DOC
PY 1961
VL 1
IS 1
BP 70
EP 75
PG 6
SC Computer Science, Interdisciplinary Applications
GA XG080
UT ISI:A1961XG08000020
ER
PT J
AU AVAKIAN, EA
GARFIELD, E
TI AMFIS - THE AUTOMATIC MICROFILM INFORMATION-SYSTEM
SO SPECIAL LIBRARIES
LA English
DT Article
NR 0
TC 9
PU SPECIAL LIBRARIES ASSN
PI WASHINGTON
PA 1700 EIGHTEENTH ST NW, WASHINGTON, DC 20009-2508
SN 0038-6723
J9 SPEC LIBR
JI Spec. Libr.
PY 1957
VL 48
IS 4
BP 145
EP 148
PG 4
SC Information Science & Library Science
GA CEG57
UT ISI:A1957CEG5700003
ER
PT J
AU GARFIELD, E
TI BREAKING THE SUBJECT INDEX BARRIER - A CITATION INDEX FOR CHEMICAL
PATENTS
SO JOURNAL OF THE PATENT OFFICE SOCIETY
LA English
DT Article
CR ADAIR WC, 1955, AM DOC, V6, P31
CRANE EJ, 1955, CHEM ENG NEWS, V33, P2752
GARFIELD E, 1955, SCIENCE, V122, P108
HART HC, 1949, J PATENT OFFICE SOC, V31, P714
SEIDEL AH, 1949, J PATENT OFFICE SOC, V31, P554
NR 5
TC 26
PU PATENT AND TRADEMARK OFF SOC
PI ARLINGTON
PA PO BOX 2600, ARLINGTON, VA 22202
SN 0096-3577
J9 J PAT OFF SOC
PY 1957
VL 39
IS 8
BP 583
EP 595
PG 13
SC Business; Information Science & Library Science; Law
GA CDQ37
UT ISI:A1957CDQ3700004
ER
PT J
AU ROCKWELL, HE
HAYNE, RL
GARFIELD, E
TI A UNIQUE SYSTEM FOR RAPID ACCESS TO LARGE VOLUME OF PHARMACOLOGICAL
DATA - APPLICATION TO PUBLISHED LITERATURE ON CHLORPROMAZINE
SO FEDERATION PROCEEDINGS
LA English
DT Article
NR 0
TC 5
PU FEDERATION AMER SOC EXP BIOL
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998
SN 0014-9446
J9 FED PROC
PY 1957
VL 16
IS 3
BP 726
EP 731
PG 6
SC Biology
GA WE228
UT ISI:A1957WE22800015
ER
PT J
AU GARFIELD, E
TI CITATION INDEXES FOR SCIENCE - NEW DIMENSION IN DOCUMENTATION THROUGH
ASSOCIATION OF IDEAS
SO SCIENCE
LA English
DT Article
CR ADAIR WC, 1955, AM DOC, V6, P31
ANDREW AM, 1953, ELECTRON ENG, V25, P471
BEHNKE JA, 1954, SCIENCE, V120, P1055
BITNER H, 1954, COMMUNICATION APR
BRODMAN E, 1944, B MED LIB ASS, V32, P479
BUSA R, 1952, NACHR DOK, V3, P14
DENNIS W, 1954, SCI MONTHLY, V79, P180
FUSSLER HH, 1949, LIBRARY Q, V19, P19
GARFIELD E, UNPUBLISHED
GARFIELD E, 1954, SCIENCE, V120, P1039
GROSS PLK, 1927, SCIENCE, V66, P385
LEHMAN HC, 1954, SCI MONTHLY, V78, P321
SELYE H, 1946, J CLIN ENDOCRINOL, V6, P117
SHAW RR, 1951, MACHINES BIBLIOGRAPH, P19
THOMASSON P, 1955, SCIENCE, V121, P610
ZIRKLE C, 1954, SCIENCE, V120, P189
ZWORYKIN VK, 1947, P AM PHILOS SOC, V91, P139
NR 17
TC 295
PU AMER ASSOC ADVANCEMENT SCIENCE
PI WASHINGTON
PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005
SN 0036-8075
J9 SCIENCE
JI Science
PY 1955
VL 122
IS 3159
BP 108
EP 111
PG 4
SC Multidisciplinary Sciences
GA ZQ151
UT ISI:A1955ZQ15100002
ER
EF
FN ISI Export Format
VR 1.0
PT J
AU Colizza, V
Barrat, A
Barthelemy, M
Vespignani, A
TI The role of the airline transportation network in the prediction and
predictability of global epidemics
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
DE complex systems; epidemiology; networks
ID INFECTIOUS-DISEASE; MATHEMATICAL-MODEL; GEOGRAPHIC SPREAD; INFLUENZA;
OUTBREAKS; TRAVEL
AB The systematic study of large-scale networks has unveiled the
ubiquitous presence of connectivity patterns characterized by
large-scale heterogeneities and unbounded statistical fluctuations.
These features affect dramatically the behavior of the diffusion
processes occurring on networks, determining the ensuing statistical
properties of their evolution pattern and dynamics. In this article, we
present a stochastic computational framework for the forecast of global
epidemics that considers the complete worldwide air travel
infrastructure complemented with census population data. We address two
basic issues in global epidemic modeling: (i) we study the role of the
large scale properties of the airline transportation network in
determining the global diffusion pattern of emerging diseases; and (ii)
we evaluate the reliability of forecasts and outbreak scenarios with
respect to the intrinsic stochasticity of disease transmission and
traffic flows. To address these issues we define a set of quantitative
measures able to characterize the level of heterogeneity and
predictability of the epidemic pattern. These measures may be used for
the analysis of containment policies and epidemic risk assessment.
C1 Indiana Univ, Sch Informat, Bloomington, IN 47401 USA.
Indiana Univ, Ctr Biocomplex, Bloomington, IN 47401 USA.
Univ Paris 11, CNRS, Unite Mixte Rech 8627, F-91405 Orsay, France.
RP Vespignani, A, Indiana Univ, Sch Informat, Bloomington, IN 47401 USA.
EM alexv@indiana.edu
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ANDERSON RM, 1992, INFECT DIS HUMANS
BAROYAN OV, 1969, B INT EPIDEMIOL ASS, V18, P22
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
CHOWELL G, 2003, PHYS REV E 2, V68
CLIFF A, 2004, BRIT MED BULL, V69, P87
COHEN ML, 2000, NATURE, V406, P762
CRAIS RF, 2004, HLTH CARE MANAGE SCI, V7, P127
DICKMAN R, 1994, PHYS REV E, V50, P4404
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
EUBANK S, 2004, NATURE, V429, P180
FERGUSON NM, 2003, NATURE, V425, P681
FLAHAULT A, 1991, MATH POPUL STUD, V3, P1
GARDINER WC, 2004, HDB STOCHASTIC METHO
GASTNER MT, 2004, P NATL ACAD SCI USA, V101, P7499
GILLESPIE DT, 2000, J CHEM PHYS, V113, P297
GRAIS RF, 2003, EUR J EPIDEMIOL, V18, P1065
GUIMERA R, 2005, P NATL ACAD SCI USA, V102, P7794
HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
HUFNAGEL L, 2004, P NATL ACAD SCI USA, V101, P15124
KEELING MJ, 1999, P ROY SOC LOND B BIO, V266, P859
KRETZSCHMAR M, 1996, MATH BIOSCI, V133, P165
LLOYD AL, 2001, SCIENCE, V292, P1316
LONGINI IM, 1988, MATH BIOSCI, V90, P367
MARRO J, 1998, NONEQUILIBRIUM PHASE
MEYERS LA, 2005, J THEOR BIOL, V232, P71
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2003, EVOLUTION STRUCTURE
RVACHEV LA, 1985, MATH BIOSCI, V75, P3
ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
NR 30
TC 24
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 PROC NAT ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD FEB 14
PY 2006
VL 103
IS 7
BP 2015
EP 2020
PG 6
SC Multidisciplinary Sciences
GA 013LU
UT ISI:000235411600005
ER
PT J
AU Colizza, V
Flammini, A
Serrano, MA
Vespignani, A
TI Detecting rich-club ordering in complex networks
SO NATURE PHYSICS
LA English
DT Article
ID INTERNET TOPOLOGY
AB Uncovering the hidden regularities and organizational principles of
networks arising in physical systems ranging from the molecular level
to the scale of large communication infrastructures is the key issue in
understanding their fabric and dynamical properties(1-5). The
'rich-club' phenomenon refers to the tendency of nodes with high
centrality, the dominant elements of the system, to form tightly
interconnected communities, and it is one of the crucial properties
accounting for the formation of dominant communities in both computer
and social sciences(4-8). Here, we provide the analytical expression
and the correct null models that allow for a quantitative discussion of
the rich-club phenomenon. The presented analysis enables the
measurement of the rich-club ordering and its relation with the
function and dynamics of networks in examples drawn from the
biological, social and technological domains.
C1 Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
Indiana Univ, Dept Phys, Bloomington, IN 47406 USA.
RP Vespignani, A, Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
EM alexv@indiana.edu
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2004, EUR PHYS J B, V38, P147
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BIANCONI G, EMERGENCE LARGE CLIN
BOGUNA M, 2003, PHYS REV E 2, V68
BOGUNA M, 2004, EUR PHYS J B, V38, P205
COLIZZA V, 2005, PHYSICA A, V352, P1
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
FALOUTSOS M, 1999, COMP COMM R, V29, P251
GUIMERA R, 2005, NATURE, V433, P895
GUIMERA R, 2005, P NATL ACAD SCI USA, V102, P7794
GUIMERA R, 2005, SCIENCE, V308, P697
MASLOV S, 2002, SCIENCE, V296, P910
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
MOREIRA AA, 2002, PHYS REV LETT, V89
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
NEWMAN MEJ, 2003, PHYS REV E 2, V67
NEWMAN MEJ, 2003, SIAM REV, V45, P167
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PRICE DJ, 1986, LITTLE SCI BIG SCI
QIAN C, 2002, P IEEE INFOCOM NEW Y, V2, P608
VAZQUEZ A, 2002, PHYS REV E 2, V65
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
ZHOU S, 2004, IEEE COMMUN LETT, V8, P180
NR 28
TC 16
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD FEB
PY 2006
VL 2
IS 2
BP 110
EP 115
PG 6
SC Physics, Multidisciplinary
GA 014FM
UT ISI:000235464700021
ER
PT J
AU Vespignani, A
TI Behind enemy lines
SO NATURE PHYSICS
LA English
DT News Item
ID SPREAD; EPIDEMIOLOGY; COMPUTERS; NETWORKS; VIRUSES
AB Computer viruses can spread through networks with alarming speed. But
there is hope that those fighting the plague can keep up with the pace.
C1 Indiana Univ, Sch Informat, Dept Phys, Bloomington, IN 47406 USA.
Indiana Univ, Ctr Biocomplex, Bloomington, IN 47406 USA.
RP Vespignani, A, Indiana Univ, Sch Informat, Dept Phys, Bloomington, IN
47406 USA.
EM alexv@indiana.edu
CR BALTHROP J, 2004, SCIENCE, V304, P527
GOLDENBERG J, 2005, NAT PHYS, V1, P184
HOFMEYR S, 1999, EVOLUTIONARY COMPUTA, V7, P45
KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
LLOYD AL, 2001, SCIENCE, V292, P1316
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
SHANNON C, 2004, IEEE SECUR PRIV, V2, P46
NR 7
TC 0
PU NATURE PUBLISHING GROUP
PI LONDON
PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 1745-2473
J9 NAT PHYS
JI Nat. Phys.
PD DEC
PY 2005
VL 1
IS 3
BP 135
EP 136
PG 2
SC Physics, Multidisciplinary
GA 006HK
UT ISI:000234888400009
ER
PT S
AU Dall'Asta, L
Alvarez-Hamelin, I
Barrat, A
Vazquez, A
Vespignani, A
TI Traceroute-like exploration of unknown networks: A statistical analysis
SO COMBINATORIAL AND ALGORITHMIC ASPECTS OF NETWORKING
SE LECTURE NOTES IN COMPUTER SCIENCE
LA English
DT Article
ID BETWEENNESS; CENTRALITY; INTERNET
AB Mapping the Internet generally consists in sampling the network from a
limited set of sources by using traceroute-like probes. This
methodology has been argued to introduce uncontrolled sampling biases
that might produce statistical properties of the sampled graph which
sharply differ from the original ones. Here we explore these biases and
provide a statistical analysis of their origin. We derive a mean-field
analytical approximation for the probability of edge and vertex
detection that allows us to relate the global topological properties of
the underlying network with the statistical accuracy of the sampled
graph. In particular we show that shortest path routed sampling allows
a clear characterization of underlying graphs with scale-free topology.
We complement the analytical discussion with a throughout numerical
investigation of simulated mapping strategies in different network
models.
C1 Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
RP Dall'Asta, L, Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, Batiment
210, F-91405 Orsay, France.
CR BALDI P, 2003, PROBABILSISTIC METHO
BARABASAI AL, 1998, SCIENCE, V286, P509
BARTHELEMY M, 2004, EUR PHYS J B, V38, P163
BRANDES U, 2001, J MATH SOCIOL, V25, P163
BROIDO A, 2001, P SPIE INT S CONV IT
BURCH H, 1999, IEEE COMPUT, V32, P97
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CHEN Q, 2002, P IEEE INFOCOM 2002
CLAUSET A, 2003, ARXIVCONDMAT0312674
DOROGOVTSEV SN, 2001, PHYS REV E 1, V63
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, ACM SIGCOMM COMPUTER, V29, P251
FREEMAN LC, 1977, SOCIOMETRY, V40, P35
GOH KI, 2001, PHYS REV LETT, V87
GOVINDAN R, 2000, P IEEE INFOCOM, V3, P1371
JIN C, 2000, CSETR43300 EECS DEPT
LAKHINA A, 2002, BUCSTR2002021 BOST U
MEDINA A, 2000, BUCSTR2000005 BOST U
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PETERMANN T, 2004, EUR PHYS J B, V38, P201
VAZQUEZ A, 2002, PHYS REV E 2, V65
WATTS DJ, 1998, NATURE, V393, P440
WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
NR 25
TC 2
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
J9 LECT NOTE COMPUT SCI
PY 2005
VL 3405
BP 140
EP 153
PG 14
SC Computer Science, Theory & Methods
GA BCT65
UT ISI:000231145300013
ER
PT J
AU Vergassola, M
Vespignani, A
Dujon, B
TI Cooperative evolution in protein complexes of yeast from comparative
analyses of its interaction network
SO PROTEOMICS
LA English
DT Article
DE comparative analyses; evolution; protein-protein interaction networks;
Saccharomyces cerevisiae
ID SACCHAROMYCES-CEREVISIAE; SIMPLE DEPENDENCE; DATA SETS; NUMBER;
GENERATION
AB A comparative analysis among Saccharomyces cerevisiae and the other
four yeasts Candida glabrata, Kluyveromyces lactis, Debaryomyces
hansenii, and Yarrowia lipolytica is presented. The broad evolutionary
range spanned by the organisms allows to quantitatively demonstrate
novel evolutionary effects in protein complexes. The evolution rates
within cliques of interlinked proteins are found to bear strong
multipoint correlations, witnessing a cooperative coevolution of
complex subunits. The coevolution is found to be largely independent of
the tendency of the subunits to have similar abundances.
C1 Inst Pasteur, Dept Struct & Dynam Genomes, Unite Genom Microorganismes Pathogenes, CNRS URA 2171, F-757724 Paris, France.
Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Orsay, France.
Univ Paris 06, Inst Pasteur, Unite Genet Mol Levures, UFR 927, Paris, France.
Univ Paris 06, Inst Pasteur, Unite Genet Mol Levures, CNRS URA 2171, Paris, France.
RP Vergassola, M, Inst Pasteur, Dept Struct & Dynam Genomes, Unite Genom
Microorganismes Pathogenes, CNRS URA 2171, 28 Rue Dr Roux, F-757724
Paris, France.
EM massimo@pasteur.fr
CR ALBERTS B, 1998, CELL, V92, P291
ALTSCHUL SF, 1997, NUCLEIC ACIDS RES, V25, P3389
BLOOM JD, 2003, BMC EVOL BIOL, V3
DUJON B, 2004, NATURE, V430, P35
FRASER HB, 2002, SCIENCE, V296, P750
FRASER HB, 2003, BMC EVOL BIOL, V3
GAVIN AC, 2002, NATURE, V415, P141
GHAEMMAGHAMI S, 2003, NATURE, V425, P737
GOH CS, 2000, J MOL BIOL, V299, P283
HARTWELL LH, 1999, NATURE, V402, P47
HO Y, 2002, NATURE, V415, P180
ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
JEONG H, 2001, NATURE, V411, P41
JORDAN IK, 2003, BMC EVOL BIOL, V3
MILO R, 2002, SCIENCE, V298, P824
PAL C, 2001, GENETICS, V158, P927
PAZOS F, 2002, PROTEINS, V47, P219
PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
UETZ P, 2000, NATURE, V403, P623
VALENCIA A, 2002, CURR OPIN STRUC BIOL, V12, P368
VONMERING C, 2002, NATURE, V417, P399
WILCOXON F, 1945, BIOMETRICS, V1, P80
WUCHTY S, 2003, NAT GENET, V35, P176
NR 23
TC 2
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 1615-9853
J9 PROTEOMICS
JI Proteomics
PD AUG
PY 2005
VL 5
IS 12
BP 3116
EP 3119
PG 4
SC Biochemical Research Methods; Biochemistry & Molecular Biology
GA 956QW
UT ISI:000231315900015
ER
PT J
AU Barrat, A
Barthelemy, M
Vespignani, A
TI The effects of spatial constraints on the evolution of weighted complex
networks
SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT
LA English
DT Article
DE network dynamics; random graphs; networks
ID SMALL-WORLD NETWORKS; SCALE-FREE; RANDOM GRAPHS; TOPOLOGY
AB Motivated by the empirical analysis of the air transportation system,
we de. ne a network model that includes geographical attributes along
with topological and weight (traffic) properties. The introduction of
geographical attributes is made by constraining the network in real
space. Interestingly, the inclusion of geometrical features induces
non-trivial correlations between the weights, the connectivity pattern
and the actual spatial distances of vertices. The model also recovers
the emergence of anomalous fluctuations in the betweenness-degree
correlation function as first observed by Guimera a and Amaral (2004
Eur. Phys. J. B 38 381). The presented results suggest that the
interplay between weight dynamics and spatial constraints is a key
ingredient in order to understand the formation of real-world weighted
networks.
C1 Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
Indiana Univ, Biocomplex Ctr, Bloomington, IN 47406 USA.
RP Barrat, A, Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Batiment 210,
F-91405 Orsay, France.
EM Alain.Barrat@th.u-psud.fr
mbarthel@indiana.edu
alexv@indiana.edu
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALMAAS E, 2004, NATURE, V427, P839
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANTAL T, 2004, CONDMAT0408285
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2004, LECT NOTES COMPUT SC, V3243, P56
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BARRAT A, 2004, PHYS REV E 2, V70
BARRAT A, 2004, PHYS REV LETT, V92
BARRAT A, 2005, PHYS REV E 2, V71
BARTHELEMY M, 2003, EUR PHYS J B, V38, P163
BARTHELEMY M, 2003, EUROPHYS LETT, V63, P915
BIANCONI G, CONDMAT0412399
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
DOROGOVTSEV SN, 2004, CONDMAT0408343
FREEMAN LC, 1977, SOCIOMETRY, V40, P35
GARLASCHELLI D, 2005, PHYSICA A, V350, P491
GASTNER MT, 2004, CONDMAT0407680
GASTNER MT, 2004, CONDMAT0409702
GOH KI, 2001, PHYS REV LETT, V87
GORMAN SP, 2003, UNPUB ENV PLANNING B
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GUIMERA R, 2003, CONDMAT0312535
GUIMERA R, 2004, EUR PHYS J B, V38, P381
HELMY A, 2002, CSNI0207069
KRAUSE AE, 2003, NATURE, V426, P282
LAKHINA A, TECHNICAL REPORT
LI C, 2003, CONDMAT0311333
LI W, 2004, PHYS REV E 2, V69
MANNA SS, 2002, PHYS REV E 2, V66
MASUDA N, 2005, PHYS REV E 2, V71
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
MUKHERJEE G, 2005, CONDMAT0503697
NEMETH G, 2003, PHYS REV E 2, V67
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
ONNELA JP, 2004, CONDMAT0408629
PANDYA RVR, 2004, CONDMAT0406644
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
VAZQUEZ A, 2002, PHYS REV E 2, V65
WANG WX, 2005, CONDMAT0501215
WATTS DJ, 1998, NATURE, V393, P440
WAXMAN BM, 1988, IEEE J SEL AREA COMM, V6, P1617
XULVIBRUNET R, 2002, PHYS REV E 2, V66
YOOK SH, 2001, PHYS REV LETT, V86, P5835
YOOK SH, 2002, P NATL ACAD SCI USA, V99, P13382
NR 52
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1742-5468
J9 J STAT MECH-THEORY EXP
JI J. Stat. Mech.-Theory Exp.
PD MAY
PY 2005
AR P05003
DI ARTN P05003
PG 20
SC Mechanics; Physics, Mathematical
GA 932WW
UT ISI:000229586200013
ER
PT J
AU Dall'Asta, L
Alvarez-Hamelin, I
Barrat, A
Vazquez, A
Vespignani, A
TI Statistical theory of Internet exploration
SO PHYSICAL REVIEW E
LA English
DT Article
ID COMPLEX NETWORKS; BETWEENNESS; CENTRALITY
AB The general methodology used to construct Internet maps consists in
merging all the discovered paths obtained by sending data packets from
a set of active computers to a set of destination hosts, obtaining a
graphlike representation of the network. This technique, sometimes
referred to as Internet tomography, spurs the issue concerning the
statistical reliability of such empirical maps. We tackle this problem
by modeling the network sampling process on synthetic graphs and by
using a mean-field approximation to obtain expressions for the
probability of edge and vertex detection in the sampled graph. This
allows a general understanding of the origin of possible sampling
biases. In particular, we find a direct dependence of the map
statistical accuracy upon the topological properties (in particular,
the betweenness centrality property) of the underlying network. In this
framework, it appears that statistically heterogeneous network
topologies are captured better than the homogeneous ones during the
mapping process. Finally, the analytical discussion is complemented
with a thorough numerical investigation of simulated mapping strategies
in network models with varying topological properties.
C1 Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
Univ Buenos Aires, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina.
Univ Notre Dame, Notre Dame, IN 46556 USA.
Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
Indiana Univ, Dept Phys, Bloomington, IN 47408 USA.
RP Dall'Asta, L, Univ Paris 11, Phys Theor Lab, Batiment 210, F-91405
Orsay, France.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
BALDI P, 2003, MODELING INTERNET WE
BARABASI AL, 1999, SCIENCE, V286, P509
BARTHELEMY M, 2004, EUR PHYS J B, V38, P163
BRANDES U, 2001, J MATH SOCIOL, V25, P163
BROIDO A, 2001, SAN DIEG P SPIE INT
BURCH H, 1999, IEEE COMPUT, V32, P97
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CHEN Q, 2002, P IEEE INFOCOM 2002
CLAUSET A, 2005, PHYS REV LETT, V94
DOROGOVTSEV SN, 2001, PHYS REV E 1, V63
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
FALOUTSOS M, 1999, COMP COMM R, V29, P251
FREEMAN LC, 1977, SOCIOMETRY, V40, P35
GOH KI, 2001, PHYS REV LETT, V87
GOVINDAN R, 2000, P IEEE INFOCOM TEL A, P1371
GUILLAUME JL, 2005, IN PRESS P IEEE INFO
JIN C, 2000, CSETR43300 EECS DEP
LAKHINA A, 2002, BUCSTR2002021 DEP CO
MEDINA A, 2000, BUCSTR2000005
NEWMAN MEJ, 2002, PHYS REV LETT, V89
NEWMAN MEJ, 2003, SIAM REV, V45, P167
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PETERMANN T, 2004, EUR PHYS J B, V38, P201
VAZQUEZ A, 2002, PHYS REV E 2, V65
WATTS DJ, 1998, NATURE, V393, P440
WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
NR 29
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAR
PY 2005
VL 71
IS 3
PN Part 2
AR 036135
DI ARTN 036135
PG 9
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 922EC
UT ISI:000228818200045
ER
PT J
AU Colizza, V
Flammini, A
Maritan, A
Vespignani, A
TI Characterization and modeling of protein-protein interaction networks
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE protein interaction networks; complex networks; evolution modeling
ID GROWING RANDOM NETWORKS; SACCHAROMYCES-CEREVISIAE; COMPLEX NETWORKS;
YEAST GENOME; FUNCTIONAL-ORGANIZATION; STATISTICAL-MECHANICS; METABOLIC
NETWORKS; EVOLVING NETWORKS; SIMPLE DEPENDENCE; EVOLUTIONARY RATE
AB The recent availability of high-throughput gene expression and
proteomics techniques has created an unprecedented opportunity for a
comprehensive study of the structure and dynamics of many biological
networks. Global proteomic interaction data, in particular, are
synthetically represented as undirected networks exhibiting features
far from the random paradigm which has dominated past effort in network
theory. This evidence, along with the advances in the theory of complex
networks, has triggered an intense research activity aimed at
exploiting the evolutionary and biological significance of the
resulting network's topology. Here we present a review of the results
obtained in the characterization and modeling of the yeast
Saccharomyces Cerevisiae protein interaction networks obtained with
different experimental techniques. We provide a comparative assessment
of the topological properties and discuss possible biases in
interaction networks obtained with different techniques. We report on
dynamical models based on duplication mechanisms that cast the protein
interaction networks in the family of dynamically growing complex
networks. Finally, we discuss various results and analysis correlating
the networks' topology with the biological function of proteins. (c)
2005 Published by Elsevier B.V.
C1 Indiana Univ, Sch Informat & Biocomplex Ctr, Bloomington, IN 47408 USA.
Univ Padua, INFM, I-35131 Padua, Italy.
Univ Padua, Dept Phys, I-35131 Padua, Italy.
RP Vespignani, A, Indiana Univ, Sch Informat & Biocomplex Ctr,
Bloomington, IN 47408 USA.
EM alessandro.vespignani@th.u-psud.fr
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ALON U, 2003, SCIENCE, V301, P1866
BADER GD, 2002, NAT BIOTECHNOL, V20, P991
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2004, NAT REV GENET, V5, P101
BHAN A, 2002, BIOINFORMATICS, V18, P1486
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
BIANCONI G, 2001, PHYS REV LETT, V86, P5632
BIANCONI G, 2003, PHYS REV LETT, V90
BLOOM JD, 2003, BMC EVOL BIOL, V3
BOLLOBAS B, 2001, RANDOM GRAPHS
BRODER A, 2000, COMPUT NETW, V33, P309
BRUN C, 2003, GENOME BIOL, V5, R6
CHO RJ, 1998, MOL CELL, V2, P65
COLIZZA V, UNPUB GENOME BIOL
DANDEKAR T, 1998, TRENDS BIOCHEM SCI, V23, P324
DE DJ, 1976, J AM SOC INFORM SCI, V27, P292
DEANE CM, 2002, MOL CELL PROTEOMICS, V1, P349
DOROGOVSTEV SN, 2002, PHYS REV E, V65
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2002, EUROPHYS LETT, V57, P334
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS
DOROGOVTSEV SN, 2003, NUCL PHYS B, V666, P396
EISENBERG D, 2000, NATURE, V405, P823
ENRIGHT AJ, 1999, NATURE, V402, P86
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
ERGUN G, 2002, PHYSICA A, V303, P261
FIELDS S, 1989, NATURE, V340, P245
FORCE A, 1999, GENETICS, V151, P1531
FRASER HB, 2002, SCIENCE, V296, P750
FRASER HB, 2003, BMC EVOL BIOL, V3
GAASTERLAND T, 1998, MICROB COMP GENOMICS, V3, P199
GAVIN AC, 2002, NATURE, V415, P141
GE H, 2001, NAT GENET, V29, P482
GIOT L, 2003, SCIENCE, V302, P1727
GUARENTE L, 1993, TRENDS GENET, V9, P362
HARRINGTON HC, 2000, CURR OPIN MICROBIOL, V3, P285
HARTWELL LH, 1999, NATURE, V402, P47
HISHIGAKI H, 2001, YEAST, V18, P523
HO Y, 2002, NATURE, V415, P180
HODGMAN TC, 2000, BIOINFORMATICS, V16, P10
HUGHES TR, 2000, CELL, V102, P109
HUYNEN MA, 1998, P NATL ACAD SCI USA, V95, P5849
ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
JEONG H, 2001, NATURE, V411, P41
JEONG H, 2003, EUROPHYS LETT, V61, P567
JORDAN IK, 2003, BMC EVOL BIOL, V3
KLEINBERG J, 2000, P 32 ACM S THEOR COM, P163
KOONIN EV, 2002, NATURE, V420, P218
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
KRAPIVSKY PL, 2002, COMPUT NETW, V39, P261
KUMAR R, 2000, P 41 IEEE S FDN COMP, P57
LYNCH M, 2000, GENETICS, V154, P459
MA J, 1987, CELL, V51, P113
MARCOTTE EM, 1999, SCIENCE, V285, P751
MASLOV S, 2002, SCIENCE, V296, P210
MEWES HW, 1997, NUCLEIC ACIDS RES, V25, P28
MEWES HW, 2002, NUCLEIC ACIDS RES, V30, P31
MINOZZI M, 2003, EUR PHYS J B, V36, P203
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
NEWMAN MEJ, 2003, HDB GRAPHS NETWORKS, P35
NEWMAN MEJ, 2003, SIAM REV, V45, P167
NOVICK P, 1989, GENETICS, V121, P659
OHONO S, 1970, EVOLUTION GENE DUPLI
OVERBEEK R, 1999, P NATL ACAD SCI USA, V96, P2896
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
RAVASZ E, 2002, SCIENCE, V297, P1551
RAVASZ E, 2003, PHYS REV E 2, V67
RIGAUT G, 1999, NAT BIOTECHNOL, V17, P1030
SAMANTA MP, 2003, P NATL ACAD SCI USA, V100, P12579
SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
SIMON HA, 1955, BIOMETRIKA, V42, P425
SOLE RV, 2002, ADV COMPLEX SYST, V5, P43
TAMAMES J, 1997, J MOL EVOL, V44, P66
TONG AHY, 2001, SCIENCE, V294, P2364
UETZ P, 2000, NATURE, V403, P623
VALENCIA A, 2002, CURR OPIN STRUC BIOL, V12, P368
VAZQUEZ A, 2002, PHYS REV E 2, V65
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
VAZQUEZ A, 2003, NAT BIOTECHNOL, V21, P697
VAZQUEZ A, 2003, PHYS REV E 2, V67
VONMERING C, 2002, NATURE, V417, P399
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WAGNER A, 2001, P ROY SOC LOND B BIO, V268, P1803
WAGNER A, 2003, P ROY SOC LOND B BIO, V270, P457
WATTS DJ, 1998, NATURE, V393, P440
WOLF YI, 2002, BIOESSAYS, V24, P105
WOLFE KH, 1997, NATURE, V387, P708
WUCHTY S, 2003, NAT GENET, V35, P176
XENARIOS I, 2001, CURR OPIN BIOTECH, V12, P334
YOOK SH, 2004, PROTEOMICS, V4, P928
ZHANG MQ, 1999, COMPUT CHEM, V23, P233
NR 98
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUL 1
PY 2005
VL 352
IS 1
BP 1
EP 27
PG 27
SC Physics, Multidisciplinary
GA 927KR
UT ISI:000229193300002
ER
PT J
AU Barthelemy, M
Barrat, A
Pastor-Satorras, R
Vespignani, A
TI Dynamical patterns of epidemic outbreaks in complex heterogeneous
networks
SO JOURNAL OF THEORETICAL BIOLOGY
LA English
DT Article
DE complex networks; disease spreading; epidemic modeling
ID SCALE-FREE NETWORKS; SEXUAL CONTACTS; TRANSMISSION
AB We present a thorough inspection of the dynamical behavior of epidemic
phenomena in populations with complex and heterogeneous connectivity
patterns. We show that the growth of the epidemic prevalence is
virtually instantaneous in all networks characterized by diverging
degree fluctuations, independently of the structure of the connectivity
correlation functions characterizing the population network. By means
of analytical and numerical results, we show that the outbreak time
evolution follows a precise hierarchical dynamics. Once reached the
most highly connected hubs, the infection pervades the network in a
progressive cascade across smaller degree classes. Finally, we show the
influence of the initial conditions and the relevance of statistical
results in single case studies concerning heterogeneous networks. The
emerging theoretical framework appears of general interest in view of
the recently observed abundance of natural networks with complex
topological features and might provide useful insights for the
development of adaptive strategies aimed at epidemic containment. (c)
2005 Elsevier Ltd. All rights reserved.
C1 Ctr Etud Bruyeres Le Chatel, CEA, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
Univ Paris 11, UMR 8627, CNRS, Phys Theor Lab, F-91405 Orsay, France.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
Indiana Univ, Biocomplex Ctr, Bloomington, IN 47408 USA.
RP Barthelemy, M, Ctr Etud Bruyeres Le Chatel, CEA, Dept Phys Theor &
Appl, BP 12, F-91680 Bruyeres Le Chatel, France.
EM marc.barthelemy@th.u-psud.fr
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANDERSON RM, 1992, INFECT DIS HUMANS
BAILEY NTJ, 1975, MATH THEORY INFECT D
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BARTHELEMY M, 2002, PHYSICA A, V319, P633
BARTHELEMY M, 2004, PHYS REV LETT, V92
BOGUNA M, 2002, PHYS REV E 2, V66
BOGUNA M, 2003, LECT NOTES PHYS, V625
BOGUNA M, 2003, PHYS REV LETT, V90
BOLLOBAS B, 1985, RANDOM GRAPHS
COHEN R, 2003, PHYS REV LETT, V90
COLGATE SA, 1989, P NATL ACAD SCI USA, V86, P4793
DAILEY DJ, 2001, EPIDEMIC MODELLING I
DERRIDA B, 1987, J PHYS A-MATH GEN, V20, P5273
DEZSO Z, 2002, PHYS REV E 2, V65
DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
EUBANK S, 2004, NATURE, V429, P180
FERGUSON NM, 2003, NATURE, V425, P681
GANTMACHER FR, 1974, THEORY MATRICES, V2
GUIMERA R, 2003, CONDMAT0312535
HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
LILJEROS F, 2001, NATURE, V411, P907
LLOYD AL, 2001, SCIENCE, V292, P1316
MAY RM, 1984, MATH BIOSCI, V72, P83
MAY RM, 1988, PHIL T R SOC LOND B, V321, P565
MAY RM, 2001, PHYS REV E 2, V64
MORENO Y, 2002, EUR PHYS J B, V26, P521
MORENO Y, 2003, EUR PHYS J B, V31, P265
MURRAY JD, 1993, MATH BIOL
NEWMAN MEJ, 2002, PHYS REV E 2, V66
NEWMAN MEJ, 2002, PHYS REV LETT, V89
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
SCHNEEBERGER A, 2004, SEX TRANSM DIS, V31, P380
YORKE JA, 1978, SEX TRANSM DIS, V5, P51
NR 39
TC 33
PU ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
PI LONDON
PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND
SN 0022-5193
J9 J THEOR BIOL
JI J. Theor. Biol.
PD JUL 21
PY 2005
VL 235
IS 2
BP 275
EP 288
PG 14
SC Biology; Mathematical & Computational Biology
GA 928BQ
UT ISI:000229246500011
ER
PT J
AU Borner, K
Dall'Asta, L
Ke, WM
Vespignani, A
TI Studying the emerging global brain: Analyzing and visualizing the
impact of co-authorship teams
SO COMPLEXITY
LA English
DT Article
DE weighted network analysis; co-author networks; citation analysis;
information visualization
ID NETWORKS
AB This article introduces a suite of approaches and measures to study the
impact of co-authorship teams based on the number of publications and
their citations on a local and global scale. In particular, we present
a novel weighted graph representation that encodes coupled author-paper
networks as a weighted co-authorship graph. This weighted graph
representation is applied to a dataset that captures the emergence of a
new field of science and comprises 614 articles published by 1036
unique authors between 1974 and 2004. To characterize the properties
and evolution of this field, we first use four different measures of
centrality to identify the impact of authors. A global statistical
analysis is performed to characterize the distribution of paper
production and paper citations and its correlation with the
co-authorship team size. The size of co-authorship clusters over time
is examined. Finally, a novel local, author-centered measure based on
entropy is applied to determine the global evolution of the field and
the identification of the contribution of a single author's impact
across all of its co-authorship relations. A visualization of the
growth of the weighted co-author network, and the results obtained from
the statistical analysis indicate a drift toward a more cooperative,
global collaboration process as the main drive in the production of
scientific knowledge. (c) 2005 Wiley Periodicals, Inc.
C1 Indiana Univ, SLIS, Bloomington, IN 47405 USA.
Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
Indiana Univ, Sch Informat, Bloomington, IN 47406 USA.
Indiana Univ, Biocomplex Ctr, Bloomington, IN 47406 USA.
RP Borner, K, Indiana Univ, SLIS, Bloomington, IN 47405 USA.
EM katy@indiana.edu
CR ALMAAS E, 2004, NATURE, P427
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, LINKED
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BATAGELJ V, 1998, CONNECTIONS, V21, P47
BEAVER DD, 1978, SCIENTOMETRICS, V1, P65
BLOOM H, 2000, GLOBAL BRAIN EVOLUTI
BORNER K, 2003, VISUALIZING KNOWLEDG, P179
BORNER K, 2004, P NATL ACAD SCI U S1, V101, P5266
CRANE D, 1972, INVISIBLE COLL DIFFU
CRONIN B, 1994, J AM SOC INFORM SCI, V45, P61
DOROGOVSTEV SN, 2003, EVOLUTION NETWORKS
FREEMAN LC, 1977, SOCIOMETRY, V40, P35
GUIMERA R, 2004, TEAM ASSEMBLY MECH D
KAMADA T, 1989, INFORM PROCESS LETT, V31, P7
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2004, P NATL ACAD SCI U S1, V101, P5200
NEWMAN MEJ, 2004, PHYS REV E 2, V70
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
RAMASCO JJ, 2004, PHYS REV E 2, V70
WASSERMAN S, 1994, METHODS APPL STRUCTU, V8
WHITE HD, 2001, SCIENTOMETRICS, V51, P607
NR 24
TC 2
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 1076-2787
J9 COMPLEXITY
JI Complexity
PD MAR-APR
PY 2005
VL 10
IS 4
BP 57
EP 67
PG 11
SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
GA 917NJ
UT ISI:000228469000006
ER
PT J
AU Barrat, A
Barthelemy, M
Vespignani, A
TI Modeling the evolution of weighted networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID SMALL-WORLD NETWORKS; SCALE-FREE NETWORKS; EVOLVING NETWORKS; COMPLEX
NETWORKS
AB We present a general model for the growth of weighted networks in which
the structural growth is coupled with the edges' weight dynamical
evolution. The model is based on a simple weight-driven dynamics and a
weights' reinforcement mechanism coupled to the local network growth.
That coupling can be generalized in order to include the effect of
additional randomness and nonlinearities which can be present in
real-world networks. The model generates weighted graphs exhibiting the
statistical properties observed in several real-world systems. In
particular, the model yields a nontrivial time evolution of vertices'
properties and scale-free behavior with exponents depending on the
microscopic parameters characterizing the coupling rules. Very
interestingly, the generated graphs spontaneously achieve a complex
hierarchical architecture characterized by clustering and connectivity
correlations varying as a function of the vertices' degree.
C1 Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
Ctr Etud Bruyeres Le Chatel, CEA, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
RP Barrat, A, Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Batiment 210,
F-91405 Orsay, France.
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALMAAS E, 2004, NATURE, V427, P839
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, PHYSICA A, V311, P590
BARRAT A, UNPUB
BARRAT A, 2004, LECT NOTES COMPUT SC, V3243, P56
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BARRAT A, 2004, PHYS REV LETT, V92
BARTHELEMY M, UNPUB
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
CALDARELLI G, 2002, PHYS REV LETT, V89
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
GARLASCHELLI D, CONDMAT0310503
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GUIMERA R, CONDMAT0312535
KRAUSE AE, 2003, NATURE, V426, P282
LI C, CONDMAT0311333
LI W, 2004, PHYS REV E 2, V69
MASLOV S, 2002, SCIENCE, V296, P910
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PIMM SL, 2002, FOOD WEBS
RAVASZ E, 2003, PHYS REV E 2, V67
VAZQUEZ A, 2002, PHYS REV E 2, V65
WATTS DJ, 1998, NATURE, V393, P440
YOOK SH, 2001, PHYS REV LETT, V86, P5835
ZHENG DF, 2003, PHYS REV E 1, V67
NR 36
TC 42
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD DEC
PY 2004
VL 70
IS 6
PN Part 2
AR 066149
DI ARTN 066149
PG 12
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 887IM
UT ISI:000226299200056
ER
PT J
AU Barthelemy, M
Barrat, A
Pastor-Satorras, R
Vespignani, A
TI Characterization and modeling of weighted networks
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE disordered system; networks
ID SMALL-WORLD NETWORKS
AB We review the main tools which allow for the statistical
characterization of weighted networks. We then present two case
studies, the airline connection network and the scientific
collaboration network which are representatives of critical
infrastructure and social system, respectively. The main empirical
results are (i) the broad distributions of various quantities and (ii)
the existence of weight-topology correlations. These measurements show
that weights are relevant and that in general the modeling of complex
networks must go beyond topology. We review a model which provides an
explanation for the features observed in several real-world networks.
This model of weighted network formation relies on the dynamical
coupling between topology and weights, considering the rearrangement of
new links are introduced in the system. (C) 2004 Published by Elsevier
B.V.
C1 Ctr Etud Bruyeres Le Chatel, Dept Phys Theor & Appl, CEA, F-91680 Bruyeres Le Chatel, France.
Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
RP Barthelemy, M, Ctr Etud Bruyeres Le Chatel, Dept Phys Theor & Appl,
CEA, BP 12, F-91680 Bruyeres Le Chatel, France.
EM Marc.Barthelemy@th.u-psud.fr
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ALMAAS E, 2004, NATURE, V427, P839
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANTAL T, CONDMAT0408285
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, PHYSICA A, V311, P590
BARRAT A, 2004, CONDMAT0406238
BARRAT A, 2004, CSNI0405070
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BARRAT A, 2004, PHYS REV LETT, V92
BARTHELEMY M, 2003, PHYSICA A, V319, P633
BARTHELEMY M, 2004, UNPUB
DERRIDA B, 1987, J PHYS A-MATH GEN, V20, P5273
DOROGOVTSEV SN, CONDMAT0408343
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
GARLASCHELLI D, 2003, CONDMAT0310503
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GUIMERA R, 2004, EUR PHYS J B, V38, P381
HU B, 2004, CONDMAT0408125
KRAUSE AE, 2003, NATURE, V426, P282
LI C, 2003, CONDMAT0311333
LI W, 2004, PHYS REV E 2, V69
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
ONNELA JP, 2003, PHYS REV E 2, V68
PANDYA RVR, 2004, CONDMAT0406644
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
WATTS DJ, 1998, NATURE, V393, P440
YOOK SH, 2001, PHYS REV LETT, V86, P5835
ZHENG DF, 2003, PHYS REV E 1, V67
ZHOU S, 2003, CSNI0303028
NR 32
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD FEB 1
PY 2005
VL 346
IS 1-2
BP 34
EP 43
PG 10
SC Physics, Multidisciplinary
GA 878YA
UT ISI:000225682200006
ER
PT S
AU Barrat, A
Barthelemy, M
Vespignani, A
TI Traffic-driven model of the World Wide Web graph
SO ALGORITHMS AND MODELS FOR THE WEB-GRAPHS, PROCEEDINGS
SE LECTURE NOTES IN COMPUTER SCIENCE
LA English
DT Article
ID EVOLVING NETWORKS; DYNAMICS
AB We propose a model for the World Wide Web graph that couples the
topological growth with the traffic's dynamical evolution. The model is
based on a simple traffic-driven dynamics and generates weighted
directed graphs exhibiting the statistical properties observed in the
Web. In particular, the model yields a non-trivial time evolution of
vertices and heavy-tail distributions for the topological and traffic
properties. The generated graphs exhibit a complex architecture with a
hierarchy of cohesiveness levels similar to those observed in the
analysis of real data.
C1 Univ Paris 11, CNRS, Phys Theor Lab, UMR 8627, F-91405 Orsay, France.
CEA, Ctr Etud Bruyeres Le Chatel, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
Indiana Univ, Sch Informat, Bloomington, IN 47408 USA.
RP Barrat, A, Univ Paris 11, CNRS, Phys Theor Lab, UMR 8627, Batiment 210,
F-91405 Orsay, France.
CR ADAMIC IA, 2001, COMMUN ACM, V44, P55
ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2000, PHYSICA A, V281, P69
BARABASI AL, 2002, PHYSICA A, V311, P590
BARRAT A, CONDMAT0406238
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
BARRAT A, 2004, PHSY REV LETT, V92
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
BRODER A, 2000, P 9 WWW C
COOPER C, 2001, LECT NOTES COMPUTER, V2161, P500
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
ECKMANN JP, 2002, P NATL ACAD SCI USA, V99, P5825
GARLASCHELLI D, 2003, CONDMAT0310503
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GUIMERA R, 2003, UNPUB
HUBERMAN BA, 1997, SCIENCE, V277, P535
HUBERMAN BA, 1998, SCIENCE, V280, P95
KRAPIVSKY PL, 2001, PHYS REV LETT, V86, P5401
KUMAR R, 2000, P 41 IEEE S FDN COMP, P57
LAURA L, 2002, P 2 INT WORKSH WEB D
LAURA L, 2003, EUR S ALG
MENCZER F, 2002, P NATL ACAD SCI USA, V99, P14014
MOSSA S, 2002, PHYS REV LETT, V88
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
PANDURANGAN G, 2002, LECT NOTES COMPUTER, V2387, P330
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
QUINCE C, 2004, ARXIVQBIOPE0402014
RAVASZ E, 2003, PHYS REV E 2, V67
TADIC B, 2001, PHYSICA A, V293, P273
VAZQUEZ A, 2002, PHYS REV E 2, V65
WATTS DJ, 1998, NATURE, V393, P440
YOOK SH, 2001, PHYS REV LETT, V86, P5835
NR 38
TC 4
PU SPRINGER-VERLAG BERLIN
PI BERLIN
PA HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
SN 0302-9743
J9 LECT NOTE COMPUT SCI
PY 2004
VL 3243
BP 56
EP 67
PG 12
SC Computer Science, Theory & Methods
GA BBB69
UT ISI:000224583300005
ER
PT J
AU Barrat, A
Barthelemy, M
Vespignani, A
TI Weighted evolving networks: Coupling topology and weight dynamics
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS
AB We propose a model for the growth of weighted networks that couples the
establishment of new edges and vertices and the weights' dynamical
evolution. The model is based on a simple weight-driven dynamics and
generates networks exhibiting the statistical properties observed in
several real-world systems. In particular, the model yields a
nontrivial time evolution of vertices' properties and scale-free
behavior for the weight, strength, and degree distributions.
C1 Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
Ctr Etud Bruyeres le Chatel, CEA, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
RP Barrat, A, Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, Batiment 210,
F-91405 Orsay, France.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
ALMAAS E, 2004, NATURE, V427, P839
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, PHYSICA A, V311, P590
BARRAT A, IN PRESS
BARRAT A, 2004, P NATL ACAD SCI USA, V101, P3747
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
GARLASCHELLI D, CONDMAT0310503
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GUIMERA R, CONDMAT0312535
KRAUSE AE, 2003, NATURE, V426, P282
LI C, CONDMAT0309236
LI C, CONDMAT0311333
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, 2004, EVOLUTION STRUCTURE
PIMM SL, 2002, FOOD WEBS
WATTS DJ, 1998, NATURE, V393, P440
YOOK SH, 2001, PHYS REV LETT, V86, P5835
ZHENG DF, 2003, PHYS REV E 1, V67
NR 20
TC 91
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 4
PY 2004
VL 92
IS 22
AR 228701
DI ARTN 228701
PG 4
SC Physics, Multidisciplinary
GA 826QU
UT ISI:000221844400064
ER
PT J
AU Moreno, Y
Nekovee, M
Vespignani, A
TI Efficiency and reliability of epidemic data dissemination in complex
networks
SO PHYSICAL REVIEW E
LA English
DT Article
AB We study the dynamics of epidemic spreading processes aimed at
spontaneous dissemination of information updates in populations with
complex connectivity patterns. The influence of the topological
structure of the network in these processes is studied by analyzing the
behavior of several global parameters, such as reliability, efficiency,
and load. Large-scale numerical simulations of update-spreading
processes show that while networks with homogeneous connectivity
patterns permit a higher reliability, scale-free topologies allow for a
better efficiency.
C1 Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain.
Univ Zaragoza, Inst Biocomputac & Fis Sistemas Complejos, E-50009 Zaragoza, Spain.
BT Exact, Complex Res Grp, Martlesham IP5 3RE, Suffolk, England.
Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
RP Moreno, Y, Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain.
CR ALBERT R, 2000, NATURE, V406, P378
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
DALEY DJ, 2000, EPIDEMIC MODELING
DEERING SE, 1990, ACM T COMPUT SYST, V8, P85
DEMERS AJ, 1987, UNPUB P 6 ANN ACM S
FOSTER I, 1999, GRID BLUEPRINT FUTUR
KERMARREC AM, 2003, IEEE T PARALL DISTR, V14, P248
KOSIUR D, 1998, IP MULTICASTING COMP
LIU ZH, 2003, PHYS REV E 1, V67
ORAM A, 2001, PEER TO PEER HARNESS
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
VOGELS W, 2002, UNPUB P HOTNETS I PR
WATTS DJ, 1998, NATURE, V393, P440
ZANETTE DH, 2001, PHYS REV E, V64
NR 17
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 2004
VL 69
IS 5
PN Part 2
AR 055101
DI ARTN 055101
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 826EZ
UT ISI:000221813400001
ER
PT J
AU Caldarelli, G
Erzan, A
Vespignani, A
TI Preface on "Applications of Networks"
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Editorial Material
NR 0
TC 0
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD MAR
PY 2004
VL 38
IS 2
BP 141
EP 141
PG 1
SC Physics, Condensed Matter
GA 821GB
UT ISI:000221447300001
ER
PT J
AU Amaral, LAN
Barrat, A
Barabasi, AL
Caldarelli, G
De los Rios, P
Erzan, A
Kahng, B
Mantegna, R
Mendes, JFF
Pastor-Satorras, R
Vespignani, A
TI Virtual Round Table on ten leading questions for network research
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Editorial Material
AB The following discussion is an edited summary of the public debate
started during the conference "Growing Networks and Graphs in
Statistical Physics, Finance, Biology and Social Systems" held in Rome
in September 2003. Drafts documents were circulated electronically
among experts in the field and additions and follow-up to the original
discussion have been included. Among the scientists participating to
the discussion L. A. N. Amaral, A. Barrat, A. L. Barabasi, G.
Caldarelli, P. De Los Rios, A. Erzan, B. Kahng, R. Mantegna, J. F. F.
Mendes, R. Pastor-Satorras, A. Vespignani are acknowledged for their
contributions and editing.
NR 0
TC 12
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD MAR
PY 2004
VL 38
IS 2
BP 143
EP 145
PG 3
SC Physics, Condensed Matter
GA 821GB
UT ISI:000221447300002
ER
PT J
AU Caldarelli, G
Pastor-Satorras, R
Vespignani, A
TI Structure of cycles and local ordering in complex networks
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID WORLD-WIDE-WEB; INTERNET; EVOLUTION; DYNAMICS; TOPOLOGY
AB We study the properties of quantities aimed at the characterization of
grid-like ordering in complex networks. These quantities are based on
the global and local behavior of cycles of order four, which are the
minimal structures able to identify rectangular clustering. The
analysis of data from real networks reveals the ubiquitous presence of
a statistically high level of grid-like ordering that is non-trivially
correlated with the local degree properties. These observations provide
new insights on the hierarchical structure of complex networks.
C1 Univ Roma La Sapienza, Dipartimento Fis, INFM, UdR Roma 1, I-00185 Rome, Italy.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
RP Caldarelli, G, Univ Roma La Sapienza, Dipartimento Fis, INFM, UdR Roma
1, Ple A Moro 2, I-00185 Rome, Italy.
EM romualdo.pastor@upc.es
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2000, PHYSICA A, V281, P69
BARABASI AL, 2002, PHYSICA A, V311, P590
BIANCONI G, 2003, PHYS REV LETT, V90
BOLLOBAS B, 1998, MODERN GRAPH THEORY
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
ERDOS P, 1959, PUBL MATH-DEBRECEN, V6, P290
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HOLME P, CONDMAT0210514
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, 2001, NATURE, V411, P41
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
NEWMAN MEJ, 2003, HDB GRAPHS NETWORKS, P35
NEWMAN MEJ, 2003, PHYS REV E 2, V68
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
RAVASZ E, 2003, PHYS REV E 2, V67
VAZQUEZ A, 2002, CONDMAT0206084
VAZQUEZ A, 2002, PHYS REV E 2, V65
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WATTS DJ, 1998, NATURE, V393, P440
NR 25
TC 17
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD MAR
PY 2004
VL 38
IS 2
BP 183
EP 186
PG 4
SC Physics, Condensed Matter
GA 821GB
UT ISI:000221447300007
ER
PT J
AU Boguna, M
Pastor-Satorras, R
Vespignani, A
TI Cut-offs and finite size effects in scale-free networks
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID COMPLEX NETWORKS; DEGREE SEQUENCE; RANDOM GRAPHS; INTERNET
AB We analyze the degree distribution's cut-off in finite size scale-free
networks. We show that the cut-off behavior with the number of vertices
N is ruled by the topological constraints induced by the connectivity
structure of the network. Even in the simple case of uncorrelated
networks, we obtain an expression of the structural cut-off that is
smaller than the natural cut-off obtained by means of extremal theory
arguments. The obtained results are explicitly applied in the case of
the configuration model to recover the size scaling of tadpoles and
multiple edges.
C1 Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
Univ Politecn Cataluna, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
RP Boguna, M, Univ Barcelona, Dept Fis Fonamental, Diagonal 647, E-08028
Barcelona, Spain.
EM mbogunya@ffn.ub.es
CR AIELLO W, 2001, EXP MATH, V10, P53
ALBERT R, 2000, PHYS REV LETT, V85, P5234
ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BOGUNA M, 2003, LECT NOTES PHYS, V625
BOGUNA M, 2003, PHYS REV E 2, V68
BOGUNA M, 2003, PHYS REV LETT, V90
BURDA Z, 2003, PHYS REV E 2, V67
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CHUNG F, 2002, ANN COMB, V6, P125
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
DOROGOVTSEV SN, 2002, PHYS REV E 2, V66
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
KRAPIVSKY PL, 2002, J PHYS A-MATH GEN, V35, P9517
LEONE M, 2002, EUR PHYS J B, V28, P191
MASLOV S, 2004, PHYSICA A, V333, P529
MAY RM, 2001, PHYS REV E, V64
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
MOREIRA AA, 2002, PHYS REV LETT, V89
MORENO Y, 2002, EUR PHYS J B, V26, P521
MOSSA S, 2002, PHYS REV LETT, V88
NEWMAN MEJ, 2002, PHYS REV E, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
NEWMAN MEJ, 2003, PHYS REV E 2, V67
PARK J, 2003, PHYS REV E, V66
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
VAZQUEZ A, 2003, PHYS REV E, V67
NR 32
TC 42
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD MAR
PY 2004
VL 38
IS 2
BP 205
EP 209
PG 5
SC Physics, Condensed Matter
GA 821GB
UT ISI:000221447300011
ER
PT J
AU Barthelemy, M
Barrat, A
Pastor-Satorras, R
Vespignani, A
TI Velocity and hierarchical spread of epidemic outbreaks in scale-free
networks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS; COMPLEX NETWORKS
AB We study the effect of the connectivity pattern of complex networks on
the propagation dynamics of epidemics. The growth time scale of
outbreaks is inversely proportional to the network degree fluctuations,
signaling that epidemics spread almost instantaneously in networks with
scale-free degree distributions. This feature is associated with an
epidemic propagation that follows a precise hierarchical dynamics. Once
the highly connected hubs are reached, the infection pervades the
network in a progressive cascade across smaller degree classes. The
present results are relevant for the development of adaptive
containment strategies.
C1 CEA, Ctr Etud Bruyeres le Chatel, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France.
Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
RP Barthelemy, M, CEA, Ctr Etud Bruyeres le Chatel, Dept Phys Theor &
Appl, BP12, F-91680 Bruyeres Le Chatel, France.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANDERSON RM, 1992, INFECT DIS HUMANS
BARABASI AL, 1999, SCIENCE, V286, P509
BOGUNA M, 2003, LECT NOTES PHYS, V625, P127
COHEN R, 2003, PHYS REV LETT, V91
DERRIDA B, 1987, J PHYS A-MATH GEN, V20, P5273
DEZSO Z, 2002, PHYS REV E 2, V65
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
KUPERMAN M, 2001, PHYS REV LETT, V86, P2909
LILJEROS F, 2001, NATURE, V411, P907
LLOYD AL, 2001, SCIENCE, V292, P1316
MAY RM, 2001, PHYS REV E 2, V64
MOORE C, 2000, PHYS REV E B, V61, P5678
MORENO Y, 2002, EUR PHYS J B, V26, P521
MURRAY JD, 1993, MATH BIOL
NEWMAN MEJ, 2002, PHYS REV E, V64
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
PASTORSATORRAS R, 2003, EVOLUTION STRUCTURE
NR 22
TC 52
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 30
PY 2004
VL 92
IS 17
AR 178701
DI ARTN 178701
PG 4
SC Physics, Multidisciplinary
GA 817LO
UT ISI:000221179200069
ER
PT J
AU Barrat, A
Barthelemy, M
Pastor-Satorras, R
Vespignani, A
TI The architecture of complex weighted networks
SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF
AMERICA
LA English
DT Article
ID SMALL-WORLD NETWORKS; BETWEENNESS
AB Networked structures arise in a wide array of different contexts such
as technological and transportation infrastructures, social phenomena,
and biological systems. These highly interconnected systems have
recently been the focus of a great deal of attention that has uncovered
and characterized their topological complexity. Along with a complex
topological structure, real networks display a large heterogeneity in
the capacity and intensity of the connections. These features, however,
have mainly not been considered in past studies where links are usually
represented as binary states, i.e., either present or absent. Here, we
study the scientific collaboration network and the world-wide
air-transportation network, which are representative examples of social
and large infrastructure systems, respectively. In both cases it is
possible to assign to each edge of the graph a weight proportional to
the intensity or capacity of the connections among the various elements
of the network. We define appropriate metrics combining weighted and
topological observables that enable us to characterize the complex
statistical properties and heterogeneity of the actual strength of
edges and vertices. This information allows us to investigate the
correlations among weighted quantities and the underlying topological
structure of the network. These results provide a better description of
the hierarchies and organizational principles at the basis of the
architecture of weighted networks.
C1 Univ Paris 11, UMR CNRS 8627, Phys Theor Lab, F-91405 Orsay, France.
CEA, Dept Phys Theor & Appl, F-91191 Gif Sur Yvette, France.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
RP Vespignani, A, Univ Paris 11, UMR CNRS 8627, Phys Theor Lab, Batiment
210, F-91405 Orsay, France.
EM alexv@th.u-psud.fr
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, SCIENCE, V286, P509
BARABASI AL, 2002, PHYSICA A, V311, P590
BRANDES U, 2001, J MATH SOCIOL, V25, P163
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CLARK J, 1998, 1 LOOK GRAPH THEORY
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS B
FREEMAN LC, 1977, SOCIOMETRY, V40, P35
GOH KI, 2001, PHYS REV LETT, V87
GUIMERA R, 2003, E PRINT ARCH
LI W, 2003, E PRINT ARCH
MASLOV S, 2002, SCIENCE, V296, P910
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2002, PHYS REV LETT, V89
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
RAVASZ E, 2003, PHYS REV E 2, V67
VAZQUEZ A, 2002, PHYS REV E 2, V65
WATTS DJ, 1998, NATURE, V393, P440
YOOK SH, 2001, PHYS REV LETT, V86, P5835
ZHOU S, 2003, E PRINT ARCH
NR 25
TC 190
PU NATL ACAD SCIENCES
PI WASHINGTON
PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA
SN 0027-8424
J9 PROC NAT ACAD SCI USA
JI Proc. Natl. Acad. Sci. U. S. A.
PD MAR 16
PY 2004
VL 101
IS 11
BP 3747
EP 3752
PG 6
SC Multidisciplinary Sciences
GA 804QZ
UT ISI:000220314500008
ER
PT J
AU Vespignani, A
TI Evolution thinks modular
SO NATURE GENETICS
LA English
DT Editorial Material
ID PROTEIN-INTERACTION NETWORKS; PREDICTION
AB Groups of interacting proteins define functional modules that govern a
cell's activity. A new study suggests that specific interaction motifs
and their constituents are highly conserved across species, identifying
potential functional modules used in the evolutionary process.
C1 Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
RP Vespignani, A, Univ Paris 11, Phys Theor Lab, Batiment 210, F-91405
Orsay, France.
CR BARABASI AL, 2002, LINKED
DOROGOVTSEV SN, 2003, EVOLUTION NETWORKS
HARTWELL LH, 1999, NATURE, V402, P47
HISHIGAKI H, 2001, YEAST, V18, P523
HODGMAN TC, 2000, BIOINFORMATICS, V16, P10
MILO R, 2002, SCIENCE, V298, P824
OLTVAI ZN, 2002, SCIENCE, V298, P763
PASTORSATORRAS R, 2003, J THEOR BIOL, V222, P199
RAVASZ E, 2002, SCIENCE, V297, P1551
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
VAZQUEZ A, 2003, NAT BIOTECHNOL, V21, P697
WUCHTY S, 2003, NAT GENET, V35, P176
NR 12
TC 12
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA
SN 1061-4036
J9 NAT GENET
JI Nature Genet.
PD OCT
PY 2003
VL 35
IS 2
BP 118
EP 119
PG 2
SC Genetics & Heredity
GA 726WV
UT ISI:000185625300005
ER
PT J
AU Bagnoli, F
Cecconi, F
Flammini, A
Vespignani, A
TI Short-period attractors and non-ergodic behavior in the deterministic
fixed-energy sandpile model
SO EUROPHYSICS LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ABSORBING PHASE-TRANSITIONS; CHARGE-DENSITY
WAVES; ABELIAN SANDPILE; CONSERVED FIELD; AVALANCHES; LOCKING; EVENTS
AB We study the asymptotic behaviour of the Bak, Tang, Wiesenfeld sandpile
automata as a closed system with fixed energy. We explore the full
range of energies characterizing the active phase. The model exhibits
strong non-ergodic features by settling into limit-cycles whose period
depends on the energy and initial conditions. The asymptotic activity
rho(a) (topplings density) shows, as a function of energy density zeta,
a devil's staircase behaviour de. ning a symmetric energy interval-set
over which also the period lengths remain constant. The properties of
the zeta-rho(a) phase diagram can be traced back to the basic
symmetries underlying the model's dynamics.
C1 Dipartimento Energet S Stecco, I-50139 Florence, Italy.
Univ Roma La Sapienza, INFM, I-00185 Rome, Italy.
Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
INFM, I-34014 Trieste, Italy.
Int Sch Adv Studies SISSA ISAS, I-34014 Trieste, Italy.
Univ Paris 11, Phys Theor Lab, UMR 8627, CNRS, F-91405 Orsay, France.
RP Bagnoli, F, Dipartimento Energet S Stecco, Via S Marta 3, I-50139
Florence, Italy.
CR ALAVA M, 2002, J PHYS-CONDENS MAT, V14, P2353
BAK P, 1986, PHYS TODAY, V39, P38
BAK P, 1987, PHYS REV LETT, V59, P381
CECCONI F, 1998, PHYS REV E A, V57, P2703
CHESSA A, 1998, PHYS REV LETT, V80, P4217
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, CONDMAT990909
DHAR D, 1999, PHYSICA A, V263, P4
DICKMAN R, 1998, PHYS REV E A, V57, P5095
ERZAN A, 1991, PHYS REV LETT, V66, P2750
GRINSTEIN G, 1999, NATO ASI B, V344
HIGGINS MJ, 1993, PHYS REV LETT, V70, P3784
HWA T, 1992, PHYS REV A, V45, P7002
JENSEN HJ, 1999, SELF ORG CRITICALITY
KTITAREV DV, 2000, PHYS REV E, V61, P81
LORETO V, 1996, PHYS REV E, V53, P2087
LUBECK S, 2001, PHYS REV E 2, V64
LUBECK S, 2002, PHYS REV E 2A, V65
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MIDDLETON AA, 1992, PHYS REV LETT, V68, P1586
MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
NARAYAN O, 1994, PHYS REV B, V49, P244
PASTORSATORRAS R, 2000, PHYS REV E A, V62, R5875
ROSSI M, 2000, PHYS REV LETT, V85, P1803
SHUSTER HG, 1988, DETERMINISTIC CHAOS
TANG C, 1988, PHYS REV LETT, V60, P2347
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
NR 31
TC 7
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD AUG
PY 2003
VL 63
IS 4
BP 512
EP 518
PG 7
SC Physics, Multidisciplinary
GA 709GU
UT ISI:000184618100006
ER
PT J
AU Castellano, C
Vilone, D
Vespignani, A
TI Incomplete ordering of the voter model on small-world networks
SO EUROPHYSICS LETTERS
LA English
DT Article
ID COMPLEX NETWORKS
AB We investigate how the topology of small-world networks affects the
dynamics of the voter model for opinion formation. We show that,
contrary to what occurs on regular topologies with local interactions,
the voter model on small-world networks does not display the emergence
of complete order in the thermodynamic limit. The system settles in a
stationary state with coexisting opinions whose lifetime diverges with
the system size. Hence the nontrivial connectivity pattern leads to the
counterintuitive conclusion that long-range connections inhibit the
ordering process. However, for networks of finite size, for which full
uniformity is reached, the ordering process takes a time shorter than
on a regular lattice of the same size.
C1 Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
INFM, Unita Roma 1, I-00185 Rome, Italy.
Univ Paris 11, Phys Theor Lab, UMR 8627, CNRS, F-91405 Orsay, France.
RP Castellano, C, Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2,
I-00185 Rome, Italy.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
AXELROD R, 1997, COMPLEXITY COOPERATI
AXELROD R, 1997, J CONFLICT RESOLUT, V41, P203
AXTELL R, 1996, COMPUTATIONAL MATH O, V1, P123
BARRAT A, 2000, EUR PHYS J B, V13, P547
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOYER D, 2003, PHYS REV E 2, V67
BRAY AJ, 1994, ADV PHYS, V43, P357
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CASTELLANO C, 2000, PHYS REV LETT, V85, P3536
COHEN R, 2000, PHYS REV LETT, V85, P4626
DORNIC I, 2001, PHYS REV LETT, V87
FRACHEBOURG L, 1996, PHYS REV E, V53, P3009
HOLYST JA, 2001, ANN REV COMPUTATIONA, V9
LIGGETT TM, 1985, INTERACTING PARTICLE
LILJEROS F, 2001, NATURE, V411, P907
MARRO J, 1999, NONEQUILIBRIUM PHASE
NEWMAN MEJ, 2000, J STAT PHYS, V101, P819
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
REDNER S, 1998, EUR PHYS J B, V4, P131
REDNER S, 2001, GUIDE 1ST PASSAGE PR
SANCHEZ AD, 2002, PHYS REV LETT, V88
STAUFFER D, 2002, JASSS, V5, P1
STROGATZ SH, 2001, NATURE, V410, P268
VAZQUEZ F, 2002, CONDMAT0209445
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
NR 27
TC 22
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD JUL
PY 2003
VL 63
IS 1
BP 153
EP 158
PG 6
SC Physics, Multidisciplinary
GA 696HC
UT ISI:000183880700023
ER
PT J
AU Vazquez, A
Flammini, A
Maritan, A
Vespignani, A
TI Global protein function prediction from protein-protein interaction
networks
SO NATURE BIOTECHNOLOGY
LA English
DT Article
ID SACCHAROMYCES-CEREVISIAE; YEAST; COMPLEXES; GENOME
AB Determining protein function is one of the most challenging problems of
the post-genomic era. The availability of entire genome sequences and
of high-throughput capabilities to determine gene coexpression patterns
has shifted the research focus from the study of single proteins or
small complexes to that of the entire proteome(1). In this context, the
search for reliable methods for assigning protein function is of
primary importance. There are various approaches available for deducing
the function of proteins of unknown function using information derived
from sequence similarity or clustering patterns of coregulated
genes(2,3), phylogenetic profiles(4), protein-protein interactions
(refs. 5-8 and Samanta, M. P. and Liang, S., unpublished data), and
protein complexes(9,10). Here we propose the assignment of proteins to
functional classes on the basis of their network of physical
interactions as determined by minimizing the number of protein
interactions among different functional categories. Function assignment
is proteome-wide and is determined by the global connectivity pattern
of the protein network. The approach results in multiple functional
assignments, a consequence of the existence of multiple equivalent
solutions. We apply the method to analyze the yeast Saccharomyces
cerevisiae protein-protein interaction network(5). The robustness of
the approach is tested in a system containing a high percentage of
unclassified proteins and also in cases of deletion and insertion of
specific protein interactions.
C1 Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
SISSA, I-34014 Trieste, Italy.
INFM, I-34014 Trieste, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Paris 11, Phys Theor Lab, UMR CNRS 8627, F-91405 Orsay, France.
RP Vazquez, A, Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
CR *MIPS, MIPS COMPR YEAST GEN
GAVIN AC, 2002, NATURE, V415, P141
HARRINGTON CA, 2000, CURR OPIN MICROBIOL, V3, P285
HISHIGAKI H, 2001, YEAST, V18, P523
HO Y, 2002, NATURE, V415, P180
HODGMAN TC, 2000, BIOINFORMATICS, V16, P10
ITO T, 2001, P NATL ACAD SCI USA, V98, P4569
JEONG H, 2001, NATURE, V411, P41
KIRKPATRICK S, 1983, SCIENCE, V220, P621
MEYER ML, 2000, NAT BIOTECHNOL, V18, P1242
PELLEGRINI M, 1999, P NATL ACAD SCI USA, V96, P4285
SCHWIKOWSKI B, 2000, NAT BIOTECHNOL, V18, P1257
UETZ P, 2000, NATURE, V403, P623
WAGNER A, 2000, NAT GENET, V24, P355
WU FY, 1982, REV MOD PHYS, V54, P235
ZHANG MQ, 1999, COMPUT CHEM, V23, P233
NR 16
TC 96
PU NATURE PUBLISHING GROUP
PI NEW YORK
PA 345 PARK AVE SOUTH, NEW YORK, NY 10010-1707 USA
SN 1087-0156
J9 NAT BIOTECHNOL
JI Nat. Biotechnol.
PD JUN
PY 2003
VL 21
IS 6
BP 697
EP 700
PG 4
SC Biotechnology & Applied Microbiology
GA 684RR
UT ISI:000183220800030
ER
PT J
AU Percacci, R
Vespignani, A
TI Scale-free behavior of the Internet global performance
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
AB Measurements and data analysis have proved very effective in the study
of the Internet's physical fabric and have shown heterogeneities and
statistical fluctuations extending over several orders of magnitude.
Here we focus on the relationship between the, Round-Trip-Time (RTT)
and the geographical distance. We define dimensionless variables that
contain information on the quality of Internet connections finding that
their probability distributions are characterized by a slow power-law
decay signalling the presence of scale-free features. These results
point out the extreme heterogeneity of Internet delay since the
transmission speed between different points of the network exhibits
very large fluctuations' The associated scaling exponents appear to
have fairly stable values in different data sets and thus define an
invariant characteristic of the Internet that might be used in the
future as a benchmark of the overall state of "health" of the Internet.
C1 SISSA, Int Sch Adv Studies, ISAS, I-34014 Trieste, Italy.
Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France.
RP Percacci, R, SISSA, Int Sch Adv Studies, ISAS, Via Beirut 4, I-34014
Trieste, Italy.
CR ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 2002, AREV MOD PHYS, V74, P47
BOVY C, 2002, P PAM 2002 C FORT CO
BROIDO A, 2001, SPIE INT S CONV IT C
CROVELLA M, 2000, PERFORM EVALUATION, V42, P91
FALOUTSOS M, 1999, COMP COMM R, V29, P251
FLOYD S, 2001, IEEE ACM T NETWORK, V9, P392
GOVINDAN R, 2000, P IEEE INFOCOM 2000
HUFFAKER B, 2001, P PAM 2001 C AMST 23
LEE C, 2001, 10 IEEE HET COMP WOR
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PAXSON V, 1997, IEEE ACM T NETWORK, V5, P601
VESPIGNANI A, 2002, PHYS REV E, V65
WILLINGER W, 1996, STOCHASTIC NETWORKS, P339
WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
NR 16
TC 3
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD APR
PY 2003
VL 32
IS 4
BP 411
EP 414
PG 4
SC Physics, Condensed Matter
GA 686NF
UT ISI:000183327300001
ER
PT J
AU Vazquez, A
Boguna, M
Moreno, Y
Pastor-Satorras, R
Vespignani, A
TI Topology and correlations in structured scale-free networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID COMPLEX NETWORKS; INTERNET; DYNAMICS; ATTACK
AB We study a recently introduced class of scale-free networks showing a
high clustering coefficient and nontrivial connectivity correlations.
We find that the connectivity probability distribution strongly depends
on the fine details of the model. We solve exactly the case of low
average connectivity, providing also exact expressions for the
clustering and degree correlation functions. The model also exhibits a
lack of small-world properties in the whole parameter range. We discuss
the physical properties of these networks in the light of the present
detailed analysis.
C1 Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy.
INFM, I-34014 Trieste, Italy.
Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Univ Paris 11, Phys Theor Lab, UMR CNRS 8627, F-91405 Orsay, France.
RP Vazquez, A, Scuola Int Super Studi Avanzati, Via Beirut 4, I-34014
Trieste, Italy.
CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 1999, SCIENCE, V286, P509
BOGUNA M, 2002, PHYS REV E 2, V66
BOGUNA M, 2003, PHYS REV LETT, V90
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CHARTRAND G, 1986, GRAPHS DIGRAPHS
COHEN R, 2001, PHYS REV LETT, V86, P3682
CRUCITTI P, CONDMAT0205601
DEZSO Z, 2002, PHYS REV E, V65
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
EGUILUZ VM, 2002, PHYS REV LETT, V89
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
JEONG H, 2001, NATURE, V411, P41
KLEMM K, 2002, PHYS REV E 2, V65
KLEMM K, 2002, PHYS REV E 2A, V65
LLOYD AL, 2001, SCIENCE, V292, P1316
MARRO J, 1999, NONEQUILIBRIUM PHASE
MAY RM, 2001, PHYS REV E 2, V64
MONTOYA JM, 2002, J THEOR BIOL, V214, P405
MORENO Y, 2002, EUR PHYS J B, V26, P521
NEWMAN MEJ, 2002, PHYS REV LETT, V89
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
RAVASZ E, CONDMAT0206130
SOLE RV, 2002, ADV COMPLEX SYST, V5, P43
STROGATZ SH, 2001, NATURE, V410, P268
VAZQUEZ A, 2002, PHYS REV E 2, V65
VAZQUEZ A, 2003, COMPLEXUS, V1, P38
WAGNER A, 2001, MOL BIOL EVOL, V18, P1283
WARREN CP, 2002, PHYS REV E, V66
WATTS DJ, 1998, NATURE, V393, P440
NR 38
TC 30
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD APR
PY 2003
VL 67
IS 4
PN Part 2
AR 046111
DI ARTN 046111
PG 10
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 677UD
UT ISI:000182825400024
ER
PT J
AU Moreno, Y
Pastor-Satorras, R
Vazquez, A
Vespignani, A
TI Critical load and congestion instabilities in scale-free networks
SO EUROPHYSICS LETTERS
LA English
DT Article
ID COMPLEX NETWORKS; OVERLOAD BREAKDOWN; EVOLVING NETWORKS;
PHASE-TRANSITION; INTERNET; MODEL; WEB
AB We study the tolerance to congestion failures in communication networks
with scale-free topology. The traffic load carried by each damaged
element in the network must be partly or totally redistributed among
the remaining elements. Overloaded elements might fail on their turn,
triggering the occurrence of failure cascades able to isolate large
parts of the network. We find a critical traffic load above which the
probability of massive traffic congestions destroying the network
communication capabilities is finite.
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA.
Univ Paris 11, Phys Theor Lab, CNRS, UMR 8627, F-91405 Orsay, France.
RP Moreno, Y, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100 Trieste,
Italy.
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 2000, PHYSICA A, V281, P69
BRODER A, 2000, COMPUT NETW, V33, P309
BROIDO A, 2001, SPIE INT S CONV IT C
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CHEN Q, 2002, P INFOCOM 2002 21 AN, V2
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
FALOUTSOS M, 1999, COMP COMM R, V29, P251
GOH KI, 2001, PHYS REV LETT, V87
GOVINDAN R, 2000, P IEEE INFOCOM 2000
HOLME P, 2002, PHYS REV E 2, V65
HOLME P, 2002, PHYS REV E 2A, V66
JENSEN HJ, 1998, SELF ORG CRITICALITY
LABOVITZ C, 1999, 29 ANN INT S FAULT T, V278
LABOVITZ C, 1999, P INFOCOM 99 18 ANN, V1
MAGNASCO MO, 2000, NLINAO0010051
MARRO J, 1999, NONEQUILIBRIUM PHASE
MORENO Y, 2002, EUROPHYS LETT, V58, P630
NEWMAN MEJ, 2001, PHYS REV E 2, V64
OHIRA T, 1998, PHYS REV E, V58, P193
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2002, HDB GRAPHS NETWORKS
STROGATZ SH, 2001, NATURE, V410, P268
TADIC B, 2002, CONDMAT02072287
TAKAYASU M, 1996, PHYSICA A, V233, P924
TRETYAKOV AY, 1998, PHYSICA A, V253, P315
VAZQUEZ A, 2002, PHYS REV E 2, V65
WATTS DJ, 2002, P NATL ACAD SCI USA, V99, P5766
WILLINGER W, 2002, P NATL ACAD SCI U S1, V99, P2573
NR 34
TC 37
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD APR
PY 2003
VL 62
IS 2
BP 292
EP 298
PG 7
SC Physics, Multidisciplinary
GA 665NK
UT ISI:000182127200022
ER
PT J
AU Vilone, D
Vespignani, A
Castellano, C
TI Ordering phase transition in the one-dimensional Axelrod model
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
AB We study the one-dimensional behavior of a cellular automaton aimed at
the description of the formation and evolution of cultural domains. The
model exhibits a non-equilibrium transition between a phase with all
the system sharing the same culture and a disordered phase of
coexisting regions with different cultural features. Depending on the
initial distribution of the disorder the transition occurs at different
values of the model parameters. This phenomenology is qualitatively
captured by a mean-field approach, which maps the dynamics into a
multi-species reaction-diffusion problem.
C1 Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
INFM, Unita Roma 1, I-00185 Rome, Italy.
RP Vilone, D, Univ Roma La Sapienza, Dipartimento Fis, P A Moro 2, I-00185
Rome, Italy.
CR AXELROD R, 1997, COMPLEXITY COOPERATI
AXELROD R, 1997, J CONFLICT RESOLUT, V41, P207
AXTELL R, 1996, COMPUTATIONAL MATH O, V1, P123
CASTELLANO C, 2000, PHYS REV LETT, V85, P3536
DORNIC I, 2001, PHYS REV LETT, V87
JENSEN HJ, 1998, SELF ORG CRITICALITY
KLEMM K, 2002, CONDMAT0205188
LEE BP, 1995, J STAT PHYS, V80, P971
LIGGETT TM, 1985, INTERACTING PARTICLE
MARRO J, 1999, NONEQUILIBRIUM PHASE
PELITI L, 1985, J PHYS-PARIS, V46, P1469
REDNER S, 1997, NONEQUILIBRIUM STAT
STROGATZ SH, 2001, NATURE, V410, P268
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
NR 14
TC 13
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD DEC
PY 2002
VL 30
IS 3
BP 399
EP 406
PG 8
SC Physics, Condensed Matter
GA 643EZ
UT ISI:000180850100016
ER
PT J
AU Boguna, M
Pastor-Satorras, R
Vespignani, A
TI Absence of epidemic threshold in scale-free networks with degree
correlations
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID COMPLEX NETWORKS; DYNAMICS
AB Random scale-free networks have the peculiar property of being prone to
the spreading of infections. Here we provide for the
susceptible-infected-susceptible model an exact result showing that a
scale-free degree distribution with diverging second moment is a
sufficient condition to have null epidemic threshold in unstructured
networks with either assortative or disassortative mixing. Degree
correlations result therefore irrelevant for the epidemic spreading
picture in these scale-free networks. The present result is related to
the divergence of the average nearest neighbor's degree, enforced by
the degree detailed balance condition.
C1 Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Univ Paris 11, CNRS, UMR 8627, Phys Theor Lab, F-91405 Orsay, France.
RP Boguna, M, Univ Barcelona, Dept Fis Fonamental, Ave Diagonal 647,
E-08028 Barcelona, Spain.
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2002, REV MOD PHYS, V74, P47
ANDERSON RM, 1992, INFECT DIS HUMANS
BARABASI AL, 1999, SCIENCE, V286, P509
BOGUNA M, 2002, PHYS REV E 2, V66
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
EGUILUZ VM, 2002, PHYS REV LETT, V89
GANTMACHER FR, 1974, THEORY MATRICES, V2
KLEMM K, 2002, PHYS REV E 2A, V65
MASLOV S, 2002, SCIENCE, V296, P910
MAY RM, 2001, PHYS REV E 2, V64
MORENO Y, CONDMAT0201362
NEWMAN MEJ, 2002, PHYS REV LETT, V89
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PASTORSATORRAS R, 2002, HDB GRAPHS NETWORKS, P113
VAZQUEZ A, 2002, PHYS REV E 2, V65
VAZQUEZ A, 2003, PHYS REV E, V65
VOLCHENKOV D, 2002, PHYS REV E 2, V66
WARREN CP, 2002, PHYS REV E, V66
WATTS DJ, 1998, NATURE, V393, P440
NR 24
TC 52
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 17
PY 2003
VL 90
IS 2
AR 028701
DI ARTN 028701
PG 4
SC Physics, Multidisciplinary
GA 636FP
UT ISI:000180444200058
ER
PT J
AU Miguel, MC
Vespignani, A
Zaiser, M
Zapperi, S
TI Dislocation jamming and Andrade creep
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CRITICAL-DYNAMICS; SINGLE-CRYSTALS; DEFORMATION; SIMULATION; SLIP; FLOW
AB We simulate the glide motion of an assembly of interacting dislocations
under the action of an external shear stress and show that the
associated plastic creep relaxation follows Andrade's law. Our results
indicate that Andrade creep in plastically deforming crystals involves
the correlated motion of dislocation structures near a dynamic
transition separating a flowing from a jammed phase. Simulations in the
presence of dislocation multiplication and noise confirm the robustness
of this finding and highlight the importance of metastable structure
formation for the relaxation process.
C1 Univ Barcelona, Dipartimento Fis Fonamental, Fac Fis, E-08028 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Edinburgh, Ctr Mat Sci & Engn, Edinburgh EH9 3JL, Midlothian, Scotland.
Univ Roma La Sapienza, INFM, Unita Rome 1, I-00185 Rome, Italy.
Univ Roma La Sapienza, Ctr Stat Mech & Complex, Dipartimento Fis, I-00185 Rome, Italy.
RP Miguel, MC, Univ Barcelona, Dipartimento Fis Fonamental, Fac Fis, Ave
Diagonal 647, E-08028 Barcelona, Spain.
CR AMODEO RJ, 1990, PHYS REV B B, V41, P6958
AMODEO RJ, 1990, PHYS REV B, V41, P6968
ANANTHAKRISHNA G, 1999, PHYS REV E A, V60, P5455
ANDRADE END, 1910, P R SOC LOND A-CONTA, V84, P1
ANDRADE END, 1914, P R SOC LOND A-CONTA, V90, P329
BECKER R, 1932, Z PHYS, V79, P566
BENGUS VZ, 1966, PHYS STATUS SOLIDI, V14, P215
COTTRELL AH, 1996, PHIL MAG LETT, V73, P35
COTTRELL AH, 1996, PHIL MAG LETT, V74, P375
COTTRELL AH, 1997, PHIL MAG LETT, V75, P301
DANNA G, 1997, J APPL PHYS, V82, P5983
DANNA G, 2000, PHYS REV LETT, V85, P4096
ESSMANN U, 1979, PHIL MAG A, V40, P731
FRIEDEL J, 1967, DISLOCATIONS
GROMA I, 1993, PHILOS MAG A, V67, P1459
GROMA I, 2000, PHYS REV LETT, V84, P1487
HAHNER P, 1998, PHYS REV LETT, V81, P2470
HIRTH JP, 1992, THEORY DISLOCATIONS
KOCKS UF, 1975, PROGR MATERIALS SCIE, V19, P1
LEPINOUX J, 1987, SCRIPTA METALL, V21, P833
LIU AJ, 1998, NATURE, V396, P21
MIGUEL MC, 2001, NATURE, V410, P667
MOTT NF, 1953, PHILOS MAG, V44, P741
NABARRO FRN, 1992, THEORY CRYSTAL DISLO
NABARRO FRN, 1997, PHIL MAG LETT, V75, P227
NEUHAUSER H, 1983, DISLOCATIONS SOLIDS, V6, P319
SEVILLANO JG, 1991, SCRIPTA METALL MATER, V25, P355
ZAPPERI S, 2001, MAT SCI ENG A-STRUCT, V309, P348
NR 28
TC 17
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 14
PY 2002
VL 89
IS 16
AR 165501
DI ARTN 165501
PG 4
SC Physics, Multidisciplinary
GA 600HJ
UT ISI:000178384300025
ER
PT J
AU Leone, M
Vazquez, A
Vespignani, A
Zecchina, R
TI Ferromagnetic ordering in graphs with arbitrary degree distribution
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID REPLICA SYMMETRY-BREAKING; MEAN-FIELD THEORY; K-SATISFIABILITY PROBLEM;
LATTICE SPIN-GLASS; FINITE CONNECTIVITY; BETHE LATTICE; COMPLEX
NETWORKS; DEGREE SEQUENCE; SYSTEMS; SIZE
AB We present a detailed study of the phase diagram of the Ising model in
random graphs with arbitrary degree distribution. By using the replica
method we compute exactly the value of the critical temperature and the
associated critical exponents as a function of the moments of the
degree distribution. Two regimes of the degree distribution are of
particular interest. In the case of a divergent second moment, the
system is ferromagnetic at all temperatures. In the case of a finite
second moment and a divergent fourth moment, there is a ferromagnetic
transition characterized by non-trivial critical exponents. Finally, if
the fourth moment is finite we recover the mean field exponents. These
results are analyzed in detail for power-law distributed random graphs.
C1 Scuola Int Super Studi Avanzati, I-34014 Trieste, Italy.
INFM, I-34014 Trieste, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy.
RP Leone, M, Scuola Int Super Studi Avanzati, Via Beirut 4, I-34014
Trieste, Italy.
CR AIELLO W, 2000, P 32 ANN ACM S THEOR, P171
ALBERT R, 2002, REV MOD PHYS, V74, P47
ALEKSIEJUK A, CONDMAT0112312
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CARLSON JM, 1988, EUROPHYS LETT, V5, P355
COHEN R, CONDMAT0202259
COHEN R, 2001, PHYS REV LETT, V86, P3682
DEDOMINICIS C, 1987, J PHYS A, V20, L1267
DOROGOVTSEV SN, CONDMAT0106144
FRANZ S, CONDMAT0103026
FRANZ S, UNPUB
GOLDSCHMIDT YY, 1990, J PHYS A, V23, L775
KANTER I, 1987, PHYS REV LETT, V58, P164
KOROGOVTSEV SN, 2002, PHYSICA A, V310, P260
LEONE M, 2001, J PHYS A-MATH GEN, V34, P4615
MEZARD M, 1987, EUROPHYS LETT, V3, P1067
MEZARD M, 2001, EUR PHYS J B, V20, P217
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
MONASSON R, 1996, PHYS REV LETT, V76, P3881
MONASSON R, 1997, PHYS REV E, V56, P1357
MONASSON R, 1998, J PHYS A-MATH GEN, V31, P513
MORENO Y, 2002, EUROPHYS LETT, V57, P765
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
RICCITERSENGHI F, 2001, PHYS REV E 2, V63
RIEGER H, 1992, PHYS REV B, V45, P9772
STROGATZ SH, 2001, NATURE, V410, P268
THOULESS DJ, 1986, PHYS REV LETT, V56, P1082
VIANA L, 1985, J PHYS C SOLID STATE, V18, P3037
NR 34
TC 53
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD JUL
PY 2002
VL 28
IS 2
BP 191
EP 197
PG 7
SC Physics, Condensed Matter
GA 588BB
UT ISI:000177679600010
ER
PT J
AU Vazquez, A
Pastor-Satorras, R
Vespignani, A
TI Large-scale topological and dynamical properties of the Internet
SO PHYSICAL REVIEW E
LA English
DT Article
ID GROWING RANDOM NETWORKS; SMALL-WORLD NETWORKS; RANDOM GRAPHS; EVOLVING
NETWORKS; COMPLEX NETWORKS; DEGREE SEQUENCE; WIDE-WEB; ATTACK; GROWTH
AB We study the large-scale topological and dynamical properties of real
Internet maps at the autonomous system level, collected in a 3-yr time
interval. We find that the connectivity structure of the Internet
presents statistical distributions settled in a well-defined stationary
state. The large-scale properties are characterized by a scale-free
topology consistent with previous observations. Correlation functions
and clustering coefficients exhibit a remarkable structure due to the
underlying hierarchical organization of the Internet. The study of the
Internet time evolution shows a growth dynamics with aging features
typical of recently proposed growing network models. We compare the
properties of growing network models with the present real Internet
data analysis.
C1 SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Vazquez, A, SISSA, Int Sch Adv Studies, Via Beirut 4, I-34014 Trieste,
Italy.
CR ADAMIC LA, 2001, PHYS REV E 2, V64
ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, PHYS REV LETT, V85, P5234
ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
BOLLOBAS B, 1985, RANDOM GRAPHS
BORNHOLDT S, 2001, PHYS REV E 2, V64
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CHESWICK B, INTERNET MAPPING PRO
COHEN R, 2001, PHYS REV LETT, V86, P3682
DOAR M, 1993, P IEEE INFOCOM 93 LO, P83
DOROGOVTSEV SN, CONDMAT0009090
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2001, PHYS REV E 2, V63
DOROGOVTSEV SN, 2002, ADV PHYS, V51, P1079
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
FLOYD S, 2001, IEEE ACM T NETWORK, V9, P392
GOH KI, 2001, PHYS REV LETT, V87
GOH KI, 2002, PHYS REV LETT, V88
GOVINDAN R, 1997, P IEEE INFOCOM, P850
GOVINDAN R, 2000, P IEEE INFOCOM, V3, P1371
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, CONDMAT0104131
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E 2, V63
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
MOLLOY M, 1995, RANDOM STRUCT ALGOR, V6, P161
MOLLOY M, 1998, COMB PROBAB COMPUT, V7, P295
NEWMAN MEJ, 2001, PHYS REV E 2, V64
NEWMAN MEJ, 2001, PHYS REV E 2, V64
PANSIOT JJ, 1998, ACM COMPUTER COMMUNI, V28, P41
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
PUNIYANI AR, CONDMAT0107212
SIMON HA, 1955, BIOMETRIKA, V42, P425
STROGATZ SH, 2001, NATURE, V410, P268
VUKADINOVIC D, 2002, LECT NOTES COMPUTER
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
YOOK SH, CONDMAT0107417
ZEGURA EW, 1997, IEEE ACM T NETWORK, V5, P770
NR 47
TC 123
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 2002
VL 65
IS 6
PN Part 2
AR 066130
DI ARTN 066130
PG 12
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 572FM
UT ISI:000176762900037
ER
PT J
AU Moreno, Y
Pastor-Satorras, R
Vespignani, A
TI Epidemic outbreaks in complex heterogeneous networks
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID SMALL-WORLD NETWORKS; WIDE-WEB; TRANSMISSION DYNAMICS; INTERNET;
PERCOLATION; TOPOLOGY; GRAPHS; MODEL; HIV
AB We present a detailed analytical and numerical study for the spreading
of infections with acquired immunity in complex population networks. We
show that the large connectivity fluctuations usually found in these
networks strengthen considerably the incidence of epidemic outbreaks.
Scale-free networks, which are characterized by diverging connectivity
fluctuations in the limit of a very large number of nodes, exhibit the
lack of an epidemic threshold and always show a finite fraction of
infected individuals. This particular weakness, observed also in models
without immunity, defines a new epidemiological framework characterized
by a highly heterogeneous response of the system to the introduction of
infected individuals with different connectivity. The understanding of
epidemics in complex networks might deliver new insights in the spread
of information and diseases in biological and technological networks
that often appear to be characterized by complex heterogeneous
architectures.
C1 Abdus Salam Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
RP Moreno, Y, Abdus Salam Ctr Theoret Phys, POB 586, I-34100 Trieste,
Italy.
CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V409, P542
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANDERSON RM, 1992, INFECT DIS HUMANS
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2000, EUR PHYS J B, V13, P547
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BORNHOLDT S, 2001, PHYS REV E 2, V64
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2001, PHYS REV LETT, V86, P3682
DEMENEZES MA, 2000, EUROPHYS LETT, V50, P574
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2001, CONDMAT0106144
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HETHCOTE HW, 1978, THEORETICAL POPULATI, V14, P338
HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KUPERMAN M, 2001, PHYS REV LETT, V86, P2909
LILJEROS F, 2001, NATURE, V411, P907
LLOYD AL, 2001, SCIENCE, V292, P1316
MARRO J, 1999, NONEQUILIBRIUM PHASE
MAY RM, 1984, MATH BIOSCI, V72, P83
MAY RM, 1987, NATURE, V326, P137
MAY RM, 1988, PHIL T R SOC LOND B, V321, P565
MAY RM, 2001, PHYS REV E 2, V64
MOORE C, 2000, PHYS REV E B, V61, P5678
MURRAY JD, 1993, MATH BIOL
NEWMAN MEJ, 1999, PHYS REV E, V60, P5678
PASTORSATORRAS FR, 2001, PHYS REV LETT, V8725, P8701
PASTORSATORRAS FR, 2002, PHYS REV E, V6503, P5108
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2002, PHYS REV E 2A, V65
SIMON HA, 1955, BIOMETRIKA, V42, P425
STROGATZ SH, 2001, NATURE, V410, P268
TADIC B, 2001, PHYSICA A, V293, P273
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
NR 42
TC 69
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD APR
PY 2002
VL 26
IS 4
BP 521
EP 529
PG 9
SC Physics, Condensed Matter
GA 556QC
UT ISI:000175859600017
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Epidemic dynamics in finite size scale-free networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID SMALL-WORLD NETWORKS; INTERNET
AB Many real networks present a bounded scale-free behavior with a
connectivity cutoff due to physical constraints or a finite network
size. We study epidemic dynamics in bounded scale-free networks with
soft and hard connectivity cutoffs. The finite size effects introduced
by the cutoff induce an epidemic threshold that approaches zero at
increasing sizes. The induced epidemic threshold is very small even at
a relatively small cutoff, showing that the neglection of connectivity
fluctuations in bounded scale-free networks leads to a strong
overestimation of the epidemic threshold. We provide the expression for
the infection prevalence and discuss its finite size corrections. The
present paper shows that the highly heterogeneous nature of scale-free
networks does not allow the use of homogeneous approximations even for
systems of a relatively small number of nodes.
C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
Campus Nord B4, ES-08034 Barcelona, Spain.
CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2002, REV MOD PHYS, V74, P47
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANDERSON RM, 1992, INFECT DIS HUMANS
BARABASI AL, 1999, SCIENCE, V286, P509
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
DEZSO Z, CONDMAT0107420
DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
DOROGOVTSEV SN, CONDMAT0106144
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
LILJEROS F, 2001, NATURE, V411, P907
MARRO J, 1999, NONEQULIBRIUM PHASE
MAY RM, 2001, PHYS REV E 2, V64
MORENO Y, CONDMAT0107267
PASTORSATORRAS R, CONDMAT0107066
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
STROGATZ SH, 2001, NATURE, V410, P268
WATTS DJ, 1998, NATURE, V393, P440
NR 22
TC 44
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAR
PY 2002
VL 65
IS 3
PN Part 2A
AR 035108
DI ARTN 035108
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 533UN
UT ISI:000174548900008
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Immunization of complex networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID SMALL-WORLD NETWORKS; INTERNET; DYNAMICS
AB Complex networks such as the sexual partnership web or the Internet
often show a high degree of redundancy and heterogeneity in their
connectivity properties. This peculiar connectivity provides an ideal
environment for the spreading of infective agents. Here we show that
the random uniform immunization of individuals does not lead to the
eradication of infections in all complex networks. Namely, networks
with scale-free properties do not acquire global immunity from major
epidemic outbreaks even in the presence of unrealistically high
densities of randomly immunized individuals. The absence of any
critical immunization threshold is due to the unbounded connectivity
fluctuations of scale-free networks. Successful immunization strategies
can be developed only by taking into account the inhomogeneous
connectivity properties of scale-free networks. In particular, targeted
immunization schemes, based on the nodes' connectivity hierarchy,
sharply lower the network's vulnerability to epidemic attacks.
C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
CR ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, NATURE, V406, P378
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
ANDERSON RM, 1992, INFECT DIS HUMANS
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2000, EUR PHYS J B, V13, P547
BELLOVIN SM, 1993, COMPUT COMMUN, V23, P26
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2001, PHYS REV LETT, V86, P3682
DEZSO Z, CONDMAT0107420
DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
DOROGOVTSEV SN, CONDMAT0106144
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HETHCOTE HW, 1984, LECT NOTES BIOMATHS, V56, P1
KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
LILJEROS F, 2001, NATURE, V411, P907
LLOYD AL, 2001, SCIENCE, V292, P1316
MARRO J, 1999, NONEQUILIBRIUM PHASE
MAY RM, 1987, NATURE, V326, P137
MAY RM, 2001, PHYS REV E 2, V64
PASTORSATORRAS R, UNPUB
PASTORSATORRAS R, 2001, PHYS REV E 2, V63
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
PASTORSATORRAS R, 2001, PHYS REV LETT, V87
STROGATZ SH, 2001, NATURE, V410, P268
WATTS DJ, 1998, NATURE, V393, P440
NR 30
TC 76
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAR
PY 2002
VL 65
IS 3
PN Part 2A
AR 036104
DI ARTN 036104
PG 8
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 533UN
UT ISI:000174548900027
ER
PT J
AU Pastor-Satorras, R
Vazquez, A
Vespignani, A
TI Dynamical and correlation properties of the Internet
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS; TOPOLOGY
AB The description of the Internet topology is an important open problem,
recently tackled with the introduction of scale-free networks. We focus
on the topological and dynamical properties of real Internet maps in a
three-year time interval. We study higher order correlation functions
as well as the dynamics of several quantities. We find that the
Internet is characterized by nontrivial correlations among nodes and
different dynamical regimes. We point out the importance of node
hierarchy and aging in the Internet structure and growth. Our results
provide hints towards the realistic modeling of the Internet evolution.
C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Scuola Int Super Studi Avanzati, SISSA, I-34014 Trieste, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
CR ALBERT R, 2000, NATURE, V406, P378
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BIANCONI G, 2001, EUROPHYS LETT, V54, P436
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
CHESWICK B, INTENET MAPPING PROJ
COHEN R, 2001, PHYS REV LETT, V86, P3682
DOROGOVTSEV SN, 2000, EUROPHYS LETT, V52, P33
DOROGOVTSEV SN, 2000, PHYS REV LETT, V85, P4633
DOROGOVTSEV SN, 2001, PHYS REV E, V63, P2510
FALOUTSOS M, 1999, COMP COMM R, V29, P251
JEONG H, CONDMAT0104131
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
KRAPIVSKY PL, 2001, PHYS REV E, V63, P6612
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
STROGATZ SH, 2001, NATURE, V410, P268
WATTS DJ, 1998, NATURE, V393, P440
ZEGURA EW, 1997, IEEE ACM T NETWORK, V5, P770
NR 22
TC 224
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD DEC 17
PY 2001
VL 87
IS 25
AR 258701
DI ARTN 258701
PG 4
SC Physics, Multidisciplinary
GA 504PZ
UT ISI:000172866200061
ER
PT J
AU Dickman, R
Alava, M
Munoz, MA
Peltola, J
Vespignani, A
Zapperi, S
TI Critical behavior of a one-dimensional fixed-energy stochastic sandpile
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ABELIAN SANDPILE; CRITICAL EXPONENTS;
PHASE-TRANSITIONS; ABSORBING STATES; FIELD-THEORY; MODEL; UNIVERSALITY;
AVALANCHES; EVENTS
AB We study a one-dimensional fixed-energy version (that is, with no input
or loss of particles) of Manna's stochastic sandpile model, The system
has a continuous transition to an absorbing state at a critical value
of the particle density, and exhibits the hallmarks of an
absorbing-state phase transition, including finite-size scaling.
Critical exponents are obtained from extensive simulations, which treat
stationary and transient properties, and an associated interface
representation. These exponents characterize the universality class of
an absorbing-state phase transition with a static conserved density in
one dimension; they differ from those expected at a linear-interface
depinning transition in a medium with point disorder, and from those of
directed percolation.
C1 Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
Helsinki Univ Technol, Phys Lab, HUT-02105 Helsinki, Finland.
Inst Carlos I Theoret & Computat Phys, Granada 18071, Spain.
Dept Electromagnetismo & Fis Mat, Granada 18071, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Roma La Sapienza, Dipartimento Fis Enrico Fermi, INFM, I-00185 Rome, Italy.
RP Dickman, R, Univ Fed Minas Gerais, ICEx, Dept Fis, Caixa Postal 702,
BR-30161970 Belo Horizonte, MG, Brazil.
CR ALAVA M, CONDMAT0002406
ALAVA M, 2001, EUROPHYS LETT, V53, P569
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
CHESSA A, 1998, PHYS REV LETT, V80, P4217
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1999, PHYSICA A, V263, P4
DICKMAN R, CONDMAT9910454
DICKMAN R, UNPUB
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DICKMAN R, 2000, BRAZ J PHYS, V30, P27
DICKMAN R, 2000, PHYS REV E A, V62, P7632
DROSSEL B, 2000, PHYS REV E, V61, R2168
FISHER ME, 1971, FENOMINI CRITICI
FISHER ME, 1972, PHYS REV LETT, V28, P1516
FISHER ME, 1988, FINITE SIZE SCALING
GRASSBERGER P, 1982, Z PHYS B, V47, P465
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
HALPINHEALY T, 1995, PHYS REP, V254, P215
IVASHKEVICH EV, 1994, J PHYS A-MATH GEN, V27, P3643
IVASHKEVICH EV, 1994, PHYSICA A, V209, P347
JANSSEN HK, 1981, Z PHYS, V42, P141
JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KARDAR M, 1998, PHYS REP, V301, P85
LESCHHORN H, 1993, PHYSICA A, V195, P324
LOPEZ JM, 1997, PHYS REV E, V56, P3993
LOPEZ JM, 1999, PHYS REV LETT, V83, P4594
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
MUNOZ MA, 1999, PHYS REV E B, V59, P6175
MUNOZ MA, 2001, P 6 GRAN SEM COMP PH
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PACZUSKI M, 1994, EUROPHYS LETT, V28, P295
PARISI G, 1991, EUROPHYS LETT, V16, P321
PARISI G, 1991, PHYSICA A, V179, P16
PASTORSATORRAS R, 2000, PHYS REV E A, V62, R5875
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
ROSSI M, 2000, PHYS REV LETT, V85, P1803
TANG C, 1988, PHYS REV LETT, V60, P2347
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
NR 48
TC 26
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD NOV
PY 2001
VL 64
IS 5
PN Part 2
AR 056104
DI ARTN 056104
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 496QH
UT ISI:000172407100015
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Epidemic dynamics and endemic states in complex networks
SO PHYSICAL REVIEW E
LA English
DT Article
ID SMALL-WORLD NETWORKS; WIDE-WEB; INTERNET; TOPOLOGY
AB We study by analytical methods and large scale simulations a dynamical
model for the spreading of epidemics in complex networks. in networks
with exponentially bounded connectivity we recover the usual epidemic
behavior with a threshold defining a critical point below that the
infection prevalence is null. On the contrary, on a wide range of
scale-free networks we observe the absence of an epidemic threshold and
its associated critical behavior. This implies that scale-free networks
are prone to the spreading and the persistence of infections whatever
spreading rate the epidemic agents might possess. These results can
help understanding. computer virus epidemics and other spreading
phenomena on communication and social networks.
C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
CR ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS
ABRAMSON G, NLNAO0010012
ALBERT R, 1999, NATURE, V401, P130
ALBERT R, 2000, PHYS REV LETT, V85, P5234
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BAILEY NTJ, 1975, MATH THEORY INFECT D
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, CONDMAT9903323
BARRAT A, 2000, EUR PHYS J B, V13, P547
BARTHELEMY M, 1999, PHYS REV LETT, V82, P3180
BOLLOBAS B, 1985, RANDOM GRAPHS
BORNHOLDT S, CONDMAT0008465
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
CALLAWAY DS, 2000, PHYS REV LETT, V85, P5468
COHEN R, 2000, PHYS REV LETT, V85, P4626
DEMENEZES MA, 2000, EUROPHYS LETT, V50, P574
DOROGOVTSEV SN, CONDMAT0011115
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HILL MK, 1997, UNDERSTANDING ENV PO
HUBERMAN BA, 1999, NATURE, V401, P131
JEONG H, 2000, NATURE, V407, P651
KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
KEPHART JO, 1997, SCI AM, V277, P56
KRAPIVSKY PL, 2000, PHYS REV LETT, V85, P4629
MARRO J, 1999, NONEQUILIBRIUM PHASE
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
MONTOYA JM, CONDMAT0011195
MOORE C, 2000, PHYS REV E B, V61, P5678
MURRAY JD, 1993, MATH BIOL
NEWMAN MEJ, 1999, PHYS REV E, V60, P5678
PASTORSATORRAS R, IN PRESS PHYS REV LE
PASTORSATORRAS R, 2001, PHYS REV LETT, V86, P3200
SIMON HA, 1955, BIOMETRIKA, V42, P425
TADIC B, 2001, PHYSICA A, V293, P273
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WATTS DJ, 1999, SMALL WORLDS DYNAMIC
WENG GZ, 1999, SCIENCE, V284, P92
NR 40
TC 164
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 2001
VL 6306
IS 6
PN Part 2
AR 066117
DI ARTN 066117
PG 8
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 442KU
UT ISI:000169285300028
ER
PT J
AU Miguel, MC
Vespignani, A
Zapperi, S
Weiss, J
Grasso, JR
TI Complexity in dislocation dynamics: model
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE dislocations; statistical modelling; fluctuations; ice single crystal
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; DEFORMATION
AB We propose a numerical model to study the viscoplastic deformation of
ice single crystals. We consider long-range elastic interactions among
dislocations, the possibility of mutual annihilation, and a
multiplication mechanism representing the activation of Frank-Read
sources due to dislocation pinning. The overdamped equations of motion
for a collection of dislocations are integrated numerically using
different externally applied stresses. Using this approach we analyze
the avalanche-like rearrangements of dislocations during the dynamic
evolution. We observe a power law distribution of avalanche sizes which
we compare with acoustic emission experiments in ice single crystals
under creep deformation. We emphasize the connections of our model with
nonequilibrium phase transitions and critical phenomena. (C) 2001
Elsevier Science B.V. All rights reserved.
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ La Sapienza, INFM, I-00185 Rome, Italy.
Lab Glaciol & Geophys Environm, CNRS, F-38402 St Martin Dheres, France.
LGIT, F-38041 Grenoble 9, France.
RP Miguel, MC, Univ Barcelona, Dept Fis Fonamental, Fac Fis, Diagonal 647,
E-08028 Barcelona, Spain.
CR AMODEO RJ, 1990, PHYS REV B B, V41, P6958
BAK P, 1987, PHYS REV LETT, V59, P381
BAKO B, 1999, PHYS REV B, V60, P122
BERTOTTI G, 1994, J APPL PHYS, V75, P5490
DICKMAN R, 2000, BRAZ J PHYS, V30, P27
DOMB C, 1972, PHASE TRANSITION CRI, V1
FIELD S, 1995, PHYS REV LETT, V74, P1206
FOURNET R, 1996, PHYS REV B, V53, P6283
GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
HAHNER P, 1998, PHYS REV LETT, V81, P2470
HIRTH JP, 1992, THEORY DISLOCATIONS
MIGUEL MC, UNPUB
NABARRO FRN, 1992, THEORY CRYSTAL DISLO
PETRI A, 1994, PHYS REV LETT, V73, P3423
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
WEISS J, 1997, J PHYS CHEM B, V101, P6113
WEISS J, 2000, J GEOPHYS RES-SOL EA, V105, P433
WEISS J, 2001, MAT SCI ENG A-STRUCT, V309, P360
NR 18
TC 9
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MATER SCI ENG A-STRUCT MATER
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD JUL 15
PY 2001
VL 309
SI Sp. Iss. SI
BP 324
EP 327
PG 4
SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
GA 438GE
UT ISI:000169044600066
ER
PT J
AU Weiss, J
Grasso, JR
Miguel, MC
Vespignani, A
Zapperi, S
TI Complexity in dislocation dynamics: experiments
SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES
MICROSTRUCTURE AND PROCESSING
LA English
DT Article
DE dislocation; acoustic emission; avalanches; critical phenomena; ice
ID ACOUSTIC-EMISSION; SINGLE-CRYSTALS; DEFORMATION; ICE
AB We present a statistical analysis of the acoustic emissions induced by
dislocation motion during the creep of ice single crystals. The
recorded acoustic waves provide an indirect measure of the inelastic
energy dissipated during dislocation motion. Compression and torsion
creep experiments indicate that viscoplastic deformation, even in the
steady-state (secondary creep), is a complex and inhomogeneous process
characterized by avalanches in the motion of dislocations. The
distribution of avalanche sizes, identified with the acoustic wave
amplitude (or the acoustic wave energy), is found to follow a power law
with a cutoff at large amplitudes which depends on the creep stage
(primary, secondary, tertiary). These results suggest that viscoplastic
deformation in ice and possibly in other materials could be described
in the framework of non-equilibrium critical phenomena. (C) 2001
Elsevier Science B.V. All rights reserved.
C1 Lab Glaciol & Geophys Environm, CNRS, F-38402 St Martin Dheres, France.
LGIT, F-38041 Grenoble 9, France.
Univ Barcelona, Fac Fis, E-08028 Barcelona, Spain.
Abdus Salam ICTP, I-34100 Trieste, Italy.
Univ La Sapienza, INFM, I-00185 Rome, Italy.
RP Weiss, J, Lab Glaciol & Geophys Environm, CNRS, BP 96,54 Rue Moliere,
F-38402 St Martin Dheres, France.
CR ANANTHAKRISHNA G, 1999, PHYS REV E A, V60, P5455
ASHBY MF, 1972, ACTA METALL, V20, P887
ESHELBY JD, 1962, P ROY SOC LOND A MAT, V266, P222
FRIEDEL J, 1964, DISLOCATIONS
GROMA I, 1999, MODEL SIMUL MATER SC, V7, P795
KIESEWETTER N, 1976, PHYS STATUS SOLIDI, V38, P569
LEPINOUX J, 1987, SCRIPTA METALL, V21, P833
MALEN K, 1974, PHYS STATUS SOLIDI B, V61, P637
NEUHAUSER H, 1983, DISLOCATIONS SOLIDS, V6, P319
ROUBY D, 1983, PHILOS MAG A, V47, P671
THIBERT E, 1997, J PHYS CHEM B, V101, P3554
WEISS J, 1997, J PHYS CHEM B, V101, P6113
WEISS J, 2000, J GEOPHYS RES-SOL EA, V105, P433
NR 13
TC 12
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5093
J9 MATER SCI ENG A-STRUCT MATER
JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
PD JUL 15
PY 2001
VL 309
SI Sp. Iss. SI
BP 360
EP 364
PG 5
SC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary
GA 438GE
UT ISI:000169044600075
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Reaction-diffusion system with self-organized critical behavior
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID ABSORBING PHASE-TRANSITIONS; ABELIAN SANDPILE; CONSERVED FIELD; MODELS;
EVENTS
AB We describe the construction of a conserved reaction-diffusion system
that exhibits self-organized critical (avalanche-like) behavior under
the action of a slow addition of particles. The model provides an
illustration of the general mechanism to generate self-organized
criticality in conserving systems. Extensive simulations in d = 2 and 3
reveal critical exponents compatible with the universality class of the
stochastic Manna sandpile model.
C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1993, PHYS REV LETT, V71, P4083
CARDY JL, 1988, CURRENT PHYSICS SOUR, V2
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1999, PHYSICA A, V263, P4
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DICKMAN R, 2000, BRAZ J PHYS, V30, P27
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
JENSEN HJ, 1998, SELFORGANIZED CRITIC
LUBECK S, 2000, PHYS REV E, V61, P204
MANNA SS, 1991, J PHYS A, V24, L363
MILSHTEIN E, 1998, PHYS REV E, V58, P303
NAKANISHI K, 1997, PHYS REV E, V55, P4012
PASTORSATORRAS R, 2000, PHYS REV E A, V62, R5875
ROSSI M, 2000, PHYS REV LETT, V85, P1803
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
VANWIJLAND F, 1998, PHYSICA A, V251, P179
VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 21
TC 6
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD FEB
PY 2001
VL 19
IS 4
BP 583
EP 587
PG 5
SC Physics, Condensed Matter
GA 421MY
UT ISI:000168069200011
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Epidemic spreading in scale-free networks
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SMALL-WORLD NETWORKS; INTERNET
AB The Internet has a very complex connectivity recently modeled by the
class of scale-free networks. This feature, which appears to be very
efficient for a communications network, favors at the same time the
spreading of computer viruses. We analyze real data from computer virus
infections and find the average lifetime and persistence of viral
strains on the Internet. We define a dynamical model for the spreading
of infections on scale-free networks. finding the absence of an
epidemic threshold and its associated critical behavior. This new
epidemiological framework rationalizes data of computer viruses and
could help in the understanding of other spreading phenomena on
communication and social networks.
C1 Univ Politecn Catalunya, Dept Fis & Engn Nucl, ES-08034 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Politecn Catalunya, Dept Fis & Engn Nucl,
Campus Nord,Modul B4, ES-08034 Barcelona, Spain.
CR ALBERT R, 1999, NATURE, V401, P130
AMARAL LAN, 2000, P NATL ACAD SCI USA, V97, P11149
BAILEY NTJ, 1975, MATH THEORY INFECT D
BARABASI AL, 1999, PHYSICA A, V272, P173
BARABASI AL, 1999, SCIENCE, V286, P509
BARRAT A, 2000, EUR PHYS J B, V13, P57
CALDARELLI G, 2000, EUROPHYS LETT, V52, P386
COHEN FB, 1994, SHORT COURSE COMPUTE
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FALOUTSOS M, 1999, COMP COMM R, V29, P251
HILL MK, 1997, UNDERSTANDING ENV PO
KEPHART JO, 1991, P 1991 IEEE COMP SOC, P343
KEPHART JO, 1993, IEEE SPECTRUM, V30, P20
KEPHART JO, 1997, SCI AM, V277, P56
MARRO J, 1999, NONEQUILIBRIUM PHASE
MEDINA A, 2000, COMPUT COMMUN REV, V30, P18
MOORE C, 2000, PHYS REV E B, V61, P5678
MURRAY JD, 1993, MATH BIOL
MURRAY WH, 1988, COMPUT SECUR, V7, P130
PASTORSATORRAS R, UNPUB
SZABO G, 2000, PHYS REV E B, V62, P7474
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WATTS DJ, 1998, NATURE, V393, P440
WHITE SR, 1998, P VIR B C MUN 1998
NR 24
TC 451
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 2
PY 2001
VL 86
IS 14
BP 3200
EP 3203
PG 4
SC Physics, Multidisciplinary
GA 417ZX
UT ISI:000167866300072
ER
PT J
AU Miguel, MC
Vespignani, A
Zapperi, S
Weiss, J
Grasso, JR
TI Intermittent dislocation flow in viscoplastic deformation
SO NATURE
LA English
DT Article
ID ACOUSTIC-EMISSION; SINGLE-CRYSTALS; DYNAMICS; SIMULATION; PATTERNS;
LINES; ICE
AB The viscoplastic deformation (creep) of crystalline materials under
constant stress involves the motion of a large number of interacting
dislocations(1). Analytical methods and sophisticated 'dislocation
dynamics' simulations have proved very effective in the study of
dislocation patterning, and have led to macroscopic constitutive laws
of plastic deformation(2-9). Yet, a statistical analysis of the
dynamics of an assembly of interacting dislocations has not hitherto
been performed. Here we report acoustic emission measurements on
stressed ice single crystals, the results of which indicate that
dislocations move in a scale-free intermittent fashion. This result is
confirmed by numerical simulations of a model of interacting
dislocations that successfully reproduces the main features of the
experiment. We rnd that dislocations generate a slowly evolving
configuration landscape which coexists with rapid collective
rearrangements. These rearrangements involve a comparatively small
fraction of the dislocations and lead to an intermittent behaviour of
the net plastic response. This basic dynamical picture appears to be a
generic feature in the deformation of many other materials(10-12).
Moreover, it should provide a framework for discussing fundamental
aspects of plasticity that goes beyond standard mean-field approaches
that see plastic deformation as a smooth laminar flow.
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain.
Univ La Sapienza, INFM, I-00185 Rome, Italy.
CNRS, LGGE, F-38402 St Martin Dheres, France.
LGIT, F-38041 Grenoble 9, France.
RP Miguel, MC, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100 Trieste,
Italy.
CR AMODEO RJ, 1990, PHYS REV B B, V41, P6958
ANANTHAKRISHNA G, 1999, PHYS REV E A, V60, P5455
BECKER R, 1932, Z PHYS, V79, P566
BENGUS VZ, 1966, PHYS STATUS SOLIDI, V14, P215
DUVAL P, 1983, J PHYS CHEM-US, V87, P4066
FOURNET R, 1996, PHYS REV B, V53, P6283
GROMA I, 1993, PHILOS MAG A, V67, P1459
HAHNER P, 1996, APPL PHYS A-MATER, V62, P473
HAHNER P, 1998, PHYS REV LETT, V81, P2470
HIRTH JP, 1992, THEORY DISLOCATIONS
JENSEN HJ, 1998, SELF ORG CRITICALITY
KARDAR M, 1998, PHYS REP, V301, P85
LEPINOUX J, 1987, SCRIPTA METALL, V21, P833
NEUHAUSER H, 1983, DISLOCATIONS SOLIDS, V6, P319
PETRENKO VF, 1994, 9412 US ARM COLD REG
ROUBY D, 1983, PHILOS MAG A, V47, P671
SEVILLANO JG, 1991, SCRIPTA METALL MATER, V25, P355
THOMSON R, 1998, PHYS REV LETT, V81, P3884
WEISS J, 1997, J PHYS CHEM B, V101, P6113
WEISS J, 2000, J GEOPHYS RES-SOL EA, V105, P433
ZAISER M, 1999, ACTA MATER, V47, P2463
NR 21
TC 78
PU MACMILLAN PUBLISHERS LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND
SN 0028-0836
J9 NATURE
JI Nature
PD APR 5
PY 2001
VL 410
IS 6829
BP 667
EP 671
PG 6
SC Multidisciplinary Sciences
GA 418DJ
UT ISI:000167875400040
ER
PT J
AU Pietronero, L
Tosatti, E
Tosatti, V
Vespignani, A
TI Explaining the uneven distribution of numbers in nature: the laws of
Benford and Zipf
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
AB The distribution of first digits in numbers series obtained from very
different origins shows a marked asymmetry in favor of small digits
that goes under the name of Benford's law. We analyze in detail this
property for different data sets and give a general explanation for the
origin of the Benford's law in terms of multiplicative processes. We
show that this law can be also generalized to series of numbers
generated from more complex systems like the catalogs of seismic
activity. Finally, we derive a relation between the generalized
Benford's law and the popular Zipf's law which characterize the rank
order statistics and has been extensively applied to many problems
ranging from city population to linguistics. (C) 2001 Published by
Elsevier Science B.V.
C1 Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
Univ Rome La Sapienza, Unita INFM, I-00185 Rome, Italy.
SISSA, ISAS, I-34014 Trieste, Italy.
SISSA, Unita INFM Trieste, I-34014 Trieste, Italy.
Abdus Salam Int Ctr Theoret Phys, ICTP, I-34100 Trieste, Italy.
RP Pietronero, L, Univ Rome La Sapienza, Dipartimento Fis, P A Moro 2,
I-00185 Rome, Italy.
CR BAK P, 1996, NATURE WORKS SCI SEL
BENFORD F, 1938, P AM PHILOS SOC, V78, P551
GELLMANN M, 1994, QUARK JAGUAR ADVENTU
GUTENBERG B, 1944, B SEISMOL SOC AM, V34, P185
HILL TP, 1998, AM SCI, V86, P358
LEY E, 1996, AM STAT, V50, P311
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
NEWCOMB S, 1881, AM J MATH, V4, P39
NIGRINI M, 1996, J AM TAXATION ASS, V18, P72
RAIMI R, 1969, SCI AM DEC, P109
RAIMI RA, 1976, AM MATH MONTHLY, V83, P521
RICHARDS SP, 1982, NUMBER YOUR THOUGHTS
SCHATTE P, 1988, J INF PROCESS CYBERN, V24, P443
VICSEK T, 1992, FRACTAL GROWTH PHENO
ZIPF GK, 1949, HUMAN BEHAV PRINCIPL
NR 15
TC 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD APR 1
PY 2001
VL 293
IS 1-2
BP 297
EP 304
PG 8
SC Physics, Multidisciplinary
GA 413TP
UT ISI:000167628300023
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Anomalous scaling in the Zhang model
SO EUROPEAN PHYSICAL JOURNAL B
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ABELIAN SANDPILE; UNIVERSALITY; EVENTS
AB We apply the moment analysis technique to analyze large scale
simulations of the Zhang sandpile model. We find that this model shows
different scaling behavior depending on the update mechanism used. With
the standard parallel updating, the Zhang model violates the
finite-size scaling hypothesis, and it also appears to be incompatible
with the more general multifractal scaling form. This makes impossible
its affiliation to any one of the known universality classes of
sandpile models. With sequential updating, it shows scaling for the
size and area distribution. The introduction of stochasticity into the
toppling rules of the parallel Zhang model leads to a scaling behavior
compatible with the Manna universality class.
C1 Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Barcelona, Fac Fis, Dept Fis Fonamental, Av
Diagonal 647, E-08028 Barcelona, Spain.
CR BAK P, 1987, PHYS REV LETT, V59, P381
CARDY JL, 1988, CURRENT PHYSICS SOUR, V2
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1999, PHYSICA A, V263, P4
GIACOMETTI A, 1998, PHYS REV E, V58, P247
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
JENSEN HJ, 1998, SELF ORG CRITICALITY
KADANOFF LP, 1989, PHYS REV A, V39, P6524
LUBECK S, CONDMAT0008304
LUBECK S, 1997, PHYS REV E, V56, P1590
LUBECK S, 2000, PHYS REV E, V61, P204
MANNA SS, 1991, J PHYS A, V24, L363
MILSHTEIN E, 1998, PHYS REV E, V58, P303
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
VAZQUEZ A, CONDMAT0003420
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 19
TC 8
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6028
J9 EUR PHYS J B
JI Eur. Phys. J. B
PD NOV
PY 2000
VL 18
IS 2
BP 197
EP 200
PG 4
SC Physics, Condensed Matter
GA 381QH
UT ISI:000165774100003
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Field theory of absorbing phase transitions with a nondiffusive
conserved field
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ABELIAN SANDPILE; CRITICAL-BEHAVIOR; MODEL;
RENORMALIZATION; SYSTEMS; EVENTS; STATES
AB We investigate the critical behavior of a reaction-diffusion system
exhibiting a continuous absorbing-state phase transition. The
reaction-diffusion system strictly conserves the total density of
particles, represented as a nondiffusive conserved field, and allows an
infinite number of absorbing configurations. Numerical results show
that it belongs to a wide universality class that also includes
stochastic sandpile models. We derive microscopically the field theory
representing this universality class.
C1 Univ Barcelona, Fac Fis, Dept Fis Fonamental, E-08028 Barcelona, Spain.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Univ Barcelona, Fac Fis, Dept Fis Fonamental, Ave
Diagonal 647, E-08028 Barcelona, Spain.
CR ALBANO EV, 1992, J PHYS A, V25, P2557
BAK P, 1987, PHYS REV LETT, V59, P381
CARDY J, 1996, PHYS REV LETT, V77, P4780
CARDY JL, 1980, J PHYS A, V13, L423
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1999, PHYSICA A, V263, P4
DICKMAN R, 1998, PHYS REV E A, V57, P5095
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
JANSSEN HK, 1999, EUR PHYS J B, V7, P137
JENSEN HJ, 1998, SELF ORGANIZED CRITI
JENSEN I, 1993, PHYS REV E, V48, P1710
JENSEN I, 1993, PHYS REV LETT, V70, P1465
KREE R, 1989, PHYS REV A, V39, P2214
LEE BP, 1995, J STAT PHYS, V80, P971
LUBECK S, 2000, PHYS REV E, V61, P204
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MILSHTEIN E, 1998, PHYS REV E, V58, P303
MUNOZ MA, COMMUNICATION
NAKANISHI K, 1997, PHYS REV E, V55, P4012
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PACZUSKI M, 1994, EUROPHYS LETT, V28, P295
ROSSI M, 2000, PHYS REV LETT, V85, P1803
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
VANWIJLAND F, 1998, PHYSICA A, V251, P179
VESPIGNANI A, CONDMAT0003285
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
NR 31
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD NOV
PY 2000
VL 62
IS 5
PN Part A
BP R5875
EP R5878
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 374JH
UT ISI:000165341700001
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Critical behavior and conservation in directed sandpiles
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; UPPER CRITICAL DIMENSION; ABELIAN SANDPILE;
MODELS; UNIVERSALITY; EVENTS
AB We perform large-scale simulations of directed sandpile models with
both deterministic and stochastic toppling rules. Our results show the
existence of two distinct universality classes. We also provide
numerical simulations of directed models in the presence of bulk
dissipation. The numerical results indicate that the way in which
dissipation is implemented is irrelevant for the determination of the
critical behavior. The analysis of the self-affine properties of
avalanches shows the existence of a subset of superuniversal exponents,
whose value is independent of the universality class. This feature is
accounted for by means of a phenomenological description of the energy
balance condition in these models.
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100
Trieste, Italy.
CR ALAVA M, CONDMAT0002406
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
CARDY JL, 1988, CURRENT PHYSICS SOUR, V2
CHESSA A, 1998, PHYS REV E, V57, R6241
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1989, PHYS REV LETT, V63, P1659
DHAR D, 1999, PHYSICA A, V263, P4
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DROSSEL B, 2000, PHYS REV E, V61, R2168
GRADSHTEYN IS, 1979, TABLE INTEGRALS SERI
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
HASTY J, 1998, PHYS REV LETT, V81, P1722
JENSEN HJ, 1998, SEFL ORG CRITICALITY
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KINZEL W, 1983, PERCOLATION STRUCTUR, V5, CH18
KLOSTER MN, CONDMAT0005528
LAURITSEN KB, CONDMAT9903346
LUBECK S, 1998, PHYS REV E A, V58, P2957
LUBECK S, 2000, PHYS REV E, V61, P204
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1990, PHYS REV E, V60, R5005
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MILSHTEIN E, 1998, PHYS REV E, V58, P303
PACZUSKI M, CONDMAT0005340
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PACZUSKI M, 1994, EUROPHYS LETT, V28, P295
PACZUSKI M, 1996, PHYS REV LETT, V77, P111
PASTORSATORRAS R, 2000, J PHYS A-MATH GEN, V33, L33
TADIC B, 1997, PHYS REV LETT, V79, P1519
TANG C, 1988, PHYS REV LETT, V60, P2347
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
TSUCHIYA T, 1999, J PHYS A-MATH GEN, V32, P1629
VAZQUEZ A, CONDMAT0003420
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
VESPIGNANI A, 2000, PHYS REV E A, V62, P4564
NR 40
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD NOV
PY 2000
VL 62
IS 5
PN Part A
BP 6195
EP 6205
PG 11
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 374JH
UT ISI:000165341700047
ER
PT J
AU Castellano, C
Marsili, M
Vespignani, A
TI Nonequilibrium phase transition in a model for social influence
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
AB We present extensive numerical simulations of the Axelrod's model for
social influence, aimed at understanding the formation of cultural
domains. This is a nonequilibrium model with short range interactions
and a remarkably rich dynamical behavior. We study the phase diagram of
the model and uncover a nonequilibrium phase transition separating an
ordered (culturally polarized) phase from a disordered (culturally
fragmented) one. The nature of the phase transition can be continuous
or discontinuous depending on the model parameters. At the transition,
the size of cultural regions is power-law distributed.
C1 Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany.
INFM, Trieste SISSA Unit, I-34014 Trieste, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy.
RP Castellano, C, Univ Essen Gesamthsch, Fachbereich Phys, D-45117 Essen,
Germany.
CR ANDERSON PW, 1998, EC EVOLVING COMPLEX
AXELROD R, 1997, COMPLEXITY COOPERATI
AXELROD R, 1997, J CONFLICT RESOLUT, V41, P203
AXTELL R, 1996, COMPUTATIONAL MATH O, V1, P123
BIALAS P, 1997, NUCL PHYS B, V493, P505
BRAY AJ, 1994, ADV PHYS, V43, P357
FRACHEBOURG L, 1996, PHYS REV E, V53, P3009
LIGGETT TM, 1985, INTERACTING PARTICLE
MARSILI M, 1998, PHYS REV LETT, V80, P2741
SCHEUCHER M, 1988, J STAT PHYS, V53, P279
STAUFFER D, 1985, INTRO PERCOLATION TH
NR 11
TC 56
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD OCT 16
PY 2000
VL 85
IS 16
BP 3536
EP 3539
PG 4
SC Physics, Multidisciplinary
GA 363YU
UT ISI:000089865900051
ER
PT J
AU Vespignani, A
Dickman, R
Munoz, MA
Zapperi, S
TI Absorbing-state phase transitions in fixed-energy sandpiles
SO PHYSICAL REVIEW E
LA English
DT Review
ID SELF-ORGANIZED CRITICALITY; CHARGE-DENSITY WAVES; ANNIHILATING
RANDOM-WALKS; TANG-WIESENFELD SANDPILE; ABELIAN SANDPILE;
RENORMALIZATION-GROUP; DIRECTED PERCOLATION; CRITICAL EXPONENTS;
QUENCHED DISORDER; CRITICAL-BEHAVIOR
AB We study sandpile models as closed systems, with the conserved energy
density zeta playing the role of an external parameter. The critical
energy density zeta (c) marks a nonequilibrium phase transition between
active and absorbing states. Several fixed-energy sandpiles are studied
in extensive simulations of stationary and transient properties, as
well as the dynamics of roughening in an interface-height
representation. Our primary goal is to identify the universality
classes of such models, in hopes of assessing the validity of two
recently proposed approaches to sandpiles: a phenomenological continuum
Langevin description with absorbing states, and a mapping to driven
interface dynamics in random media.
C1 Abdus Salam Int Ctr Theoret Phys, ICTP, I-34100 Trieste, Italy.
Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
Univ Granada, Inst Carlos Theoret & Computat Phys 1, E-18071 Granada, Spain.
Univ Granada, Dept Electromagnet & Fis Mat, E-18071 Granada, Spain.
Univ Roma La Sapienza, Dipartimento Fis, Sez Roma 1, INFM, I-00185 Rome, Italy.
RP Vespignani, A, Abdus Salam Int Ctr Theoret Phys, ICTP, POB 586, I-34100
Trieste, Italy.
CR ALAVA M, CONDMAT0002406
ALON U, 1996, PHYS REV LETT, V76, P2746
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAKSNEPPEN SOC, 1994, EUROPHYS LETT, V27, P97
BARBASI AL, 1995, FRACTAL CONCEPTS SUR
BARRAT A, 1999, PHYS REV LETT, V83, P1962
BENHUR A, 1996, PHYS REV E, V53, P1317
BISWAS P, 1998, PHYS REV E A, V58, P1266
BRAY AJ, 1994, ADV PHYS, V43, P357
CALFIERO R, 1998, PHYS REV E, V57, P5060
CARDY J, 1996, PHYS REV LETT, V77, P4780
CARDY JL, 1980, J PHYS A, V13, L423
CHESSA A, 1998, PHYS REV LETT, V80, P4217
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
CHESSA A, 1999, PHYS REV E A, V59, R12
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, CONDMAT9909009
DHAR D, 1989, PHYS REV LETT, V63, P1659
DHAR D, 1990, PHYS REV LETT, V64, P1613
DHAR D, 1999, PHYSICA A, V270, P69
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, CONDMAT9909347
DICKMAN R, UNPUB
DICKMAN R, 1996, NONEQUILIBRIUM STAT
DICKMAN R, 1998, PHYS REV E A, V57, P1263
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DOI M, 1976, J PHYS A, V9, P1465
FAMILY F, 1985, J PHYS A, V18, L75
FISHER ME, 1971, P INT SUMM SCH E FER
FISHER ME, 1972, PHYS REV LETT, V28, P1516
GRASSBERGER P, COMMUNICATION
GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
GRASSBERGER P, 1984, J PHYS A, V17, L105
GRASSBERGER P, 1989, J PHYS A, V22, L1103
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
GRINSTEIN G, 1997, LECT NOTES PHYS, V493, P223
HASTY J, 1997, J STAT PHYS, V86, P1179
HINRICHSEN H, 1997, PHYS REV E A, V55, P219
HWA T, 1992, PHYS REV A, V45, P7002
HWANG W, 1998, PHYS REV E, V57, P6438
IVASHKEVICH EV, 1994, J PHYS A-MATH GEN, V27, P3643
IVASHKEVICH EV, 1994, PHYSICA A, V209, P347
JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
JANSSEN HK, 1989, Z PHYS B CON MAT, V73, P539
JANSSEN HK, 1997, PHYS REV E B, V55, P6253
JENSEN I, 1993, PHYS REV E, V48, P1710
JENSEN I, 1993, PHYS REV LETT, V70, P1465
JENSEN I, 1994, PHYS REV E, V50, P3623
KERTESZ J, 1989, PHYS REV LETT, V62, P2571
KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
KOBAYASHI H, 1997, J PHYS SOC JPN, V66, P2367
KTITAREV DV, 2000, PHYS REV E, V61, P81
LAURITSEN KB, CONDMAT9903346
LEE BP, 1995, J STAT PHYS, V80, P971
LESCHHORN H, 1997, ANN PHYS-LEIPZIG, V6, P1
LIGGET TM, 1985, INTERACTING PARTICLE
LOPEZ JM, 1997, J PHYS I, V7, P1191
LOPEZ JM, 1997, PHYS REV E, V56, P3993
LOPEZ JM, 1999, PHYS REV LETT, V83, P4594
LUBECK S, 1997, PHYS REV E A, V56, P5138
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 2000, PHYS REV E, V61, P204
MAJUMDAR SN, 1992, PHYSICA A, V185, P129
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MARSILI M, 1994, J STAT PHYS, V77, P733
MASLOV S, 1996, PHYSICA A, V223, P1
MEHTA A, 1996, PHYS REV E A, V53, P92
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MENYHARD N, 1996, J PHYS A-MATH GEN, V29, P7739
MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
MOREIRA AG, 1996, PHYS REV E, V54, P3090
MUNOZ MA, UNPUB
MUNOZ MA, 1996, PHYS REV LETT, V76, P451
MUNOZ MA, 1998, J STAT PHYS, V91, P541
MUNOZ MA, 1999, PHYS REV E B, V59, P6175
NARAYAN O, 1993, PHYS REV B, V48, P7030
NARAYAN O, 1994, PHYS REV B, V49, P244
NOEST AJ, 1986, PHYS REV LETT, V57, P90
NOEST AJ, 1988, PHYS REV B, V38, P2715
PACZUSKI M, 1996, PHYS REV LETT, V77, P111
PANG NN, 1999, PHYS REV E A, V59, P234
PARISI G, 1991, EUROPHYS LETT, V16, P321
PARISI G, 1991, PHYSICA A, V179, P16
PASTORSATORRAS R, COMMUNICATION
PASTORSATORRAS R, 2000, J PHYS A-MATH GEN, V33, L33
PELITI L, 1985, J PHYS-PARIS, V46, P1469
PIETRONERO L, 1991, PHYSICA A, V173, P129
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PRIEZZHEV VB, CONDMAT9904054
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
SARMA D, 1996, PHYS REV E, V53, P359
SORNETTE D, 1995, J PHYS I, V5, P325
TADIC B, 1997, PHYS REV LETT, V79, P1519
TAKAYASU H, 1992, PHYS REV LETT, V68, P3060
TANG C, 1988, PHYS REV LETT, V60, P2347
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
ZHANG SD, 1999, PHYS REV E, V60, P259
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 107
TC 66
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD OCT
PY 2000
VL 62
IS 4
PN Part A
BP 4564
EP 4582
PG 19
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 365XY
UT ISI:000089976800018
ER
PT J
AU Rossi, M
Pastor-Satorras, R
Vespignani, A
TI Universality class of absorbing phase transitions with a conserved field
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; CRITICAL-BEHAVIOR; ABELIAN SANDPILE; 1/F
NOISE; MODEL; SYSTEMS; STATES; PERCOLATION; LATTICE; EVENTS
AB We investigate the critical behavior of systems exhibiting a continuous
absorbing phase transition in the presence of a conserved field coupled
to the order parameter. The results obtained point out the existence of
a new universality class of nonequilibrium phase transitions that
characterizes a vast set of systems including conserved threshold
transfer processes and stochastic sandpile models.
C1 SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Rossi, M, SISSA, Int Sch Adv Studies, Via Beirut 2-4, I-34014 Trieste,
Italy.
CR ALBANO EV, 1992, J PHYS A, V25, P2557
BAK P, 1987, PHYS REV LETT, V59, P381
CARDY J, 1996, PHYS REV LETT, V77, P4780
CARDY JL, 1980, J PHYS A, V13, L423
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
CHRISTENSEN K, 1996, PHYS REV LETT, V77, P107
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1999, PHYSICA A, V263, P4
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DICKMAN R, 2000, BRAZ J PHYS, V30, P27
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
GRASSBERGER P, 1983, MATH BIOSCI, V63, P157
JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
JENSEN HJ, 1990, PHYS REV LETT, V64, P3103
JENSEN HJ, 1998, SELF ORGANIZED CRITI
JENSEN I, 1993, PHYS REV E, V48, P1710
JENSEN I, 1993, PHYS REV LETT, V70, P1465
LUBECK S, 2000, PHYS REV E, V61, P204
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MUNOZ MA, 1999, PHYS REV E B, V59, P6175
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
VANWIJLAND F, 1998, PHYSICA A, V251, P179
VESPIGNANI A, CONDMAT0003285
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
NR 28
TC 76
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 28
PY 2000
VL 85
IS 9
BP 1803
EP 1806
PG 4
SC Physics, Multidisciplinary
GA 348BW
UT ISI:000088965300006
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Corrections to scaling in the forest-fire model
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; SANDPILE; EVENTS
AB We present a systematic study of corrections to scaling in the
self-organized critical forest-fire model. The analysis of the
steady-state condition for the density of trees allows us to pinpoint
the presence of these corrections, which take the form of subdominant
exponents modifying the standard finite-size scaling form. Applying an
extended version of the moment analysis technique, we find the scaling
region of the model and compute nontrivial corrections to scaling.
C1 Int Ctr Theoret Phys, Condensed Matter Sect, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Int Ctr Theoret Phys, Condensed Matter Sect, POB
586, I-34100 Trieste, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1990, PHYS LETT A, V147, P297
CARDY J, 1996, SCALING RENORMALIZAT
CARDY JL, 1988, FINITE SIZE SCALING, V2
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
CHESSA A, 1999, PHYS REV E A, V59, R12
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1994, PHYS REV E, V50, P1009
GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
JENSEN HJ, 1998, SELF ORGANIZED CRITI
JOHANSEN A, 1994, PHYSICA D, V78, P186
LUBECK S, 2000, PHYS REV E, V61, P204
PASTORSATORRAS R, 2000, J PHYS A-MATH GEN, V33, L33
PRESS WH, 1992, NUMERICAL RECIPES C
SCHENK K, CONDMAT9904356
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
NR 19
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 2000
VL 61
IS 5
PN Part A
BP 4854
EP 4859
PG 6
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 314RH
UT ISI:000087071000028
ER
PT J
AU Dickman, R
Munoz, MA
Vespignani, A
Zapperi, S
TI Paths to self-organized criticality
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Review
ID SUPERCONDUCTING VORTEX AVALANCHES; KINETIC CRITICAL PHENOMENON;
ANNIHILATING RANDOM-WALKS; UPPER CRITICAL DIMENSION; ABELIAN SANDPILE
MODEL; CHARGE-DENSITY WAVES; FOREST-FIRE MODEL; ABSORBING STATES;
ACOUSTIC-EMISSION; CRITICAL-BEHAVIOR
AB We present a pedagogical introduction to self-organized criticality
(SOC), unraveling its connections with nonequilibrium phase
transitions. There are several paths from a conventional critical point
to SOC. They begin with an absorbing-state phase transition (directed
percolation is a familiar example), and impose supervision or driving
on the system; two commonly used methods are extremal dynamics, and
driving at a rate approaching zero. We illustrate this in sandpiles,
where SOC is a consequence of slow driving in a system exhibiting an
absorbing-state phase transition with a conserved density. Other paths
to SOC, in driven interfaces, the Bak-Sneppen model, and self-organized
directed percolation, are also examined. We review the status of
experimental realizations of SOC in Light of these observations.
C1 Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
Inst Carlos I Theoret & Computat Phys, Granada 18071, Spain.
Dept Electromagnetismo & Fis Mat, Granada 18071, Spain.
Int Ctr Theoret Phys, Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Ecole Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
RP Dickman, R, Univ Fed Minas Gerais, ICEx, Dept Fis, Caixa Postal 702,
BR-30161970 Belo Horizonte, MG, Brazil.
CR ALI AA, 1995, PHYS REV E A, V51, R2705
ALI AA, 1995, PHYS REV E, V52, P4804
BAGNOLI F, 1997, PHYS REV E, V55, P3970
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1993, PHYS REV LETT, V71, P4083
BAK P, 1996, NATURE WORKS
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARKHAUSEN H, 1919, PHYS Z, V20, P401
BASSLER KE, 1998, PHYS REV LETT, V81, P3761
BEAN CP, 1964, REV MOD PHYS, V36, P31
BENHUR A, 1996, PHYS REV E, V53, P1317
BERTOTTI G, 1994, J APPL PHYS, V75, P5490
BEZUIDENHOUT C, 1990, ANN PROBAB, V18, P1462
BRETZ M, 1992, PHYS REV LETT, V69, P2431
BROEKER HM, CONDMAT9902195
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
CARDY J, 1996, PHYS REV LETT, V77, P4780
CARDY J, 1996, SCALING RENORMALIZAT, CH10
CARDY JL, 1985, J PHYS A, V18, L267
CARLSON JM, 1994, REV MOD PHYS, V66, P657
CARRILLO L, 1998, PHYS REV LETT, V81, P1889
CHEN K, 1991, PHYS REV A, V43, P625
CHESSA A, 1998, PHYS REV E, V57, R6241
CHESSA A, 1998, PHYS REV LETT, V80, P4217
CHESSA A, 1999, PHYS REV E A, V59, R12
CILIBERTO S, 1994, J PHYS I, V4, P223
CLAR S, 1994, PHYS REV E A, V50, P1009
CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
DEGENNES PG, 1966, SUPERCONDUCTIVITY ME
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, CONDMAT9909009
DHAR D, 1989, PHYS REV LETT, V63, P1659
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, UNPUB
DICKMAN R, 1996, NONEQUILIBRIUM STAT
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DURIN G, 1995, FRACTALS, V3, P351
ERZAN A, 1995, REV MOD PHYS, V67, P545
FIELD S, 1995, PHYS REV LETT, V74, P1206
FLYVBJERG H, 1993, PHYS REV LETT, V71, P4087
FRETTE V, 1996, NATURE, V379, P49
GABRIELLE A, CONDMAT9910425
GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
GOPAL AD, 1995, PHYS REV LETT, V75, P2610
GRASSBERGER P, 1982, Z PHYS B, V47, P465
GRASSBERGER P, 1984, J PHYS A, V17, L105
GRASSBERGER P, 1989, J PHYS A, V22, L1103
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
GRASSBERGER P, 1996, PHYSICA A, V224, P169
GRINSTEIN G, 1991, J APPL PHYS 2B, V69, P5441
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
GRINSTEIN G, 1997, LECT NOTES PHYS, V493, P223
GUARINO A, 1998, EUR PHYS J B, V6, P13
HANSEN A, 1987, J PHYS A, V20, L873
HARRIS TE, 1974, ANN PROBAB, V2, P969
HASTY J, 1997, J STAT PHYS, V86, P1179
HAVLIN S, 1993, GROWTH PATTERNS PHYS
HINRICHSEN H, 1997, PHYS REV E A, V55, P219
HWA T, 1992, PHYS REV A, V45, P7002
HWANG W, 1998, PHYS REV E, V57, P6438
JAEGER HM, 1989, PHYS REV LETT, V62, P40
JAEGER HM, 1996, REV MOD PHYS, V68, P1259
JANSSEN HK, 1981, Z PHYS, V42, P141
JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
JENSEN I, 1993, PHYS REV E, V48, P1710
JENSEN I, 1993, PHYS REV LETT, V70, P1465
JENSEN I, 1994, PHYS REV E, V50, P3623
JENSEN I, 1996, J PHYS A-MATH GEN, V29, P7013
JOVANOVIC B, 1994, PHYS REV E, V50, P2403
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KARDAR M, 1986, PHYS REV LETT, V56, P889
KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
KIRCHNER JW, 1998, NATURE, V395, P337
LAURITSEN KB, CONDMAT9903346
LESCHHORN H, 1997, ANN PHYS-LEIPZIG, V6, P1
LIGGETT TM, 1985, INTERACTING PARTICLE
LIPOWSKI A, CONDMAT9910029
LIPOWSKI A, 1999, PHYS REV E A, V60, P1516
LUBECK S, 1997, PHYS REV E A, V56, P5138
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MACHTA J, 1993, PHYS REV E, V47, P4581
MAES C, 1998, PHYS REV B, V57, P4987
MALAMUD BD, 1998, SCIENCE, V281, P1840
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1999, NONEQUILIBRIUM PHASE
MASLOV S, 1996, PHYSICA A, V223, P1
MENYHARD N, 1996, J PHYS A-MATH GEN, V29, P7739
MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
MUNOZ MA, 1999, PHYS REV E B, V59, P6175
NARAYAN O, 1993, PHYS REV B, V48, P7030
NARAYAN O, 1994, PHYS REV B, V49, P244
OLSON CJ, 1997, PHYS REV B, V56, P6175
PACZUSKI M, 1996, PHYS REV E A, V53, P414
PACZUSKI M, 1996, PHYS REV LETT, V77, P111
PARISI G, 1991, EUROPHYS LETT, V16, P321
PERSSON BNJ, 1998, SLIDING FRICTION
PETRI A, 1994, PHYS REV LETT, V73, P3423
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
ROUX S, 1994, J PHYS I, V4, P515
RUNDLE JB, 1995, P SANT FE I WORKSH R
RUNDLE JB, 1996, PHYS REV LETT, V76, P4285
SNEPPEN K, 1992, PHYS REV LETT, V69, P3539
SNEPPEN K, 1995, PHYSICA A, V221, P168
SOCOLAR JES, 1993, PHYS REV E, V47, P2366
SOLE RV, 1997, NATURE, V388, P764
SORNETTE D, 1995, J PHYS I, V5, P325
SORNETTE D, 1998, EUR PHYS J B, V1, P353
SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
TAKAYASU H, 1989, PHYS REV LETT, V63, P2563
TAKAYASU H, 1992, PHYS REV LETT, V68, P3060
URBACH JS, 1995, PHYS REV LETT, V75, P276
VERGELES M, 1995, PHYS REV LETT, V75, P1969
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
VICSEK T, 1992, FRACTAL GROWTH PHENO
WEISS J, 1997, J PHYS CHEM B, V101, P6113
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
ZAITSEV SI, 1992, PHYSICA A, V189, P411
ZAPPERI S, 1997, NATURE, V388, P658
ZAPPERI S, 1998, PHYS REV B, V58, P6353
ZAPPERI S, 1999, PHYS REV E A, V59, P5049
NR 128
TC 84
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD MAR
PY 2000
VL 30
IS 1
BP 27
EP 41
PG 15
SC Physics, Multidisciplinary
GA 301TB
UT ISI:000086325400004
ER
PT J
AU Pastor-Satorras, R
Vespignani, A
TI Universality classes in directed sandpile models
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
LA English
DT Letter
ID SELF-ORGANIZED CRITICALITY; NOISE
AB We perform large-scale numerical simulations of a directed version of
the two-state stochastic sandpile model. Numerical results show that
this stochastic model defines a new universality class with respect to
the Abelian directed sandpile. The physical origin of the different
critical behaviour has to be ascribed to the presence of multiple
topplings in the stochastic model. These results provide new insight
into the long-debated question of universality in Abelian and
stochastic sandpiles.
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Pastor-Satorras, R, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100
Trieste, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
CHESSA A, 1998, CONDMAT9811365
CHESSA A, 1998, PHYS REV E, V57, R6421
CHESSA A, 1999, COMPUT PHYS COMMUN, V121, P299
CHESSA A, 1999, PHYS REV E A, V59, R12
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1989, PHYS REV LETT, V63, P1659
DHAR D, 1999, PHYSICA A, V263, P4
DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
DICKMAN R, 1998, PHYS REV E A, V57, P5095
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
HASTY J, 1998, PHYS REV LETT, V81, P1722
JENSEN HJ, 1998, SELF ORG CRITICALITY
KADANOFF LP, 1989, PHYS REV A, V39, P6524
LAURITSEN KB, 1996, PHYS REV E, V54, P2483
LAURITSEN KB, 1999, CONDMAT9903346
LUBECK S, 1998, PHYS REV E A, V58, P2957
MANNA SS, 1991, J PHYS A, V24, L363
MILSHTEIN E, 1998, PHYS REV E, V58, P303
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PACZUSKI M, 1996, PHYS REV LETT, V77, P111
PASTORSATORRAS R, UNPUB
TADIC B, 1997, PHYS REV LETT, V79, P1519
TEBALDI C, 1999, CONDMAT9903270
TEBALDI C, 1999, PHYS REV LETT, V83, P3952
TSUCHIYA T, 1999, J PHYS A-MATH GEN, V32, P1629
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
NR 30
TC 16
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0305-4470
J9 J PHYS-A-MATH GEN
JI J. Phys. A-Math. Gen.
PD JAN 28
PY 2000
VL 33
IS 3
BP L33
EP L39
PG 7
SC Physics, Multidisciplinary; Physics, Mathematical
GA 283AW
UT ISI:000085254800001
ER
PT J
AU Chessa, A
Vespignani, A
Zapperi, S
TI Critical exponents in stochastic sandpile models
SO COMPUTER PHYSICS COMMUNICATIONS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; UPPER CRITICAL DIMENSION; UNIVERSALITY;
BEHAVIOR
AB We present large scale simulations of a stochastic sandpile model in
two dimensions. We use momentum analysis to evaluate critical exponents
and finite size scaling method to consistently test the obtained
results. The general picture resulting from our analysis allows us to
characterize the large scale behavior of the present model with great
accuracy. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
Univ Cagliari, Unita INFM, I-09124 Cagliari, Italy.
ICTP, Abdus Salam Int Ctr Theorect Phys, I-34100 Trieste, Italy.
ESPCI, PMMH, F-75234 Paris 05, France.
RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
Cagliari, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BENHUR A, 1996, PHYS REV E, V53, P1317
CHESSA A, 1998, PHYS REV E, V57, R6241
CORRAL A, 1997, PHYS REV E A, V55, P2434
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, CONDMAT9808047
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, 1998, PHYS REV E A, V57, P5095
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
LUBECK S, 1997, PHYS REV E A, V56, P5138
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1991, J PHYS A, V24, L363
MANNA SS, 1991, PHYSICA A, V179, P249
MILSHTEIN E, 1998, PHYS REV E, V58, P303
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PRIEZZHEV VB, 1996, PHYS REV LETT, V76, P2093
VESPIGNANI A, CONDMAT9806249
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
NR 21
TC 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0010-4655
J9 COMPUT PHYS COMMUN
JI Comput. Phys. Commun.
PD SEP-OCT
PY 1999
VL 122
SI Sp. Iss. SI
BP 299
EP 302
PG 4
SC Computer Science, Interdisciplinary Applications; Physics, Mathematical
GA 263LP
UT ISI:000084126400071
ER
PT J
AU Barrat, A
Vespignani, A
Zapperi, S
TI Fluctuations and correlations in sandpile models
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; NON-BOLTZMANN FLUCTUATIONS; LATTICE
THRESHOLD SYSTEMS; UPPER CRITICAL DIMENSION; NUMERICAL SIMULATIONS;
AVALANCHES; EXPONENTS; DYNAMICS; EVENTS; NOISE
AB We perform numerical simulations of the sandpile model for nonvanishing
driving fields it and dissipation rates epsilon. Unlike simulations
performed in the slow driving limit, the unique time scale present in
our system allows us to measure unambiguously the response and
correlation functions. We discuss the dynamic scaling of the model and
show that fluctuation-dissipation relations are not obeyed in this
system.
C1 Univ Paris 11, Phys Theor Lab, UMR 8627, F-91405 Orsay, France.
Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Ecole Super Phys & Chim Ind Ville Paris, PMMH, F-75231 Paris, France.
RP Barrat, A, Univ Paris 11, Phys Theor Lab, UMR 8627, Batiment 210,
F-91405 Orsay, France.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BARRAT A, IN PRESS
CHESSA A, 1998, PHYS REV E, V57, R6241
CHESSA A, 1999, PHYS REV E A, V59, R12
CUGLIANDOLO LF, 1997, PHYS REV E, V55, P3898
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1990, PHYS REV LETT, V64, P1613
DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
DICKMAN R, 1998, PHYS REV E A, V57, P5095
GIACOMETTI A, 1998, PHYS REV E, V58, P247
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
HWA T, 1992, PHYS REV A, V45, P7002
KUTNJAKURBANC B, 1996, PHYS REV E, V54, P6109
LAURITSEN KB, IN PRESS
LUBECK S, 1997, PHYS REV E A, V56, P5138
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1991, J PHYS A, V24, L363
MANNA SS, 1991, PHYSICA A, V179, P249
MONTAKHAB A, 1998, PHYS REV E A, V58, P5608
NARAYAN O, 1994, PHYS REV B, V49, P244
PACZUSKI M, 1996, PHYS REV LETT, V77, P111
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
RUNDLE JB, 1995, PHYS REV LETT, V75, P1658
RUNDLE JB, 1997, PHYS REV LETT, V78, P3798
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
XU HJ, 1997, PHYS REV LETT, V78, P3797
ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
NR 33
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 6
PY 1999
VL 83
IS 10
BP 1962
EP 1965
PG 4
SC Physics, Multidisciplinary
GA 232WK
UT ISI:000082392800016
ER
PT J
AU Zapperi, S
Ray, P
Stanley, HE
Vespignani, A
TI Analysis of damage clusters in fracture processes
SO PHYSICA A
LA English
DT Article
DE fracture and cracks; phase transitions; avalanches
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; ELECTRICAL BREAKDOWN;
BURST AVALANCHES; NUCLEATION; MODELS; MEDIA; PRECURSORS; TRANSITION;
BEHAVIOR
AB We present numerical simulations of two-dimensional models of electric
breakdown and fracture in disordered systems subject to an increasing
external stress. We provide a geometrical characterization of the
damage by studying the scaling behavior of connected bonds clusters,
The average cluster size and the lattice conductivity show features
characteristic of a first order phase transition. The obtained results
are discussed within the spinodal nucleation scenario recently proposed
for fractures. (C) 1999 Published by Elsevier Science B.V. All rights
reserved.
C1 Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Ecole Super Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
RP Vespignani, A, Int Ctr Theoret Phys, POB 586, I-34100 Trieste, Italy.
CR BARDHAN KK, 1994, NONLINEARITY BREAKDO
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
CHAKRABARTI BK, 1997, STAT PHYSICS FRACTUR
DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
DIODATI P, 1991, PHYS REV LETT, V67, P2239
DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
ENGLMAN R, 1990, PHYSICA A, V168, P665
GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
GOLUBOVIC L, 1991, PHYS REV A, V43, P5223
GOLUBOVIC L, 1995, PHYS REV E A, V51, P2799
GRIFFITH AA, 1920, PHILOS T R SOC A, V221, P163
GUARINO A, 1998, EUR PHYS J B, V6, P13
HANSEN A, 1994, PHYS LETT A, V184, P394
HEERMANN DW, 1982, PHYS REV LETT, V49, P1262
HEMMER PC, 1992, J APPL MECH-T ASME, V59, P909
KAHNG B, 1988, PHYS REV B, V37, P7625
KLOSTER M, 1997, PHYS REV E A, V56, P2615
LEUNG KT, 1997, EUROPHYS LETT, V38, P589
LEUNG KT, 1998, PHYS REV LETT, V80, P1916
MAES C, 1998, PHYS REV B, V57, P4987
MONETTE L, 1994, INT J MOD PHYS B, V8, P1417
PETRI A, 1994, PHYS REV LETT, V73, P3423
RAY P, 1996, PHYSICA A, V229, P26
RAY TS, 1990, J STAT PHYS, V61, P891
ROUX S, 1988, J STAT PHYS, V52, P237
SELINGER RLB, 1991, J CHEM PHYS, V95, P9128
UNGER C, 1985, PHYS REV B, V31, P6127
WEISS J, 1997, J PHYS CHEM B, V101, P6113
ZAPPERI S, 1997, NATURE, V388, P658
ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
ZAPPERI S, 1999, PHYS REV E A, V59, P5049
NR 32
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD AUG 1
PY 1999
VL 270
IS 1-2
BP 57
EP 62
PG 6
SC Physics, Multidisciplinary
GA 231PQ
UT ISI:000082319300010
ER
PT J
AU Ivashkevich, EV
Povolotsky, AM
Vespignani, A
Zapperi, S
TI Dynamical real space renormalization group applied to sandpile models
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; FOREST-FIRE MODEL; 2-DIMENSIONAL ABELIAN
SANDPILE; HEIGHT CORRELATIONS; CRITICAL EXPONENTS; CRITICAL-BEHAVIOR;
ABSORBING-STATE; UNIVERSALITY; AVALANCHES; AUTOMATON
AB A general framework for the renormalization group analysis of
self-organized critical sandpile models is formulated. The usual real
space renormalization scheme for lattice models when applied to
nonequilibrium dynamical models must be supplemented by feedback
relations coming from the stationarity conditions. On the basis of
these ideas the dynamically driven renormalization group is applied to
describe the boundary and bulk critical behavior of sandpile models. A
detailed description of the branching nature of sandpile avalanches is
given in terms of the generating functions of the underlying branching
process. [S1063-651X(99)06006-7].
C1 Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
ESPCI, PMMH, F-75234 Paris, France.
RP Ivashkevich, EV, Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys,
Dubna 141980, Russia.
CR BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, FRACTALS DISORDERED, V2
BENHUR A, 1996, PHYS REV E, V53, P1317
BENHUR A, 1996, PHYS REV E, V54, P1426
CARDY JL, 1972, PHASE TRANSITION CRI, V11
DEOLIVEIRA MJ, 1997, PHYS REV E A, V55, P6377
DHAR D, 1990, PHYS REV LETT, V64, P1613
DICKMAN R, 1988, PHYS REV A, V38, P2588
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DOMB C, 1972, PHASE TRANSITION CRI, V1
DOMB C, 1983, PHASE TRANSITION CRI, V7
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
HASTY J, 1997, J STAT PHYS, V86, P1179
HASTY J, 1998, PHYS REV LETT, V81, P1722
IVASHKEVICH EV, 1994, J PHYS A, V27, L585
IVASHKEVICH EV, 1994, J PHYS A-MATH GEN, V27, P3643
IVASHKEVICH EV, 1994, PHYSICA A, V209, P347
IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
KATZ S, 1983, PHYS REV B, V28, P1655
LORETO V, 1995, PHYS REV LETT, V75, P465
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MAJUMDAR SN, 1991, J PHYS A, V24, L357
MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
MANNA SS, 1991, J PHYS A, V24, L363
MILSHTEIN E, 1998, PHYS REV E, V58, P303
NIEMEIJER T, 1972, PHASE TRANSITION CRI, V6
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
PRIEZZHEV VB, 1996, PHYS REV LETT, V76, P2093
SCHMITTMANN B, 1972, PHASE TRANSITION CRI, V17
STELLA AL, 1995, PHYS REV E A, V52, P72
TOME T, 1997, PHYS REV E, V55, P4000
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
VICSEK T, 1992, FRACTAL GROWTH PHENO
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 42
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD AUG
PY 1999
VL 60
IS 2
PN Part A
BP 1239
EP 1251
PG 13
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 230CU
UT ISI:000082234900023
ER
PT J
AU Zapperi, S
Ray, P
Stanley, HE
Vespignani, A
TI Comment on "first-order transition in the breakdown of disordered
media" - Zapperi et al. reply
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FRACTURE PRECURSORS
C1 ESPCI, PMMH, F-75231 Paris 05, France.
Inst Math Sci, Chennai 600113, India.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Zapperi, S, ESPCI, PMMH, 10 Rue Vauquelin, F-75231 Paris 05, France.
CR CALDARELLI G, 1999, PHYS REV LETT, V83, P1483
DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
GUARINO A, 1998, EUR PHYS J B, V6, P13
RAISANEN VI, 1998, PHYS REV B, V58, P14288
ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
ZAPPERI S, 1999, PHYS REV E A, V59, P5049
NR 7
TC 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 16
PY 1999
VL 83
IS 7
BP 1484
EP 1484
PG 1
SC Physics, Multidisciplinary
GA 227EY
UT ISI:000082066600054
ER
PT J
AU Zapperi, S
Ray, P
Stanley, HE
Vespignani, A
TI Avalanches in breakdown and fracture processes
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; DIELECTRIC-BREAKDOWN;
ELECTRICAL BREAKDOWN; BURST AVALANCHES; PHASE-TRANSITION; FUSE
NETWORKS; NUCLEATION; DISORDER; DYNAMICS
AB We investigate the breakdown of disordered networks under the action of
an increasing external-mechanical or electrical-force. We perform a
mean-field analysis and estimate scaling exponents for the approach to
the instability. By simulating two-dimensional models of electric
breakdown and fracture we observe that the breakdown is preceded by
avalanche events. The avalanches can be described by scaling laws, and
the estimated values of the exponents are consistent with those found
in mean-field theory. The breakdown point is characterized by a
discontinuity in the macroscopic properties of the material, such as
conductivity or elasticity, indicative of a first-order transition. The
scaling laws suggest an analogy with the behavior expected in spinodal
nucleation. [S1063-651X(99)09205-3].
C1 Ecole Super Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
Inst Math Sci, Madras 600113, Tamil Nadu, India.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
Abdus Salam Int Ctr Theoret Phys, ICTP, I-34100 Trieste, Italy.
RP Zapperi, S, Ecole Super Phys & Chim Ind, PMMH, 10 Rue Vauquelin,
F-75231 Paris 05, France.
CR ACHARYYA M, 1996, PHYS REV E A, V53, P140
ACHARYYA M, 1996, PHYSICA A, V224, P287
BARDHAN KK, 1994, NONLINEARITY BREAKDO
BUCHEL A, 1996, PHYS REV LETT, V77, P1520
CALDARELLI G, 1996, PHYS REV LETT, V77, P2503
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
CHAKRABARTI BK, 1997, STAT PHYSICS FRACTUR
CILIBERTO S, 1994, J PHYS I, V4, P223
DAHMEN K, 1996, PHYS REV B, V53, P14872
DANIELS HE, 1945, PROC R SOC LON SER-A, V183, P405
DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
DIODATI P, 1991, PHYS REV LETT, V67, P2239
DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
ENGLMAN R, 1990, PHYSICA A, V168, P665
FIELD S, 1995, PHYS REV LETT, V74, P1206
GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
GOLUBOVIC L, 1991, PHYS REV A, V43, P5223
GRIFFITH AA, 1920, PHILOS T R SOC A, V221, P163
GUARINO A, 1998, EUR PHYS J B, V6, P13
GUNTON JD, 1983, PHASE TRANSITIONS CR, V8
GUTENBERG B, 1944, B SEISMOL SOC AM, V34, P185
HANSEN A, 1994, PHYS LETT A, V184, P394
HANSEN A, 1994, TRENDS STAT PHYS, V1, P213
HEERMANN DW, 1982, PHYS REV LETT, V49, P1262
HEMMER PC, 1992, J APPL MECH-T ASME, V59, P909
HERRMANN HJ, 1990, STAT MODELS FRACTURE
KAHNG B, 1988, PHYS REV B, V37, P7625
KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574
KLOSTER M, 1997, PHYS REV E A, V56, P2615
LEUNG KT, 1997, EUROPHYS LETT, V38, P589
LIEBOWITZ H, 1968, FRACTURE ADV TREATIS, V1
MAES C, 1998, PHYS REV B, V57, P4987
MONETTE L, 1992, PHYS REV LETT, V63, P2336
MONETTE L, 1994, INT J MOD PHYS B, V8, P1417
PETRI A, 1994, PHYS REV LETT, V73, P3423
PHOENIX SL, 1973, ADV APPL PROBAB, V5, P200
PRESS WH, 1991, COMPUT PHYS, V5, P514
RAISANEN VI, 1998, PHYS REV B, V58, P14288
RAY P, 1996, PHYSICA A, V229, P26
RAY TS, 1990, J STAT PHYS, V61, P891
ROUX S, 1988, J STAT PHYS, V52, P237
RUNDLE J, 1998, PHYS REV LETT, V80, P5698
RUNDLE JB, 1989, PHYS REV LETT, V63, P171
RUNDLE JB, 1995, P SANT FE I WORKSH R
RUNDLE JB, 1996, PHYS REV LETT, V76, P4285
SELINGER RLB, 1991, J CHEM PHYS, V95, P9128
SELINGER RLB, 1991, PHYS REV A, V43, P4396
SETHNA JP, 1993, PHYS REV LETT, V70, P3347
SORNETTE D, 1998, EUR PHYS J B, V1, P353
SUKI B, 1994, NATURE, V368, P615
THOMPSON AH, 1987, PHYS REV LETT, V58, P29
TZSCHICHHOLZ F, 1995, PHYS REV E, V51, P1961
UNGER C, 1984, PHYS REV B, V29, P2698
UNGER C, 1985, PHYS REV B, V31, P6127
VASCONCELOS GL, 1996, PHYS REV LETT, V76, P4865
WANG ZG, 1991, PHYS REV B, V44, P378
WEISS J, 1997, J PHYS CHEM B, V101, P6113
ZAPPERI S, 1997, NATURE, V388, P658
ZAPPERI S, 1997, PHYS REV LETT, V78, P1408
ZAPPERI S, 1998, PHYS REV B, V58, P6353
NR 61
TC 47
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 1999
VL 59
IS 5
PN Part A
BP 5049
EP 5057
PG 9
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 197TX
UT ISI:000080382700050
ER
PT J
AU Munoz, MA
Dickman, R
Vespignani, A
Zapperi, S
TI Avalanche and spreading exponents in systems with absorbing states
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; SURFACE-REACTION MODEL; ANNIHILATING
RANDOM-WALKS; BAK-SNEPPEN MODEL; DIRECTED PERCOLATION;
CRITICAL-BEHAVIOR; FIELD-THEORY; PHASE-TRANSITIONS; PUNCTUATED
EQUILIBRIUM; INFINITE NUMBERS
AB We present generic scaling laws relating spreading critical exponents
and avalanche exponents (in the sense of self-organized criticality) in
general systems with absorbing states. Using these scaling laws we
present a collection of the state-of-the-art exponents for directed
percolation, dynamical percolation, and other universality classes.
This collection of results should help to elucidate the connections of
self-organized criticality and systems with absorbing states. In
particular, some nonuniversality in avalanche exponents is predicted
for systems with many absorbing states. [S1063-651X(99)06205-4].
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
Univ La Sapienza, Unita INFM, I-00185 Rome, Italy.
Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil.
Ecole Super Phys & Chim Ind, PMMH, F-75231 Paris 05, France.
RP Munoz, MA, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100 Trieste,
Italy.
CR ADLER J, 1987, PHYS REV B, V35, P7046
ADLER J, 1988, PHYS REV B, V37, P7529
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1993, PHYS REV LETT, V71, P4083
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
BARABASI AL, 1996, PHYS REV LETT, V76, P1481
BUNDE A, 1991, FRACTALS DISORDERED
CARDY J, 1996, PHYS REV LETT, V77, P4780
CARDY JL, 1985, J PHYS A, V18, L267
CHESSA A, 1999, PHYS REV E A, V59, R12
CLAR S, 1995, PHYS REV LETT, V75, P2722
DEUTSCHER G, 1983, ANN ISRAEL PHYSICAL, V5
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DOMANY E, 1984, PHYS REV LETT, V53, P311
FROJDH P, 1998, J PHYS A-MATH GEN, V31, P2311
GRASSBERGER P, CONDMAT9808095
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
GRASSBERGER P, 1983, MATH BIOSCI, V63, P157
GRASSBERGER P, 1985, J PHYS A, V18, L215
GRASSBERGER P, 1995, J STAT PHYS, V79, P13
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
HARRIS TE, 1974, ANN PROBAB, V2, P969
HAVLIN S, 1984, J PHYS A-MATH GEN, V17, L427
JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
JANSSEN HK, 1985, Z PHYS B CON MAT, V58, P311
JENSEN I, 1990, PHYS REV A, V41, P3411
JENSEN I, 1992, PHYS REV A, V45, R563
JENSEN I, 1993, PHYS REV E, V48, P1710
JENSEN I, 1993, PHYS REV LETT, V70, P1465
JENSEN I, 1994, INT J MOD PHYS B, V8, P3299
JENSEN I, 1994, PHYS REV E, V50, P3623
JENSEN I, 1996, J PHYS A-MATH GEN, V29, P7013
JOVANOVIC B, 1994, PHYS REV E, V50, P2403
KERTESZ J, 1989, PHYS REV LETT, V62, P2571
KIM MH, 1994, PHYS REV LETT, V73, P2579
LAURITSEN KB, 1997, PHYSICA A, V247, P1
LAURITSEN KB, 1998, PHYS REV LETT, V81, P2104
LIGGETT TM, 1985, INTERACTING PARTICLE
MARRO J, 1997, LECT NOTE PHYS, V493, P223
MASLOV S, 1995, PHYS REV LETT, V74, P562
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MUNOZ MA, REPORT
MUNOZ MA, 1996, PHYS REV LETT, V76, P451
MUNOZ MA, 1997, PHYS REV E A, V56, P5101
MUNOZ MA, 1997, PHYSICA D, V103, P485
MUNOZ MA, 1998, J STAT PHYS, V91, P541
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PACZUSKI M, 1996, PHYS REV E A, V53, P414
SORNETTE D, 1996, PHYS REV E A, V54, P3334
TAKAYASU H, 1992, PHYS REV LETT, V68, P3060
VESPIGNANI A, 1998, PHYS REV LETT, V81, P5676
VOIGT CA, 1997, PHYS REV E, V56, P6241
ZIFF RM, 1986, PHYS REV LETT, V56, P2553
NR 54
TC 50
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 1999
VL 59
IS 5
PN Part B
BP 6175
EP 6179
PG 5
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 197TZ
UT ISI:000080382900084
ER
PT J
AU Chessa, A
Stanley, HE
Vespignani, A
Zapperi, S
TI Universality in sandpiles
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; MODEL; NOISE
AB We perform extensive numerical simulations of different versions of the
sandpile model. We find that previous claims about universality classes
are unfounded, since the method previously employed to analyze the data
suffered from a systematic bias. We identify the correct scaling
behavior and provide evidences suggesting that sandpiles with
stochastic and deterministic toppling rules belong to the same
universality class. [S1063-651X(99)50701-0].
C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
Univ Cagliari, Unita INFM, I-09124 Cagliari, Italy.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Ecole Super Phys & Chim Ind Ville Paris, PMMH, F-75231 Paris 05, France.
RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
Cagliari, Italy.
CR AMARAL LAN, 1997, PHYS REV E A, V56, P231
BAK P, 1987, PHYS REV LETT, V59, P381
BENHUR A, 1996, PHYS REV E, V53, P1317
CHESSA A, 1998, PHYS REV E, V57, R6241
CHRISTENSEN K, 1991, J STAT PHYS, V63, P653
CILIBERTO S, 1994, J PHYS I, V4, P223
DEMENECH M, 1998, PHYS REV E A, V58, R2677
DHAR D, 1989, PHYS REV LETT, V63, P1659
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, 1998, PHYS REV E A, V57, P5095
DURIN G, 1995, FRACTALS, V3, P351
FIELD S, 1995, PHYS REV LETT, V74, P1206
GARCIMARTIN A, 1997, PHYS REV LETT, V79, P3202
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GUTENBERG B, 1956, ANN GEOFIS, V9, P1
LUBECK S, 1997, PHYS REV E A, V56, P5138
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1991, J PHYS A, V24, L363
MILSHTEIN E, CONDMAT9805206
MILSHTEIN E, 1998, PHYS REV E, V58, P303
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
VESPIGNANI A, CONDMAT9806249
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
VESPIGNANI A, 1998, PHYS REV E, V57, P6345
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 27
TC 31
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JAN
PY 1999
VL 59
IS 1
PN Part A
BP R12
EP R15
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 158JH
UT ISI:000078111900004
ER
PT J
AU Vespignani, A
Dickman, R
Munoz, MA
Zapperi, S
TI Driving, conservation, and absorbing states in sandpiles
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; CRITICAL-BEHAVIOR; PHASE-TRANSITIONS;
MODEL; EXPONENTS; LATTICE
AB We use a phenomenological field theory, reflecting the symmetries and
conservation laws of sandpiles, to compare the driven dissipative
sandpile, widely studied in the context of self-organized criticality,
with the corresponding fixed-energy model. The latter displays an
absorbing-state phase transition with upper critical dimension d(c) =
4. We show that the driven model exhibits a fundamentally different
approach to the critical point, and compute a subset of critical
exponents. We present numerical simulations in support of our
theoretical predictions.
C1 Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil.
Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
Univ Rome La Sapienza, Unita INFM, I-00185 Rome, Italy.
ESPCI, PMMH, F-75231 Paris 05, France.
RP Vespignani, A, Abdus Salam Int Ctr Theoret Phys, POB 586, I-34100
Trieste, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BARABASI AL, 1995, FRACTAL CONCEPTS SUR
CARDY J, 1996, PHYS REV LETT, V77, P4780
CHESSA A, CONDMAT9808263
CHESSA A, 1998, PHYS REV E, V57, R6241
DHAR D, CONDMAT9808047
DHAR D, 1990, PHYS REV LETT, V64, P1613
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, 1996, NONEQUILIBRIUM STAT
DICKMAN R, 1998, PHYS REV E A, V57, P5095
GRASSBERGER P, COMMUNICATION
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1982, Z PHYS B CON MAT, V47, P365
GRASSBERGER P, 1995, PHYS LETT A, V200, P277
GRINSTEIN G, 1995, NATO ASI B, V344
HARRIS TE, 1974, ANN PROBAB, V2, P969
HARRIS TE, 1989, THEORY BRANCHING PRO
JENSEN I, 1993, PHYS REV LETT, V70, P1465
KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
LAURITSEN KB, COMMUNICATION
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1998, PHYS REV E A, V58, P2957
MANNA SS, 1991, J PHYS A, V24, L363
MARRO J, 1998, NONEQUILIBRIUM PHASE
MILSHTEIN E, 1998, PHYS REV E, V58, P303
MUNOZ MA, 1996, PHYS REV LETT, V76, P451
MUNOZ MA, 1998, J STAT PHYS, V91, P541
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
SORNETTE D, 1995, J PHYS I, V5, P325
TANG C, 1988, PHYS REV LETT, V60, P2347
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
NR 31
TC 63
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD DEC 21
PY 1998
VL 81
IS 25
BP 5676
EP 5679
PG 4
SC Physics, Multidisciplinary
GA 150HT
UT ISI:000077659500050
ER
PT J
AU Chessa, A
Marinari, E
Vespignani, A
Zapperi, S
TI Mean-field behavior of the sandpile model below the upper critical
dimension
SO PHYSICAL REVIEW E
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY
AB We present results of large scale numerical simulations of the Bak,
Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38,
364 (1988)] sandpile model. We analyze the critical behavior of the
model in Euclidean dimensions 2 less than or equal to d less than or
equal to 6. We consider a dissipative generalization of the model and
study the avalanche size and duration distributions for different
values of the lattice size and dissipation. We find that the scaling
exponents in d=4 significantly differ from mean-field predictions, thus
Suggesting an upper critical dimension d(c)greater than or equal to 5.
Using the relations among the dissipation rate epsilon and the finite
lattice size L, we find that a subset of the exponents displays
mean-field values below the upper critical dimensions. This behavior is
explained in terms of conservation laws.
C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
INFM, Sez Cagliari, I-09124 Cagliari, Italy.
INFN, Sez Cagliari, I-09124 Cagliari, Italy.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
Cagliari, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BENHUR A, 1996, PHYS REV E, V53, P1317
CHESSA A, UNPUB
CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
DHAR D, 1990, PHYS REV LETT, V64, P1613
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, IN PRESS PHYS REV E
DICKMAN R, 1996, NONEQUILIBRIUM STAT
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
LUBECK S, 1997, PHYS REV E A, V56, P5138
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
SORNETTE D, 1995, J PHYS I, V5, P325
VESPIGNANI A, IN PRESS PHYS REV E
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 21
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 1998
VL 57
IS 6
BP R6241
EP R6244
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA ZU947
UT ISI:000074252400004
ER
PT J
AU Vespignani, A
Zapperi, S
TI How self-organized criticality works: A unified mean-field picture
SO PHYSICAL REVIEW E
LA English
DT Article
ID FOREST-FIRE MODEL; CRITICAL-BEHAVIOR; SANDPILE MODELS;
BRANCHING-PROCESSES; NONEQUILIBRIUM SYSTEMS; PHASE-TRANSITIONS; ABELIAN
SANDPILE; AVALANCHES; RENORMALIZATION; PERCOLATION
AB We present a unified dynamical mean-field theory, based on the single
site approximation to the master-equation, for stochastic
self-organized critical models. In particular, we analyze in detail the
properties of sandpile and forest-fire (FF) models. In analogy with
other nonequilibrium critical phenomena, we identify an order parameter
with the density of ''active'' sites, and control parameters with the
driving rates. Depending on the values of the control parameters, the
system is shown to reach a subcritical (absorbing) or supercritical
(active) stationary state. Criticality is analyzed in terms of the
singularities of the zero-field susceptibility. In the limit of
vanishing control parameters, the stationary state displays scaling
characteristics of self-organized criticality (SOC). We show that this
limit corresponds to the breakdown of space-time locality in the
dynamical rules of the models. We define a complete set of critical
exponents, describing the scaling of order parameter, response
functions, susceptibility and correlation length in the subcritical and
supercritical states. In the subcritical state, the response of the
system to small perturbations takes place in avalanches. We analyze
their scaling behavior in relation with branching processes. In
sandpile models, because of conservation laws, a critical exponents
subset displays mean-field values (nu=1/2 and gamma=1) in any
dimensions. We treat bull; and boundary dissipation and introduce a
critical exponent relating dissipation and finite size effects. We
present numerical simulations that confirm our results. In the case of
the forest-fire model, our approach can distinguish between different
regimes (SOC-FF and deterministic FF) studied in the literature, and
determine the full spectrum of critical exponents.
C1 Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
RP Vespignani, A, Int Ctr Theoret Phys, POB 586, I-34100 Trieste, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, PHYS REV LETT, V71, P4083
BENHUR A, 1996, PHYS REV E, V53, P1317
BROKER HM, 1997, PHYS REV E A, V56, R4918
BROKER HM, 1997, PHYS REV E, V56, P3944
CALDARELLI G, UNPUB
CHABANOL ML, 1997, PHYS REV E A, V56, R2343
CHESSA A, UNPUB
CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
DHAR D, 1990, J PHYS A-MATH GEN, V23, P4333
DHAR D, 1990, PHYS REV LETT, V64, P1613
DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
DICKMAN R, 1986, PHYS REV A, V34, P4246
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
DURIN G, 1995, FRACTALS, V3, P351
ESSAM JW, 1972, PHASE TRANSITIONS CR, V2
FIELD S, 1995, PHYS REV LETT, V74, P1206
FLYVBJERG H, 1993, PHYS REV LETT, V71, P4087
FRETTE V, 1996, NATURE, V379, P49
GARCIAPELAYO R, 1994, PHYS REV E A, V49, P4903
GIL L, 1996, PHYS REV LETT, V76, P3991
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
GRASSBERGER P, 1994, PHYS REV E, V49, P2436
GRASSBERGER P, 1996, PHYSICA A, V224, P169
GRINSTEIN G, 1990, PHYS REV LETT, V64, P1927
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
GUTENBERG B, 1956, ANN GEOFIS, V9, P1
HARRIS TE, 1989, THEORY BRANCHING PRO
HASTY J, 1997, J STAT PHYS, V86, P1179
HENLEY CL, 1993, PHYS REV LETT, V71, P2741
HWA T, 1989, PHYS REV LETT, V62, P1813
IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
JAEGER HM, 1989, PHYS REV LETT, V62, P40
JANOWSKY SA, 1993, J PHYS A, V26, L973
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KATORI M, 1996, PHYSICA A, V229, P461
LAURITSEN KB, 1996, PHYS REV E, V54, P2483
LILLY MP, 1993, PHYS REV LETT, V71, P4186
LORETO V, 1995, PHYS REV LETT, V75, P465
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1991, J PHYS A, V24, L363
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MIDDLETON AA, 1995, PHYS REV LETT, V74, P742
MUNOZ MA, 1996, PHYS REV LETT, V76, P451
OLAMI Z, 1992, PHYS REV LETT, V68, P1244
PACZUSKI M, 1996, PHYS REV E A, V53, P414
PATZLAFF H, 1994, PHYS LETT A, V189, P187
PETRI A, 1994, PHYS REV LETT, V73, P3423
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
SCHMITTMANN B, 1995, PHASE TRANSITIONS CR, V17
SORNETTE D, 1992, J PHYS I, V2, P2065
SORNETTE D, 1995, J PHYS I, V5, P325
STELLA AL, 1995, PHYS REV E A, V52, P72
SUKI B, 1994, NATURE, V368, P615
TANG C, 1988, PHYS REV LETT, V60, P2347
VERGELES M, 1997, PHYS REV E, V55, P1998
VESPIGNANI A, UNPUB
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
VESPIGNANI A, 1997, J STAT PHYS, V88, P47
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
ZAPPERI S, 1995, PHYS REV LETT, V75, P4071
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 75
TC 111
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 1998
VL 57
IS 6
BP 6345
EP 6362
PG 18
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA ZU947
UT ISI:000074252400020
ER
PT J
AU Vespignani, A
Zapperi, S
Loreto, V
TI Dynamically driven renormalization group applied to self-organized
critical systems
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
LA English
DT Article
ID FOREST-FIRE MODEL; CRITICAL-BEHAVIOR; SANDPILE MODELS; SIMULATION;
DIMENSIONS; STATES
AB The Dynamically Driven Renormalization Group is a general framework
developed to study the critical properties of nonequilibrium systems
with stationary states. In particular this renormalization scheme
allows the systematic analysis of several models showing self-organised
criticality in terms of usual concepts of phase transitions and
critical phenomena.
C1 Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
ENEA, Res Ctr, I-80055 Napoli, Italy.
RP Vespignani, A, Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden,
Netherlands.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, FRACTALS DISORDERED, V2
BENHUR A, 1996, PHYS REV E, V54, P1426
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
CRESWICK RJ, 1992, INTRO RENORMALIZATIO
DOMB C, 1972, PHASE TRANSITION CRI, V1
DOMB C, 1983, PHASE TRANSITION CRI, V7
DROSSEL B, COMMUNICATION
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
ERZAN A, 1995, REV MOD PHYS, V67, P545
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRASSBERGER P, 1991, J STAT PHYS, V63, P685
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
KATZ S, 1983, PHYS REV B, V28, P1655
KATZ S, 1984, J STAT PHYS, V34, P497
LORETO V, 1995, PHYS REV LETT, V75, P465
MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1991, PHYSICA A, V179, P249
MOSSNER WK, 1992, PHYSICA A, V190, P205
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
STELLA AL, 1995, PHYS REV E A, V52, P72
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1997, J STAT PHYS, V88, P47
VICSEK T, 1992, FRACTAL GROWTH PHENO
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 31
TC 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0217-9792
J9 INT J MOD PHYS B
JI Int. J. Mod. Phys. B
PD MAY 30
PY 1998
VL 12
IS 12-13
BP 1407
EP 1417
PG 11
SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
GA ZT481
UT ISI:000074092200015
ER
PT J
AU Dickman, R
Vespignani, A
Zapperi, S
TI Self-organized criticality as an absorbing-state phase transition
SO PHYSICAL REVIEW E
LA English
DT Article
ID REGGEON FIELD-THEORY; CRITICAL-BEHAVIOR; CELLULAR-AUTOMATA; 2
DIMENSIONS; AVALANCHES; SYSTEMS; DYNAMICS; LATTICE; MODELS; NOISE
AB We explore the connection between self-organized criticality and phase
transitions in models with absorbing states. sandpile models are found
to exhibit criticality only when a pair of relevant parameters -
dissipation epsilon and driving field h - are set to their critical
values. The critical values of epsilon and h are both equal to zero.
The first result is due to the absence of saturation (no bound on
energy) in the sandpile model, while the second result is common to
other absorbing-state transitions. The original definition of the
sandpile model places it at the point (epsilon = 0,h = 0(+)): it is
critical by definition. We argue power-law avalanche distributions are
a general feature of models with infinitely many absorbing
configurations, when they are subject to slow driving at the critical
point. Our assertions are supported by simulations of the sandpile at
epsilon=h=0 and fixed energy density zeta (no drive, periodic
boundaries), and of the slowly driven pair contact process. We
formulate a held theory for the sandpile model, in which the order
parameter is coupled to a conserved energy density, which plays the
role of an effective creation rate.
C1 CUNY Herbert H Lehman Coll, Dept Phys & Astron, Bronx, NY 10468 USA.
Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
RP Dickman, R, Univ Fed Santa Catarina, Dept Fis, Campus Univ, BR-88040900
Florianopolis, SC, Brazil.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1996, NATURE WORKS
CARDY JL, 1980, J PHYS A, V13, L423
CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DICKMAN R, UNPUB
DICKMAN R, 1996, NONEQUILIBRIUM STAT
DICKMAN R, 1996, PHYS REV E, V53, P2223
DURIN G, 1995, FRACTALS, V3, P351
FIELD S, 1995, PHYS REV LETT, V74, P1206
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
GUTENBERG B, 1956, ANN GEOFIS, V9, P1
HARRIS TE, 1974, ANN PROBAB, V2, P969
JANSSEN HK, 1981, Z PHYS B CON MAT, V42, P151
JENSEN I, 1993, PHYS REV E, V48, P1710
JENSEN I, 1993, PHYS REV LETT, V70, P1465
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KATORI M, 1996, PHYSICA A, V229, P461
KINZEL W, 1985, Z PHYS B CON MAT, V58, P229
LILLY MP, 1993, PHYS REV LETT, V71, P4186
LUBECK S, 1997, CONDMAT9708055
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1991, J PHYS A, V24, L363
MANNA SS, 1991, PHYSICA A, V179, P249
MARRO J, 1997, NONEQUILIBRIUM PHASE
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MUNOZ MA, IN PRESS J STAT PHYS
MUNOZ MA, 1996, PHYS REV LETT, V76, P451
MUNOZ MA, 1997, PHYSICA D, V103, P485
PACZUSKI M, 1996, PHYS REV E A, V53, P414
PELITI L, 1985, J PHYS-PARIS, V46, P1469
PETRI A, 1994, PHYS REV LETT, V73, P3423
PRIEZZHEV VB, 1994, J STAT PHYS, V74, P955
SAHIMI M, 1993, REV MOD PHYS, V65, P1393
SORNETTE D, 1995, J PHYS I, V5, P325
SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
SUKI B, 1994, NATURE, V368, P615
VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
VESPIGNANI A, 1997, J STAT PHYS, V88, P47
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
ZAPPERI S, UNPUB
ZAPPERI S, 1997, NATURE, V388, P658
NR 49
TC 78
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAY
PY 1998
VL 57
IS 5
PN Part A
BP 5095
EP 5105
PG 11
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA ZP582
UT ISI:000073767900034
ER
PT J
AU Chessa, A
Marinari, E
Vespignani, A
TI Energy constrained sandpile models
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; NOISE
AB We study two driven dynamical systems with conserved energy. The two
automata contain the basic dynamical rules of the Bak, Tang, and
Wiesenfeld sandpile model. In addition a global constraint on the
energy contained in the lattice is imposed. In the limit of an
infinitely slow driving of the system, the conserved energy E becomes
the only parameter governing the dynamical behavior of the system. Both
models show scale-fret behavior at a critical value E-c of the fixed
energy. The scaling with respect to the relevant scaling field points
out that the developing of critical correlations is in a different
universality class than self-organized critical sandpiles. Despite this
difference, the activity (avalanche) probability distributions appear
to coincide with the one of the standard self-organized critical
sandpile.
C1 Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy.
INFM, Cagliari, Italy.
Ist Nazl Fis Nucl, Cagliari, Italy.
Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Chessa, A, Univ Cagliari, Dipartimento Fis, Via Osped 72, I-09124
Cagliari, Italy.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BENHUR A, 1996, PHYS REV E, V53, P1317
CHESSA A, IN PRESS
CHESSA A, 1998, CONDMAT9802123
DICKMAN R, IN PRESS
DICKMAN R, 1996, NONEQUILIBRIUM STAT
DURIN G, 1995, FRACTALS, V3, P351
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRINSTEIN G, 1995, SCALE INVARIANCE I B, V344
GUTENBERG B, 1956, ANN GEOFIS, V9, P1
LUBECK S, 1997, PHYS REV E, V55, P4095
LUBECK S, 1997, PHYS REV E, V56, P1590
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1991, PHYSICA A, V179, P249
PETRI A, 1994, PHYS REV LETT, V73, P3423
SORNETTE D, 1995, J PHYS I, V5, P325
SPASOJEVIC D, 1996, PHYS REV E, V54, P2531
VESPIGNANI A, 1997, PHYS REV LETT, V78, P4793
ZAPPERI S, 1997, NATURE, V388, P658
NR 20
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAY 11
PY 1998
VL 80
IS 19
BP 4217
EP 4220
PG 4
SC Physics, Multidisciplinary
GA ZM538
UT ISI:000073550200027
ER
PT J
AU Cafiero, R
Vespignani, A
Zapperi, S
Pietronero, L
TI Universality and scale invariant dynamics in laplacian fractal growth
SO INTERNATIONAL JOURNAL OF MODERN PHYSICS B
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; RENORMALIZATION-GROUP APPROACH; INVASION
PERCOLATION; DIELECTRIC-BREAKDOWN; BRANCHED GROWTH; CLUSTERS; MODELS;
MEDIA
AB The individuation of the scale invariant dynamics in Laplacian fractal
growth processes, like diffusion-limited aggregation (DLA), is an
important problem whose solution would clarify some crucial issues
concerning the origin of fractal properties and the identification of
universality classes for such models. Here, we develop a real space
renormalization group scheme to study the dynamic evolution of DLA in a
restricted space of relevant parameters. In particular, we investigate
the effect of a sticking probability P-s and an effective noise
reduction parameter S. The renormalization equations flow towards an
attractive fixed point corresponding to the scale invariant DLA
dynamics (P-s* = 1, S* similar or equal to 2.0). The existence of a
non-trivial fixed point value for S, shows that noise is spontaneously
generated by the DLA growth process, and that screening, which is at
the origin of fractal properties, persists at all scales.
C1 Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany.
Int Ctr Theoret Phys, I-34100 Trieste, Italy.
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA.
Boston Univ, Dept Phys, Boston, MA 02215 USA.
Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy.
Univ Rome La Sapienza, Unita INFM, I-00185 Rome, Italy.
RP Cafiero, R, Max Planck Inst Phys Complex Syst, Thnitzer Str 38, D-01187
Dresden, Germany.
CR AMITRANO C, 1993, FRACTALS, V1, P840
BARKER PW, 1990, PHYS REV A, V42, P6289
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CAFIERO R, 1996, PHYS REV E, V54, P1406
CAFIERO R, 1997, PHYS REV LETT, V79, P1503
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
DEARCANGELIS L, 1989, PHYS REV B, V40, P877
ECKMANN JP, 1989, PHYS REV A, V39, P3185
EDEN M, 1961, 4 BERK S MATH STAT P, P223
ERZAN A, 1995, REV MOD PHYS, V67, P861
EVERTSZ C, 1990, PHYS REV A, V41, P1830
FAMILY F, 1986, J PHYS A, V19, L733
HALSEY TC, 1992, PHYS REV A, V46, P7793
HALSEY TC, 1994, PHYS REV LETT, V72, P1228
HASTINGS MB, CONDMAT9607007
HASTINGS MB, CONDMAT9607021
JULLIEN R, 1984, J PHYS A, V17, L639
KERTESZ J, 1986, J PHYS A, V19, L257
MANDELBROT BB, 1995, EUROPHYS LETT, V32, P199
MARSILI M, 1994, J STAT PHYS, V77, P733
MEAKIN P, 1983, PHYS REV A, V27, P1495
MEAKIN P, 1983, PHYS REV LETT, V51, P1119
MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
MOUKARZEL C, 1992, PHYSICA A, V188, P469
NAGATANI T, 1987, J PHYS A, V20, L381
NAGATANI T, 1987, PHYS REV A, V36, P5812
NEIMEYER L, 1984, PHYS REV LETT, V52, P1033
NITTMANN J, 1986, NATURE, V321, P663
PIETRONERO L, 1990, PHYSICA A, V119, P249
VESPIGNANI A, 1993, FRACTALS, V1, P1002
VICSEK T, 1992, FRACTAL GROWTH PHENO
WANG XR, 1989, J PHYS A, V22, L507
WANG XR, 1989, PHYS REV A, V39, P5974
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 35
TC 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0217-9792
J9 INT J MOD PHYS B
JI Int. J. Mod. Phys. B
PD DEC 10
PY 1997
VL 11
IS 30
BP 3595
EP 3619
PG 25
SC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical
GA YP694
UT ISI:000071304600006
ER
PT J
AU Vespignani, A
Zapperi, S
Loreto, V
TI Dynamically driven renormalization group
SO JOURNAL OF STATISTICAL PHYSICS
LA English
DT Article
DE renormalization group; nonequilibrium steady states; driven dynamical
systems; self-organized criticality
ID FOREST-FIRE MODEL; SELF-ORGANIZED CRITICALITY; MEAN-FIELD THEORY;
CRITICAL-BEHAVIOR; SANDPILE MODELS; LATTICE GAS; DIMENSIONS; SYSTEMS;
STATES; SCHEME
AB We present a detailed discussion of a novel dynamical renormalization
group scheme: the dynamically driven renormalization group (DDRG). This
is a general renormalization method developed for dynamical systems
with nonequilibrium critical steady state. The method is based on a
real-space renormalization scheme driven by a dynamical steady-state
condition which acts as a feedback on the transformation equations.
This approach has been applied to open nonlinear systems such as
self-organized critical phenomena, and it allows the analytical
evaluation of scaling dimensions and critical exponents. Equilibrium
models at the critical point can also be considered. The explicit
application to some models and the corresponding results are discussed.
C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
RP Vespignani, A, LEIDEN UNIV,INST LORENTZ,POB 9506,NL-2300 RA
LEIDEN,NETHERLANDS.
CR ACHIAM Y, 1978, PHYS REV LETT, V41, P128
AMIT DJ, 1984, FIELD THEORY RENORMA
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1989, NETURE, V342, P7800
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, FRACTALS DISORDERED, V2
BENHUR A, 1996, PHYS REV E, V54, P1426
BURKHARDT TW, 1982, REAL SPACE RENORMALI
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
CRESWICK RJ, 1992, INTRO RENORMALIZATIO
DHAR D, 1989, PHYS REV LETT, V63, P1659
DHAR D, 1990, PHYS REV LETT, V64, P1613
DICKMAN R, 1988, PHYS REV A, V38, P2588
DOMB C, 1972, PHASE TRANSITION CRI, V1
DOMB C, 1983, PHASE TRANSITION CRI, V7
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
ERZAN A, 1995, REV MOD PHYS, V67, P545
GLAUBER RJ, 1963, J MATH PHYS, V4, P294
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRASSBERGER P, 1991, J STAT PHYS, V63, P685
GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
GRINSTEIN G, 1995, SCALE INVARIANCE I B, V344
HENLEY CL, 1993, PHYS REV LETT, V71, P2741
HUANG K, 1987, STATISTICAL MECHANIC
IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
KADANOFF LP, 1966, PHYSICS, V2, P263
KADANOFF LP, 1976, ANN PHYS-NEW YORK, V100, P359
KADANOFF LP, 1990, PHYSICA A, V163, P1
KADANOFF LP, 1991, PHYS TODAY, V44, P9
KATZ S, 1983, PHYS REV B, V28, P1655
KATZ S, 1984, J STAT PHYS, V34, P497
KEIZER J, 1987, STAT THERMODYNAMICS
LORETO V, 1995, PHYS REV LETT, V75, P465
LORETO V, 1996, J PHYS A-MATH GEN, V29, P2981
MA SK, 1976, MODERN THEORY CRITIC
MAJUMDAR SN, 1992, PHYSICA A, V185, P129
MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
MANNA SS, 1991, PHYSICA A, V179, P249
MAZENKO GF, 1982, REAL SPACE RENORMALI, P87
MIGDAL AA, 1975, SOV PHYS JETP, V42, P413
MOSSNER WK, 1992, PHYSICA A, V190, P205
NIEMEIJER T, 1976, FRACTAL GEOMETRY NAT, V6
PARISI G, 1988, STAT FIELD THEORY
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PRENTIS JJ, 1995, J PHYS A, V528, P5469
SCHMITTMANN B, 1995, PHASE TRANSITION CRI, V17
STELLA AL, 1995, PHYS REV E A, V52, P72
SUZUKI M, 1974, PROG THEOR PHYS, V51, P1257
SUZUKI M, 1979, DYNAMICAL CRITICAL P, V104
SUZUKI M, 1979, PROG THEOR PHYS, V61, P864
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VICSEK T, 1992, FRACTAL GROWTH PHENO
YEOMANS JM, 1992, STAT MECH PHASE TRAN
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 57
TC 10
PU PLENUM PUBL CORP
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013
SN 0022-4715
J9 J STATIST PHYS
JI J. Stat. Phys.
PD JUL
PY 1997
VL 88
IS 1-2
BP 47
EP 79
PG 33
SC Physics, Mathematical
GA XT833
UT ISI:A1997XT83300003
ER
PT J
AU Zapperi, S
Vespignani, A
Stanley, HE
TI Plasticity and avalanche behaviour in microfracturing phenomena
SO NATURE
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; FUSE NETWORKS; POWER
LAWS; DYNAMICS
AB Inhomogeneous materials, such as plaster or concrete, subjected to an
external elastic stress display sudden movements owing to the formation
and propagation of microfractures. Studies of acoustic emission from
these systems reveal power-law behaviour(1). Similar behaviour in
damage propagation has also been seen in acoustic emission resulting
from volcanic activity(2) and hydrogen precipitation in niobium(3). It
has been suggested that the underlying fracture dynamics in these
systems might display self-organized criticality(4), implying that
long-ranged correlations between fracture events lead to a scale-free
cascade of 'avalanches'. A hierarchy of avalanche events is also
observed in a wide range of other systems, such as the dynamics of
random magnets(5) and high-temperature superconductors(6) in magnetic
fields, lung inflation(7) and seismic behaviour characterized by the
Gutenberg-Richter law(8). The applicability of self-organized
criticality to microfracturing has been questioned(9,10), however, as
power laws alone are not unequivocal evidence for it. Here we present a
scalar model of microfracturing which generates power-law behaviour in
properties related to acoustic emission, and a scale-free hierarchy of
avalanches characteristic of self-organized criticality. The geometric
structure of the fracture surfaces agrees with that seen
experimentally. We find that the critical steady state exhibits plastic
macroscopic behaviour, which is commonly observed in real materials.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
RP Zapperi, S, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR BAK P, 1987, PHYS REV LETT, V59, P381
CALDARELLI G, 1996, PHYS REV LETT, V77, P2503
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
CANNELLI G, 1994, PHYS REV LETT, V72, P2307
CHEN WF, 1982, PLASTICITY REINFORCE
COTE PJ, 1991, PHYS REV LETT, V67, P1334
DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
DIODATI P, 1991, PHYS REV LETT, V67, P2239
FIELD S, 1995, PHYS REV LETT, V74, P1206
GUTENBERG B, 1944, B SEISMOL SOC AM, V34, P185
HERRMANN HJ, 1990, STAT MODELS FRACTURE
HERRMANN HJ, 1991, EUROPHYS LETT, V10, P514
LANDAU LD, 1960, THEORY ELASTICITY
MILTENBERGER P, 1993, PHYS REV LETT, V71, P3604
OKUZONO T, 1995, PHYS REV E, V51, P1246
OMORI F, 1894, J COLL SCI IMP U TOK, V7, P111
PETRI A, 1994, PHYS REV LETT, V73, P3423
PRESS WH, 1991, COMPUT PHYS, V5, P154
SAHIMI M, 1996, PHYS REV LETT, V77, P3689
SORNETTE D, 1992, PHYS REV LETT, V68, P612
SORNETTE D, 1994, J PHYS I, V4, P209
SORNETTE D, 1994, PHYS REV LETT, V72, P2306
STROEVEN P, 1990, ENG FRACT MECH, V35, P775
STROEVEN P, 1993, INTERFACES CEMENTOUS, P187
SUKI B, 1994, NATURE, V368, P615
TILLEMANS HJ, 1995, PHYSICA A, V217, P261
TZSCHICHHOLZ F, 1995, PHYS REV E, V51, P1961
WILSHIRE B, 1983, ENG APPROACHES HIGH
NR 29
TC 64
PU MACMILLAN MAGAZINES LTD
PI LONDON
PA PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW
SN 0028-0836
J9 NATURE
JI Nature
PD AUG 14
PY 1997
VL 388
IS 6643
BP 658
EP 660
PG 3
SC Multidisciplinary Sciences
GA XQ863
UT ISI:A1997XQ86300044
ER
PT J
AU Vespignani, A
Zapperi, S
TI Order parameter and scaling fields in self-organized criticality
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CRITICAL EXPONENTS; CRITICAL-BEHAVIOR; SANDPILE MODELS; LATTICE;
SIMULATION; DIMENSIONS; AUTOMATON
AB We present a unified dynamical mean-held theory for stochastic
self-organized critical models. We, use a single site approximation,
and we include the details of different models by using effective
parameters and constraints. We identify the order parameter and the
relevant scaling fields in order to describe the critical behavior in
terms of the usual concepts of nonequilibrium lattice models with
steady states. We point out the inconsistencies of previous mean-field
approaches, which lead to different predictions. Numerical simulations
confirm the validity of our results beyond mean-field theory.
C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP Vespignani, A, LEIDEN UNIV,INST LORENTZ,POB 9506,NL-2300 RA
LEIDEN,NETHERLANDS.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
CALDARELLI G, UNPUB
CALDARELLI G, 1996, EUROPHYS LETT, V35, P481
CHRISTENSEN K, 1993, PHYS REV E, V48, P3361
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1996, J PHYS-CONDENS MAT, V8, P6803
DHAR D, 1990, PHYS REV LETT, V64, P1613
DICKMAN R, 1986, PHYS REV A, V34, P4246
DICKMAN R, 1988, PHYS REV A, V38, P2588
DICKMAN R, 1989, J STAT PHYS, V55, P997
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
LAURITSEN KB, 1996, PHYS REV E, V54, P2483
MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1991, J PHYS A, V24, L363
MANNA SS, 1991, PHYSICA A, V179, P249
MENDES JFF, 1994, J PHYS A-MATH GEN, V27, P3019
MUNOZ MA, 1996, PHYS REV LETT, V76, P451
PIETRONERO L, 1991, PHYSICA A, V173, P129
SCHMITTMANN B, 1995, PHASE TRANSITION CRI, V17
SORNETTE D, 1995, J PHYS I, V5, P325
STELLA AL, 1995, PHYS REV E A, V52, P72
TANG C, 1988, J STAT PHYS, V51, P797
TANG C, 1988, PHYS REV LETT, V60, P2347
TOME T, 1994, PHYSICA A, V212, P99
VERGELES M, 1997, PHYS REV E, V55, P1998
VESPIGNANI A, UNPUB
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 34
TC 61
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 23
PY 1997
VL 78
IS 25
BP 4793
EP 4796
PG 4
SC Physics, Multidisciplinary
GA XJ269
UT ISI:A1997XJ26900031
ER
PT J
AU Zapperi, S
Ray, P
Stanley, HE
Vespignani, A
TI First-order transition in the breakdown of disordered media
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; ELECTRICAL BREAKDOWN;
NUCLEATION; EARTHQUAKES; FRACTURE; DYNAMICS; GROWTH; SOLIDS; MODEL
AB We study the approach to global breakdown in disordered media driven by
increasing external forces. We first analyze the problem by mean-field
theory, showing that the failure process can be described as a
first-order phase transition, similarly to the case of thermally
activated fracture in homogeneous media. Then we quantitatively confirm
the predictions of the mean-field theory using numerical simulations of
discrete models. Widely distributed avalanches and the corresponding
mean-field scaling are explained by the long-range nature of elastic
interactions. We discuss the analogy of our results to driven
disordered first-order transitions and spinodal nucleation in magnetic
systems.
C1 BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
INST MATH SCI,MADRAS 600113,TAMIL NADU,INDIA.
LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
RP Zapperi, S, BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
CR ACHARYYA M, 1996, PHYS REV E A, V53, P140
ACHARYYA M, 1996, PHYSICA A, V224, P287
ANIFRANI JC, 1995, J PHYS I, V5, P631
BAK P, 1987, PHYS REV LETT, V59, P381
BARDHAN KK, 1994, NONLINEARITY BREAKDO
BUCHEL A, CONDMAT9610008
BUCHEL A, 1996, PHYS REV LETT, V77, P1520
CALDARELLI G, 1996, PHYS REV LETT, V77, P2503
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
DAHMEN K, 1996, PHYS REV B, V53, P14872
DANIELS HE, 1945, PROC R SOC LON SER-A, V183, P405
DEARCANGELIS L, 1985, J PHYS LETT, V46, L585
DEARCANGELIS L, 1989, PHYS REV B, V39, P2678
DIODATI P, 1991, PHYS REV LETT, V67, P2239
DUXBURY PM, 1986, PHYS REV LETT, V57, P1052
GOLUBOVIC L, 1991, PHYS REV A, V43, P5223
GOLUBOVIC L, 1995, PHYS REV E A, V51, P2799
GRIFFITH AA, 1920, PHILOS T R SOC A, V221, P163
GUNTON JD, 1983, PHASE TRANSITIONS CR, V8
HEERMANN DW, 1982, PHYS REV LETT, V49, P1262
HEMMER PC, 1992, J APPL MECH-T ASME, V59, P909
HERRMANN HJ, 1990, STAT MODELS FRACTURE
KAHNG B, 1988, PHYS REV B, V37, P7625
KIRKPATRICK S, 1973, REV MOD PHYS, V45, P574
MONETTE L, 1994, INT J MOD PHYS B, V8, P1417
OLAMI Z, 1992, PHYS REV LETT, V68, P1244
PETRI A, 1994, PHYS REV LETT, V73, P3423
PHOENIX SL, 1973, ADV APPL PROBAB, V5, P200
RAY P, 1996, PHYSICA A, V229, P26
RAY TS, 1990, J STAT PHYS, V61, P891
RUNDLE JB, 1989, PHYS REV LETT, V63, P171
RUNDLE JB, 1996, PHYS REV LETT, V76, P4285
SAHIMI M, 1996, PHYS REV LETT, V77, P3689
SELINGER RLB, 1991, J CHEM PHYS, V95, P9128
SELINGER RLB, 1991, PHYS REV A, V43, P4396
SETHNA JP, 1993, PHYS REV LETT, V70, P3347
SORNETTE D, 1989, J PHYS A, V22, L243
SORNETTE D, 1992, J PHYS I, V2, P2089
SORNETTE D, 1994, J PHYS I, V4, P209
STRAUVEN H, IN PRESS
TILLEMANS HJ, 1995, PHYSICA A, V217, P261
TZSCHICHHOLZ F, 1995, PHYS REV E, V51, P1961
UNGER C, 1984, PHYS REV B, V29, P2698
UNGER C, 1985, PHYS REV B, V31, P6127
VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
ZAPPERI S, IN PRESS
ZAPPERI S, 1996, MATER RES SOC SYMP P, V409, P355
NR 47
TC 98
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 24
PY 1997
VL 78
IS 8
BP 1408
EP 1411
PG 4
SC Physics, Multidisciplinary
GA WK157
UT ISI:A1997WK15700003
ER
PT J
AU Loreto, V
Pietronero, L
Vespignani, A
Zapperi, S
TI Renormalization group approach to the critical behavior of the
forest-fire model - Reply
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
C1 LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP Loreto, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,P A MORO 2,I-00185
ROME,ITALY.
CR BURKHARDT TW, 1982, REAL SPACE RENORMALI
DROSSEL B, 1996, PHYS REV LETT, V76, P936
DROSSEL B, 1997, PHYS REV LETT, V78, P1392
LORETO V, 1995, PHYS REV LETT, V75, P465
VESPIGNANI A, IN PRESS J STAT PHYS
VESPIGNANI A, 1996, PHYS REV LETT, V77, P4560
NR 6
TC 0
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 17
PY 1997
VL 78
IS 7
BP 1393
EP 1393
PG 1
SC Physics, Multidisciplinary
GA WH917
UT ISI:A1997WH91700051
ER
PT J
AU Piccioni, M
Cafiero, R
Vespignani, A
TI Monte Carlo fixed scale transformation for nonlocal fractal growth
models
SO PHYSICAL REVIEW E
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN MODEL; PERCOLATION
AB The fixed scale transformation (FST) is a theoretical framework
developed for the evaluation of scaling dimensions in a vast class of
complex systems showing fractal geometric correlations. For models with
long range interactions, such as Laplacian growth models, the
identification by analytical methods of the transformation's basic
elements is a very difficult task. Here we present a Monte Carlo
renormalization approach which allows the direct numerical evaluation
of the FST transfer matrix, overcoming the usual problems of analytical
and numerical treatments. The scheme is explicitly applied to the
diffusion limited aggregation case where a scale invariant regime is
identified and the fractal dimension is computed. The Monte Carlo FST
represents an alternative tool which can be easily generalized to other
fractal growth models with nonlocal interactions.
C1 INFM,UNITA ROMA 1,ROME,ITALY.
LEIDEN UNIV,INST LORENTZ,NL-2300 RA LEIDEN,NETHERLANDS.
RP Piccioni, M, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO MORO
2,I-00185 ROME,ITALY.
CR BINDER K, 1992, MONTE CARLO METHODS
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CALDARELLI G, 1988, PHYSICA A, V151, P207
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
ERZAN A, 1995, REV MOD PHYS, V67, P545
EVERTSZ C, 1990, PHYS REV A, V41, P1830
HANSEN A, 1990, EUROPHYS LETT, V13, P341
HOSHEN J, 1976, PHYS REV B, V14, P3428
PIETRONERO L, 1988, PHYSICA A, V151, P207
STAUFFER D, 1985, INTRO PERCOLATION TH
TREMBLAY RR, 1991, PHYS REV A, V44, P7985
VICSEK T, 1992, FRACTAL GROWTH PHENO
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 14
TC 2
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JAN
PY 1997
VL 55
IS 1
PN Part B
BP 1170
EP 1173
PG 4
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA WD546
UT ISI:A1997WD54600065
ER
PT J
AU Vespignani, A
Zapperi, S
Loreto, V
TI Renormalization of nonequilibrium systems with critical stationary
states
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FOREST-FIRE MODEL; SELF-ORGANIZED CRITICALITY; MEAN-FIELD THEORY;
CRITICAL-BEHAVIOR; SANDPILE MODELS; LATTICE GAS
AB We introduce the general formulation of a renormalization method
suitable to study the critical properties of nonequilibrium systems
with steady states: the dynamically driven renormalization group. We
renormalize the time evolution operator by computing the rescaled time
transition rate between coarse grained states. The obtained
renormalization equations are coupled to a stationarity condition which
provides the approximate nonequilibrium statistical weights of
steady-state configurations to be used in the calculations. in this way
we are able to write recursion relations for the parameter evolution
under scale change, from which we can extract numerical values for the
critical exponents. This general framework allows the systematic
analysis of several models showing self-organized criticality in terms
of usual concepts of phase transitions and critical phenomena.
C1 BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
ENEA,RES CTR,I-80055 PORTICI,NAPOLI,ITALY.
RP Vespignani, A, LEIDEN UNIV,INST LORENTZ,POB 9506,NL-2300 RA
LEIDEN,NETHERLANDS.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, FRACTALS DISORDERED, V2
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
CRESWICK RJ, 1992, INTRO RENORMALIZATIO
DICKMAN R, 1988, PHYS REV A, V38, P2588
DOMB C, 1972, PHASE TRANSITION CRI, V1
DOMB C, 1983, PHASE TRANSITION CRI, V7
DROSSEL B, COMMUNICATION
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
ERZAN A, 1995, REV MOD PHYS, V67, P545
GRASSBERGER P, 1991, J STAT PHYS, V63, P685
GRINSTEIN G, 1995, NATO ADV STUDY I B, V344
IVASHKEVICH EV, 1996, PHYS REV LETT, V76, P3368
KATZ S, 1983, PHYS REV B, V28, P1655
KATZ S, 1984, J STAT PHYS, V34, P497
KEIZER J, 1987, STAT THERMODYNAMICS
LORETO V, 1995, PHYS REV LETT, V75, P465
MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
MOSSNER WK, 1992, PHYSICA A, V190, P205
NIEMEIJER T, 1972, PHASE TRANSITIONS CR, V6
PATZLAFF H, 1994, PHYS LETT A, V189, P187
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
SCHMITTMANN B, 1983, PHASE TRANSITION CRI, V17
VESPIGNANI A, IN PRESS
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VICSEK T, 1992, FRACTAL GROWTH PHENO
NR 30
TC 16
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 25
PY 1996
VL 77
IS 22
BP 4560
EP 4563
PG 4
SC Physics, Multidisciplinary
GA VU502
UT ISI:A1996VU50200020
ER
PT J
AU Caldarelli, G
Vespignani, A
TI Fixed scale transformation approach for born model of fractures
SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; FRACTAL GROWTH
AB We use the Fixed Scale Transformation theoretical approach to study the
problem of fractal growth in fractures generated by using the Born
Model. In this case the application of the method is more complex
because of the vectorial nature of the model considered. In particular,
one needs a careful choice of the lattice path integral for the
fracture evolution and the identification of the appropriate way to
take effectively into account screening effects. The good agreement of
our results with computer simulations shows the validity and
flexibility of the FST method in the study of fractal patterns
evolution.
C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
RP Caldarelli, G, SCUOLA INT SUPER STUDI AVANZATI,ISAS,V BEIRUT
2-4,I-34014 TRIESTE,ITALY.
CR CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CALDARELLI G, 1994, PHYS REV E A, V49, P2673
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
ERZAN A, 1995, REV MOD PHYS
LOUIS E, 1987, EUROPHYS LETT, V3, P871
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
VESPIGNANI A, 1990, PHYSICA A, V168, P723
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YAN H, 1989, EUROPHYS LETT, V10, P7
NR 11
TC 0
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0218-348X
J9 FRACTALS
JI Fractals-Interdiscip. J. Complex Geom. Nat.
PD DEC
PY 1995
VL 3
IS 4
BP 829
EP 837
PG 9
SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
GA VB886
UT ISI:A1995VB88600019
ER
PT J
AU Vespignani, A
Petri, A
Alippi, A
Paparo, G
Costantini, M
TI Long range correlation on properties of aftershock relaxation signals
SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; 1/F NOISE; MODELS
AB Relaxation processes taking place after microfracturing of laboratory
samples give rise to ultrasonic acoustic emission signals. Statistical
analysis of the resulting time series has revealed many features which
are characteristic of critical phenomena. In particular, the
autocorrelation functions obey a power-law behavior, implying a power
spectrum of the kind 1/f. Also the amplitude distribution N(V) of such
signals follows a power law, and the obtained exponents are consistent
with those found in other experiments: N(V) dV similar or equal to
V--gamma dV, with gamma = 1.7 +/- 0.2. We also analyzed the
distribution N(tau) of the delay time tau between two consecutive
acoustic emission events. We found that a N(tau) distribution rather
close to a power law constitutes a common feature of all the recorded
signals. These experimental results can be considered as a striking
evidence for a critical dynamics underlying the microfracturing
processes.
C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
UNIV PERUGIA,DIPARTIMENTO FIS,IST NAZL FIS NUCL,SEZ PERUGIA,I-06100 PERUGIA,ITALY.
CONSORZIO RIC GRAN SASSO,I-67010 ASSERGI,LAQUILA,ITALY.
UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
CNR,IST ACUST OM CORBINO,I-00189 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1989, NETURE, V342, P7800
BAK P, 1993, FRACTALS DISORDERED, V2
CAFIERO R, 1995, EUROPHYS LETT, V29, P111
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
CHRISTENSEN K, 1991, J STAT PHYS, V63, P653
CHRISTENSEN K, 1992, PHYS REV LETT, V68, P2417
DERUBEIS V, PREPRINT
DIODATI P, 1991, PHYS REV LETT, V67, P2239
GUTENBERG B, 1956, ANN GEOFIS, V9, P1
HIRATA T, 1987, J GEOPHYS RES-SOLID, V92, P6215
HUANG J, 1988, EARTH PLANET SC LETT, V91, P223
ISHIMOTO M, 1939, B EARTHQ RES I TOKYO, V17, P443
KERTESZ J, 1990, J PHYS A, V23, L433
LORD AE, 1981, PHYSICAL ACOUSTICS, V15
MANDELBROT BB, 1983, FRACTAL GEOMETRY NAT
MCDONALD DKC, 1962, NOISE FLUCTUATIONS
MOGI K, 1962, B EARTHQ RES I TOKIO, V40, P815
MOGI K, 1962, B EARTHQ RES I TOKYO, V40, P125
MOGI K, 1963, B EARTHQ RES I TOKYO, V41, P595
OMORI F, 1894, REP EARTH INV COMM, V2, P103
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PETRI A, 1994, PHYS REV LETT, V73, P3423
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
SORNETTE D, 1994, J PHYS I, V4, P209
TZSCHICHHOLZ F, 1994, PHYS REV B, V49, P15035
UTSU T, 1969, J FS HOKKAIDO U 7, V3, P129
VICSEK T, 1994, FRACTALS NATURAL SCI
NR 29
TC 8
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0218-348X
J9 FRACTALS
JI Fractals-Interdiscip. J. Complex Geom. Nat.
PD DEC
PY 1995
VL 3
IS 4
BP 839
EP 847
PG 9
SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
GA VB886
UT ISI:A1995VB88600020
ER
PT J
AU Loreto, V
Pietronero, L
Vespignani, A
Zapperi, S
TI Renormalization group approach for forest fire models
SO FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; SANDPILE MODELS
AB We introduce a Renormalization scheme for the one- and two-dimensional
Forest-Fire models in order to characterize the nature of the critical
state and its scale invariant dynamics. We show the existence of a
relevant scaling field associated with a repulsive fixed point. These
models are therefore critical in the usual sense because the fixed
point value of the control parameter is crucial in order to get
criticality and it is not just the expression of a time scale
separation. This general scheme allows us to calculate analytically the
critical exponents for the one- and two-dimensional cases. The results
obtained are in good agreement with exact or numerical results.
C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP Loreto, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO MORO
2,I-00185 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CAFIERO R, 1995, EUROPHYS LETT, V29, P111
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
ERZAN A, UNPUB REV MOD PHYS
GRASSBERGER P, 1991, J STAT PHYS, V63, P685
GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
LORETO V, UNPUB J PHYS
MOSSNER WK, 1992, PHYSICA A, V190, P205
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
NR 16
TC 1
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 9128, SINGAPORE
SN 0218-348X
J9 FRACTALS
JI Fractals-Interdiscip. J. Complex Geom. Nat.
PD SEP
PY 1995
VL 3
IS 3
BP 445
EP 452
PG 8
SC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences
GA VB883
UT ISI:A1995VB88300005
ER
PT J
AU Loreto, V
Vespignani, A
Zapperi, S
TI Renormalization scheme for forest-fire models
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; DIFFUSION-LIMITED AGGREGATION; PERCOLATION
AB We introduce a renormalization scheme for forest-fire models in order
to characterize the nature of the critical state and its
scale-invariant dynamics. We study one- and two-dimensional models
defining a characterization of the phase space that allows us to
describe the evolution of the dynamics under a scale transformation. We
show the existence of a relevant critical parameter associated with a
repulsive fixed point in the phase space, From the
renormalization-group point of view these models are therefore critical
in the usual sense, because the fixed-point value of the control
parameter is crucial in order to get criticality. This general scheme
allows us to calculate analytically the critical exponent nu which
describes the approach to the critical point along the repulsive
direction and the exponent tau that characterizes the distribution of
forest clusters at the critical point. We obtain nu = 1.0, tau = 1.0
and nu = 0.65, tau = 1.16, respectively, for the one- and
two-dimensional cases, in very good agreement with exact and numerical
results.
C1 LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS.
BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP Loreto, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1989, J GEOPHYS RES-SOLID, V94, P15635
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, PHYS REV LETT, V71, P4083
BAK P, 1993, RICERCHE ECONOMICHE, V47, P3
BENHUR A, 1996, UNPUB PHYS REV E
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
DROSSEL B, 1994, PHYSICA A, V204, P212
ERZAN A, 1995, REV MOD PHYS, V67, P545
GRASSBERGER P, 1991, J STAT PHYS, V63, P685
GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
HENLEY CL, 1993, PHYS REV LETT, V71, P2741
LORETO V, 1995, PHYS REV LETT, V75, P465
MOSSNER WK, 1992, PHYSICA A, V190, P205
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
VESPIGNANI A, UNPUB J STAT PHYS
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 26
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
SN 0305-4470
J9 J PHYS-A-MATH GEN
JI J. Phys. A-Math. Gen.
PD JUN 21
PY 1996
VL 29
IS 12
BP 2981
EP 3004
PG 24
SC Physics, Multidisciplinary; Physics, Mathematical
GA UU803
UT ISI:A1996UU80300008
ER
PT J
AU KAUFMAN, H
VESPIGNANI, A
MANDELBROT, BB
WOOG, L
TI PARALLEL DIFFUSION-LIMITED AGGREGATION
SO PHYSICAL REVIEW E
LA English
DT Article
ID OFF-LATTICE; CLUSTERS; DLA
AB We present methods for simulating very large diffusion-limited
aggregation (DLA) clusters using parallel processing (PDLA). With our
techniques, we have been able to simulate clusters of up to 130 million
particles. The time required for generating a 100 million particle PDLA
is approximately 13 h. The fractal behavior of these ''parallel''
clusters changes from a multiparticle aggregation dynamics to the usual
DLA dynamics. The transition is described by simple scaling assumptions
that define a characteristic cluster size separating the two dynamical
regimes. We also use DLA clusters as seeds for parallel processing. In
this case, the transient regime disappears and the dynamics converges
from the early stage to that of DLA.
C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
RP KAUFMAN, H, YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
CR AMITRANO C, 1993, FRACTALS, V1, P840
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
EVERTSZ C, 1990, PHYS REV A, V41, P1830
FOLEY J, 1990, COMPUTER GRAPHICS PR
HALSEY TC, 1994, PHYS REV LETT, V72, P1228
MANDELBROT BB, 1992, PHYSICA A, V191, P95
MANDELBROT BB, 1995, EUROPHYS LETT, V29, P599
MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
OSSADNIK P, 1992, PHYS REV A, V45, P1058
OSSADNIK P, 1993, PHYSICA A, V195, P319
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
TOLMAN S, 1989, PHYS REV A, V40, P428
VICSEK T, 1992, FRACTAL GROWTH PHENO
VICSEK T, 1994, FRACTALS NATURAL SCI
VOSS RF, 1984, PHYS REV B, V30, P334
VOSS RF, 1993, FRACTALS, V1, P141
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YEKUTIELI I, 1994, J PHYS A-MATH GEN, V27, P275
NR 18
TC 16
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD NOV
PY 1995
VL 52
IS 5
PN Part B
BP 5602
EP 5609
PG 8
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA TG337
UT ISI:A1995TG33700057
ER
PT J
AU PIETRONERO, L
VESPIGNANI, A
TI FRACTALS, SELF-ORGANIZED-CRITICALITY AND THE FIXED SCALE TRANSFORMATION
SO CHAOS SOLITONS & FRACTALS
LA English
DT Article
AB DLA Fractal growth models and the sand pile models are both
characterized by a non linear irreversible dynamics that evolves
spontaneously in a critical state. These phenomena pose questions of
new type for which novel theoretical concepts are necessary. We argue
that the approach of the Fixed Scale Transformation contains some of
the essential theoretical elements to treat these problems and to
compute their properties analytically. Its original application to
DLA-like problems has been made more systematic by the analysis of the
scale invariant growth dynamics. Recently these concepts have been also
developed for an analytical study of the critical properties of
sandpile models.
RP PIETRONERO, L, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CRESWICK RJ, 1992, RENORMALIZATION GROU
MANNA SS, 1991, J PHYS A, V24, L363
PIETRONERO L, PREPRINT
PIETRONERO L, UNPUB REV MODERN PHY
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
VICSEK T, 1992, FRACTAL GROWTH PHENO
NR 9
TC 2
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 0960-0779
J9 CHAOS SOLITON FRACTAL
JI Chaos Solitons Fractals
PY 1995
VL 6
BP 471
EP 480
PG 10
SC Mathematics, Interdisciplinary Applications; Physics,
Multidisciplinary; Physics, Mathematical
GA TF140
UT ISI:A1995TF14000054
ER
PT J
AU ZARATTI, F
RUIZ, I
PIETRONERO, L
VESPIGNANI, A
TI FIXED SCALE TRANSFORMATION APPLIED TO FRACTAL AGGREGATION WITH LEVY
FLIGHT PARTICLE TRAJECTORIES
SO CHAOS SOLITONS & FRACTALS
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION
AB We extend the Fixed Scale Transformation (FST) method, developed for
Laplacian fractal growth, to the case of aggregation phenomena based on
diffusing particles following Levy-flight walk. We compute analytically
the clusters fractal dimension for different values of the exponent
governing the Levy-flight trajectories. The results obtained are in
very good agreement with the numerical simulations and show
analytically how the different screening effects present in the
Levy-flight diffusion change the aggregates fractal dimension.
C1 UNIV TOMAS FRIAS,DEPT FIS,POTOSI,BOLIVIA.
UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
RP ZARATTI, F, UNIV MAYOR SAN ANDRES,INST INVEST FIS,LA PAZ,BOLIVIA.
CR CAFIERO R, 1993, PHYS REV LETT, V70, P3939
ERZAN A, 1994, REV MOD PHYS
MEAKIN P, 1984, KINETICS AGGREGATION
MEAKIN P, 1984, PHYS REV B, V29, P3722
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1995, CHAOS SOLITON FRACT, V6, P471
VICSEK T, 1991, FRACTAL GROWTH PHENO
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
ZARATTI F, 1993, PREPRINT
NR 10
TC 0
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 0960-0779
J9 CHAOS SOLITON FRACTAL
JI Chaos Solitons Fractals
PY 1995
VL 6
BP 585
EP 591
PG 7
SC Mathematics, Interdisciplinary Applications; Physics,
Multidisciplinary; Physics, Mathematical
GA TF140
UT ISI:A1995TF14000066
ER
PT J
AU MANDELBROT, BB
VESPIGNANI, A
KAUFMAN, H
TI CROSSCUT ANALYSIS OF LARGE RADIAL DLA - DEPARTURES FROM SELF-SIMILARITY
AND LACUNARITY EFFECTS
SO EUROPHYSICS LETTERS
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN; ACTIVE ZONE;
CLUSTERS; MODEL
AB In order to understand better the morphology and the asymptotic
behavior in Diffusion-Limited Aggregation (DLA), we studied a large
number of very large off-lattice circular clusters. We inspected both
dynamical and geometric asymptotic properties via the scaling behavior
of the transverse growth crosscuts, ie. the one-dimensional cuts by
circles. The emerging picture corresponds qualitatively and
quantitatively to the scenario of infinite drift that starts from the
familiar five-armed shape for small sizes and proceeds through
increasingly tight multi-armed shapes. The transverse crosscuts show
quantitatively how the lacunarity of circular clusters becomes
increasingly compact with size. Finally, we find the transverse-cut
dimensions to be in agreement for clusters grown in circular and
cylindrical geometry, suggesting that the question of universality is
best addressed on the crosscut.
C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
RP MANDELBROT, BB, YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
CR AMITRANO C, 1993, FRACTALS, V1, P840
ARNEODO A, 1992, PHYS REV LETT, V68, P3456
ERZAN A, 1995, REV MOD PHYS, V67, P545
EVERTSZ C, 1990, PHYS REV A, V41, P1830
HALSEY TC, 1992, PHYS REV A, V46, P7793
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1992, PHYSICA A, V191, P95
MANDELBROT BB, 1994, J PHYS A, V27, L237
MANDELBROT BB, 1995, EUROPHYS LETT, V29, P599
MANDELBROT BB, 1995, FRACTAL GEOMETRY STO
MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
OSSADNIK P, 1993, PHYSICA A, V195, P319
PICCIONI M, UNPUB
PLISCHKE M, 1984, PHYS REV LETT, V53, P415
VICSEK T, 1989, FRACTAL GROWTH PHENO
VOSS RF, 1993, FRACTALS, V1, P141
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YEKUTIELI L, 1994, J PHYS A, V27, P275
NR 19
TC 18
PU EDITIONS PHYSIQUE
PI LES ULIS CEDEX
PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD OCT 20
PY 1995
VL 32
IS 3
BP 199
EP 204
PG 6
SC Physics, Multidisciplinary
GA TC610
UT ISI:A1995TC61000002
ER
PT J
AU ERZAN, A
PIETRONERO, L
VESPIGNANI, A
TI THE FIXED-SCALE TRANSFORMATION APPROACH TO FRACTAL GROWTH
SO REVIEWS OF MODERN PHYSICS
LA English
DT Review
ID DIFFUSION-LIMITED-AGGREGATION; RENORMALIZATION-GROUP-APPROACH;
SELF-ORGANIZED CRITICALITY; DIELECTRIC-BREAKDOWN MODEL; CLUSTER-CLUSTER
AGGREGATION; REGGEON FIELD-THEORY; STATE POTTS-MODEL; DIRECTED
PERCOLATION; INVASION PERCOLATION; CRITICAL EXPONENTS
AB Irreversible fractal-growth models like diffusion-limited aggregation
(DLA) and the dielectric breakdown model (DBM) have confronted us with
theoretical problems of a new type for which standard concepts like
field theory and renormalization group do not seem to be suitable. The
fixed-scale transformation (FST) is a theoretical scheme of a novel
type that can deal with such problems in a reasonably systematic way.
The main idea is to focus on the irreversible dynamics at a given scale
and to compute accurately the nearest-neighbor correlations at this
scale by suitable lattice path integrals. The next basic step is to
identify the scale-invariant dynamics that refers to coarse-grained
variables of arbitrary scale. The use of scale-invariant growth rules
allows us to generalize these correlations to coarse-grained cells of
any size and therefore to compute the fractal dimension. The basic
point is to split the long-time limit (t-->infinity) for the dynamical
process at a given scale that produces the asymptotically frozen
structure, from the large-scale limit (r-->infinity) which defines the
scale-invariant dynamics. In addition, by working at a fixed scale with
respect to dynamical evolution, it is possible to include the
fluctuations of boundary conditions and to reach;a remarkable level of
accuracy for a real-space method. This new framework is able to explain
the self-organized critical nature and the origin of fractal structures
in irreversible-fractal-growth models, it also provides a rather
systematic procedure for the analytical calculation of the fractal
dimension and other critical exponents. The FST method can be naturally
extended to a variety of equilibrium and nonequilibrium models that
generate fractal structures.
C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS.
RP ERZAN, A, ISTANBUL TECH UNIV,FAC SCI & LETTERS,DEPT PHYS,ISTANBUL
80626,TURKEY.
CR ABARBANEL HDI, 1976, PHYS REV D, V14, P632
AMIT DJ, 1978, FIELD THEORY RENORMA
ARNEODO A, 1988, PHYS REV LETT, V61, P2281
ARNEODO A, 1989, PHYS REV LETT, V63, P984
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1993, PHYS REV LETT, V71, P4083
BALL RC, 1984, PHYS REV A, V29, P2966
BARKER PW, 1990, PHYS REV A, V42, P6289
BAXTER RJ, 1988, J PHYS A, V21, P3193
BENAVRAHAM D, 1991, PHYS REV A, V43, P7093
BENZI R, 1984, J PHYS A-MATH GEN, V17, P3521
BLUMENFELD R, 1989, PHYS REV LETT, V62, P2927
BOHR T, 1988, EUROPHYS LETT, V6, P445
BURKHARDT TW, 1982, REAL SPACE RENORMALI
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CALDARELLI G, 1994, PHYS REV E A, V49, P2673
CALDARELLI G, 1995, PHYSICA A, V215, P223
CARDY JL, 1980, J PHYS A, V13, L423
CHAYES JT, 1986, CRITICAL PHENOMENA R, P1090
CHENDLER R, 1982, J FLUID MECH, V119, P249
COLEMAN PH, 1992, PHYS REP, V213, P311
CONIGLIO A, 1980, J PHYS A, V13, P2775
CONIGLIO A, 1982, J PHYS A, V15, P1873
CONIGLIO A, 1986, PHYS REV LETT, V57, P1016
CONIGLIO A, 1989, PHYS REV LETT, V62, P3054
CONIGLIO A, 1990, PHYSICA A, V163, P325
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
DEDOMINICIS C, 1975, LETT NUOVO CIMENTO, V12, P567
DEDOMINICIS C, 1975, PHYS REV B, V12, P4945
DEDOMINICIS C, 1976, J PHYS-PARIS, V37, P247
DEDOMINICIS C, 1977, PHYS REV B, V18, P353
DEDOMINICIS C, 1977, PHYS REV LETT, V38, P505
DEGENNES PG, 1979, SCALING CONCEPTS POL
DENNIJS M, 1983, PHYS REV B, V27, P1674
DENNIJS MPM, 1979, J PHYS A, V12, P1857
DERRIDA B, 1985, J PHYS-PARIS, V46, P1623
DICKMAN R, 1986, PHYS REV A, V34, P4246
DISTASIO M, 1994, J PHYS A-MATH GEN, V27, P317
DUPLANTIER B, 1989, PHYS REV LETT, V63, P2536
ECKMANN JP, 1989, PHYS REV A, V29, P3185
ECKMANN JP, 1990, PHYS REV LETT, V65, P52
EDEN M, 1961, 4TH P BERK S MATH ST, V4, P223
ELDERFIELD D, 1985, J PHYS A, V18, P2591
ELDERFIELD D, 1985, J PHYS A-MATH GEN, V18, L767
ELDERFIELD D, 1985, J PHYS A-MATH GEN, V18, L773
ERZAN A, 1991, J PHYS A, V24, P1875
ERZAN A, 1991, PHYS REV LETT, V66, P2750
ERZAN A, 1992, EUROPHYS LETT, V20, P595
ERZAN A, 1992, PHYSICA A, V185, P66
ESSAM JW, 1988, J PHYS A, V21, P3815
EVERTSZ C, 1989, THESIS U GRONINGEN
EVERTSZ C, 1990, PHYS REV A, V41, P1830
FEDER J, 1988, FRACTALS
FISHER ME, 1967, REP PROGR PHYS, V30, P615
FURNBERG L, 1988, PHYS REV LETT, V61, P2117
GLAUBER RJ, 1963, J MATH PHYS, V4, P294
GRASSBERGER P, 1979, ANN PHYS-NEW YORK, V122, P373
GRASSBERGER P, 1982, Z PHYS B, V47, P465
GRASSBERGER P, 1986, FRACTALS PHYSICS, P273
GRASSBERGER P, 1992, J PHYS A-MATH GEN, V25, P5475
GUNTON JD, 1979, LECTURE NOTES PHYSIC, V1, P104
GUOLD H, 1983, PHYS REV LETT, V50, P686
HALPERIN BI, 1972, PHYS REV LETT, V29, P1548
HALPINHEALY T, 1955, PHYS REP, V254, P215
HALSEY TC, 1992, PHYS REV A, V46, P7793
HALSEY TC, 1994, PHYS REV LETT, V72, P1228
HOHENBERG PC, 1977, REV MOD PHYS, V49, P425
HOLSCHNEIDER M, 1988, J STAT PHYS, V50, P953
HONDA K, 1986, J PHYS SOC JPN, V55, P707
HUNER M, 1994, PHYSICA A, V212, P314
JANSSEN HK, 1979, LECT NOTE PHYS, V104, P26
JULLIEN R, 1987, AGGREGATIONN FRACTAL
KADANOFF LP, 1967, REV MOD PHYS, V39, P395
KANEKO K, 1985, COLLAPSE TORI GENESI
KARDAR M, 1986, PHYS REV LETT, V56, P889
KERTESZ J, 1986, J PHYS A, V19, L257
KINZEL W, 1983, ANN ISRAEL PHYSICAL, V5, P425
KIRKALDY JS, 1992, REP PROG PHYS, V55, P723
KOLB M, 1983, PHYS REV LETT, V51, P1123
LEYVRAZ F, 1986, GROWTH FORM, P136
LIGGETT TM, 1985, INTERACTING PARTICLE
LUIS E, 1987, EUROPHYS LETT, V3, P871
MANDELBROT BB, 1974, J FLUID MECH, V62, P331
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1990, NATURE, V348, P143
MANDELBROT BB, 1992, PHYSICA A, V191, P95
MANDELBROT BB, 1995, IN PRESS EUROPHYS LE
MARSILI M, 1991, PHYSICA A, V175, P9
MARSILI M, 1994, J STAT PHYS, V77, P733
MAZENKO GF, 1979, LECTURE NOTES PHYSIC, V104, P97
MEAKIN P, 1983, PHYS REV LETT, V51, P1119
MEAKIN P, 1984, PHYS REV B, V29, P3722
MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
MEAKIN P, 1989, FRACTALS PHYSICAL OR, P137
MEINHARDT H, 1992, REP PROG PHYS, V55, P797
MIGDAL AA, 1974, PHYS LETT B, V48, P239
MIGDAL AA, 1974, ZH EKSP TEOR FIZ, V67, P84
MOUKARZEL C, 1992, PHYSICA A, V188, P469
MUTHUKUMAR M, 1983, PHYS REV LETT, V50, P839
NAGATANI T, 1987, J PHYS A, V20, L381
NAGATANI T, 1987, PHYS REV A, V36, P5812
NICOLIS G, 1977, SELF ORG NONEQUILIBR
NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
NITTMANN J, 1986, NATURE, V321, P663
OHONO K, 1992, PHYS REV A, V46, P3400
OSSADNIK P, 1992, PHYS REV A, V45, P1058
PALADIN G, 1987, PHYS REP, V156, P145
PARISI G, 1985, J STAT PHYS, V41, P1
PELITI L, 1985, J PHYS-PARIS, V46, P1469
PICCIONI M, 1995, UNPUB
PIETRONERO L, 1984, J STAT PHYS, V36, P811
PIETRONERO L, 1986, FRACTALS PHYSICS
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
PIETRONERO L, 1990, PHYS REV A, V42, P7496
PIETRONERO L, 1990, PHYSICA A, V170, P64
PIETRONERO L, 1990, PHYSICA A, V170, P81
PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
PIETRONERO L, 1991, PHYSICA A, V173, P22
PIETRONERO L, 1993, FRACTALS, V1, P41
PIETRONERO L, 1993, J FRACTALS, V1, P650
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
PIETRONERO L, 1995, PREPRINT
PIETRONERO L, 1995, STOCHASTIC PROCESSES, P581
RINTOUL MD, 1992, J PHYS A, V25, L945
ROUX S, 1989, J PHYS A, V19, P3693
SCHLOGL F, 1972, Z PHYS, V253, P147
SCHWARZER S, 1990, PHYS REV LETT, V65, P603
SHAPIR Y, 1986, J PHYS PARIS LETT, V46, L529
SIDORETTI S, 1992, PHYSICA A, V185, P202
SIEBESMA AP, 1988, PHYSICA A, V156, P613
SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P585
STANLEY HE, 1971, INTRO PHASE TRANSITI
STANLEY HE, 1982, REAL SPACE RENORMALI
STANLEY HE, 1986, GROWTH FORM FRACTAL
STAUFFER D, 1985, INTRO PERCOLATION TH
STELL G, 1987, PHASE TRANSITIONS CR, P205
STELLA AL, 1989, PHYS REV LETT, V62, P1067
SUZUKI M, 1979, LECTURE NOTES PHYSIC, V104, P75
SYKES MF, 1972, J PHYS A, V5, P653
TANG C, 1988, PHYS REV LETT, V60, P2347
TREMBLAY RR, 1989, PHYS REV A, V40, P5377
TURKEVICH LA, 1985, PHYS REV LETT, V55, P1026
VANDERZANDE C, 1992, PHYSICA A, V185, P235
VANNIMENUS J, 1984, PHYS REV B, V30, P391
VESPIGNANI A, 1990, PHYSICA A, V168, P723
VESPIGNANI A, 1991, PHYSICA A, V173, P1
VESPIGNANI A, 1993, FRACTALS, V1, P1002
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
VICSEK T, 1984, PHYS REV LETT, V52, P1669
VICSEK T, 1985, PHYS REV A, V32, P1122
VICSEK T, 1992, FRACTAL GROWTH PHENO
WANG XR, 1989, J PHYS A, V22, L507
WANG XR, 1989, PHYS REV A, V39, P5974
WATTS MG, 1975, J PHYS A, V8, P61
WHITE SR, 1992, PHYS REV LETT, V68, P3487
WILKINSON D, 1983, J PHYS A-MATH GEN, V16, P3365
WILSON KG, 1974, PHYS REP, V12, P75
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
WITTEN TA, 1983, PHYS REV B, V27, P5685
WOLFRAM S, 1983, REV MOD PHYS, V55, P601
WOLFRAM S, 1983, REV MOD PHYS, V55, P601
YAN H, 1989, EUROPHYS LETT, V10, P7
ZARATTI F, 1995, UNPUB
ZHANG YC, 1989, PHYS REV LETT, V63, P473
ZIFF RM, 1992, PHYS REV LETT, V69, P2670
NR 167
TC 85
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0034-6861
J9 REV MOD PHYS
JI Rev. Mod. Phys.
PD JUL
PY 1995
VL 67
IS 3
BP 545
EP 604
PG 60
SC Physics, Multidisciplinary
GA RW066
UT ISI:A1995RW06600001
ER
PT J
AU LORETO, V
PIETRONERO, L
VESPIGNANI, A
ZAPPERI, S
TI RENORMALIZATION-GROUP APPROACH TO THE CRITICAL-BEHAVIOR OF THE
FOREST-FIRE MODEL
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY
AB We introduce a renormalization scheme for the one- and two-dimensional
forest-fire model in order to characterize the nature of the critical
state and its scale invariant dynamics. We show the existence of a
relevant scaling field associated with a repulsive fixed point. This
model is therefore critical in the usual sense because the control
parameter has to be tuned to its critical value in order to get
criticality. It turns out that this is not just the condition for a
time scale separation. The critical exponents are computed analytically
and we obtain nu = 1.0, tau = 1.0 and nu = 0.65, tau = 1.16,
respectively, for the one- and two-dimensional cases, in very good
agreement with numerical simulations.
C1 LEIDEN UNIV,INST LORENTZ,2300 RA LEIDEN,NETHERLANDS.
BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP LORETO, V, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO MORO
2,I-00185 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CAFIERO R, 1995, EUROPHYS LETT, V29, P111
CHRISTENSEN K, 1993, PHYS REV LETT, V71, P2737
CLAR S, 1994, PHYS REV E A, V50, P1009
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
DROSSEL B, 1993, PHYS REV LETT, V71, P3739
DROSSEL B, 1994, PHYSICA A, V204, P212
ERZAN A, IN PRESS FIXED SCALE
GRASSBERGER P, 1991, J STAT PHYS, V63, P685
GRASSBERGER P, 1993, J PHYS A-MATH GEN, V26, P2081
LORETO V, IN PRESS RENORMALIZE
MOSSNER WK, 1992, PHYSICA A, V190, P205
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
VESPIGNANI A, 1995, PHYS REV E, V51, P1711
NR 18
TC 33
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 17
PY 1995
VL 75
IS 3
BP 465
EP 468
PG 4
SC Physics, Multidisciplinary
GA RK330
UT ISI:A1995RK33000028
ER
PT J
AU CALDARELLI, G
VESPIGNANI, A
PIETRONERO, L
TI FIXED SCALE TRANSFORMATION FOR FRACTURE GROWTH-PROCESSES GOVERNED BY
VECTORIAL FIELDS
SO PHYSICA A
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION
AB We use the Fixed Scale Transformation (FST) approach to study the
problem of fractal growth in fracture patterns generated by using the
Born Model, The application of the method to this model is very complex
because of the vectorial nature of the system considered. In
particular, the implementation of this scheme requires a careful choice
of the fracture path and the identification of the appropriate way to
take into account screening effects, The good agreements of our results
with computer simulations shows the validity and flexibility of the FST
method which represents a general theoretical approach for the study of
fractal patterns evolution.
C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
RP CALDARELLI, G, ISAS,SISSA,V BEIRUT 2-4,I-34014 GRIGNANO TRIESTE,ITALY.
CR CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CALDARELLI G, 1994, PHYS REV E A, V49, P2673
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
ERZAN A, 1995, REV MOD PHYS
HERRING RD, 1990, SCH COUNSELOR, V38, P13
LOUIS E, 1987, EUROPHYS LETT, V3, P871
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
PIETRONERO L, 1987, PHYSICA A, V151, P207
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
VESPIGNANI A, 1990, PHYSICA A, V168, P723
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YAN H, 1989, EUROPHYS LETT, V10, P7
NR 12
TC 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD MAY 1
PY 1995
VL 215
IS 3
BP 223
EP 232
PG 10
SC Physics, Multidisciplinary
GA QX194
UT ISI:A1995QX19400001
ER
PT J
AU MANDELBROT, BB
KAUFMAN, H
VESPIGNANI, A
YEKUTIELI, I
LAM, CH
TI DEVIATIONS FROM SELF-SIMILARITY IN PLANE DLA AND THE INFINITE DRIFT
SCENARIO
SO EUROPHYSICS LETTERS
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; ACTIVE ZONE; GROWING CLUSTERS; EDEN MODEL
AB The behavior of very large clusters of diffusion-limited aggregation
(DLA) was investigated to help discriminate between the two geometric
scenarios recently described by Mandelbrot: finite transient and
infinite drift. Using 50 DLA clusters of I million particles, we follow
the increase during growth of the maximum radius of the clusters and of
various relative moments. One can distinguish two regions: an inactive
completely grown core and an active growing region. In the growing
region, scale factors were defined the moments of the atoms distances
from the original ''seed''. They do not cross-over to the behavior
characteristic of self-similarity for finite sizes and support the
novel ''drift'', scenario that postulate an infinite continuing
''transient''. The moment's ''misbehavior'' may help understand the
disagreement between previous estimates of the clusters' fractal
dimension.
C1 IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598.
UNIV PITTSBURGH,DEPT PHYS & ASTRON,PITTSBURGH,PA 15260.
HONG KONG POLYTECH,DEPT APPL PHYS,KOWLOON,HONG KONG.
RP MANDELBROT, BB, YALE UNIV,DEPT MATH,BOX 208283,NEW HAVEN,CT 06520.
CR LAM CH, IN PRESS
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MANDELBROT BB, 1992, PHYSICA A, V191, P95
MEAKIN P, 1985, PHYS REV LETT, V54, P2053
MEAKIN P, 1988, PHASE TRANSITIONS CR, V12, P335
OSSADNIK P, 1993, PHYSICA A, V195, P319
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PLISCHKE M, 1984, PHYS REV LETT, V53, P415
VICSEK T, 1989, FRACTAL GROWTH PHENO
VOSS RF, 1993, FRACTALS, V1, P141
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YEKUTIELI I, 1994, J PHYS A-MATH GEN, V27, P275
NR 12
TC 20
PU EDITIONS PHYSIQUE
PI LES ULIS CEDEX
PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD MAR 10
PY 1995
VL 29
IS 8
BP 599
EP 604
PG 6
SC Physics, Multidisciplinary
GA QN883
UT ISI:A1995QN88300002
ER
PT J
AU VESPIGNANI, A
ZAPPERI, S
PIETRONERO, L
TI RENORMALIZATION APPROACH TO THE SELF-ORGANIZED CRITICAL-BEHAVIOR OF
SANDPILE MODELS
SO PHYSICAL REVIEW E
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; CRITICAL EXPONENTS; PHASE-TRANSITIONS;
UNIVERSALITY; DYNAMICS; SYSTEMS; NOISE
C1 YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520.
BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215.
BOSTON UNIV,DEPT PHYS,BOSTON,MA 02215.
RP VESPIGNANI, A, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE ALDO
MORO 2,I-00185 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1989, NATURE, V342, P780
BAK P, 1993, FRACTALS DISORDERED, V2
BAK P, 1993, RICERCHE ECONOMICHE, V47, P3
BURKHARDT TW, 1982, REAL SPACE RENORMALI
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CAFIERO R, 1995, EUROPHYS LETT, V29, P111
CALDARELLI G, COMMUNICATION
CHRISTENSEN K, 1991, J STAT PHYS, V61, P653
CHRISTENSEN K, 1992, PHYS REV A, V46, P1829
CRESWICK RJ, 1992, INTRO RENORMALIZATIO
DHAR D, 1989, PHYS REV LETT, V63, P1659
DHAR D, 1991, PHYS REV LETT, V64, P1613
DIAZGUILERA A, 1992, PHYS REV A, V45, P8551
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
ERZAN A, UNPUB
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
HWA T, 1989, PHYS REV LETT, V62, P1813
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KADANOFF LP, 1990, PHYSICA A, V163, P1
KADANOFF LP, 1991, PHYS TODAY, V44, P9
LORETO V, UNPUB
MAJUMDAR SN, 1992, PHYSICA A, V185, P129
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1991, J PHYS A, V24, L363
MANNA SS, 1991, PHYSICA A, V179, P249
OLAMI Z, 1992, PHYS REV LETT, V68, P1244
PACZUSKI M, 1994, EUROPHYS LETT, V27, P97
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
PIETRONERO L, 1991, PHYSICA A, V173, P129
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
SORNETTE D, 1992, J PHYS I, V2, P2065
TANG C, 1988, PHYS REV LETT, V60, P2347
VICSEK T, 1992, FRACTAL GROWTH PHENO
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 39
TC 71
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD MAR
PY 1995
VL 51
IS 3
PN Part A
BP 1711
EP 1724
PG 14
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA QP252
UT ISI:A1995QP25200016
ER
PT J
AU CAFIERO, R
LORETO, V
PIETRONERO, L
VESPIGNANI, A
ZAPPERI, S
TI LOCAL RIGIDITY AND SELF-ORGANIZED CRITICALITY FOR AVALANCHES
SO EUROPHYSICS LETTERS
LA English
DT Article
ID FOREST-FIRE MODEL; FRACTAL GROWTH; RELAXATION
AB The general conditions for a sandpile system to evolve spontaneously
into a critical state characterized by a power law distribution of
avalanches or bursts are identified as: a) the existence of a
stationary state with a global conservation law; b) long-range
correlations in the continuum limit (i.e. Laplacian diffusive field);
c) the existence of a local rigidity for the microscopic dynamics.
These conditions permit a classification of the models that have been
considered up to now and the identification of the local rigidity as a
new basic parameter that can lead to various possible scenarios ranging
continuously from SOC behaviour to standard diffusion.
RP CAFIERO, R, UNIV ROMA I LA SAPIENZA,DIPARTIMENTO FIS,P A MORO 2,I-00185
ROME,ITALY.
CR BAK P, COMMUNICATION
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1990, PHYS LETT A, V147, P297
BAK P, 1993, PHYS REV LETT, V71, P4083
DIAZGUILERA A, 1994, EUROPHYS LETT, V26, P177
DROSSEL B, 1992, PHYS REV LETT, V69, P1629
ERZAN A, IN PRESS REV MOD PHY
LORETO V, UNPUB PHYS REV LETT
MA SK, 1976, MODERN THEORY CRITIC
OLAMI Z, 1992, PHYS REV LETT, V68, P1244
PARISI G, 1991, PHYSICA A, V179, P16
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1990, PHYSICA A, V170, P81
PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
VICKSEK T, 1989, FRACTAL GROWTH PHENO
ZHANG YC, 1987, PHYS REV LETT, V63, P470
NR 18
TC 18
PU EDITIONS PHYSIQUE
PI LES ULIS CEDEX
PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD JAN 10
PY 1995
VL 29
IS 2
BP 111
EP 116
PG 6
SC Physics, Multidisciplinary
GA QC369
UT ISI:A1995QC36900001
ER
PT J
AU PETRI, A
PAPARO, G
VESPIGNANI, A
ALIPPI, A
COSTANTINI, M
TI EXPERIMENTAL-EVIDENCE FOR CRITICAL-DYNAMICS IN MICROFRACTURING PROCESSES
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SELF-ORGANIZED CRITICALITY; ACOUSTIC-EMISSION; 1/F NOISE
C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
UNIV ROMA LA SAPIENZA,DIPARTIMENTO ENERGET,I-00161 ROME,ITALY.
RP PETRI, A, CNR,IST ACUST OM CORBINO,VIA CASSIA 1216,I-00189 ROME,ITALY.
CR BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1989, NETURE, V342, P7800
BAK P, 1993, FRACTALS DISORDERED, V2
CANNELLI G, 1993, PHYS REV LETT, V70, P3923
CHRISTENSEN K, 1991, J STAT PHYS, V63, P653
CHRISTENSEN K, 1992, PHYS REV LETT, V68, P2417
DIODATI P, 1991, PHYS REV LETT, V67, P2239
GUTENBERG B, 1956, ANN GEOFIS, V9, P1
HIRATA T, 1987, J GEOPHYS RES-SOLID, V92, P6215
HUANG J, 1988, EARTH PLANET SC LETT, V91, P223
ISHIMOTO M, 1939, B EARTHQ RES I TOKYO, V17, P443
KERTESZ J, 1990, J PHYS A, V23, L433
LORD AE, 1981, PHYSICAL ACOUSTICS, V15
MCDONALD DKC, 1962, NOISE FLUCTUATIONS
MOGI K, 1962, B EARTHQ RES I TOKIO, V40, P815
MOGI K, 1962, B EARTHQ RES I TOKYO, V40, P125
MOGI K, 1962, B EARTHQ RES I TOKYO, V40, P831
MOGI K, 1963, B EARTHQ RES I TOKYO, V41, P595
MOGI K, 1967, TECTONOPHYSICS, V5, P35
OMORI F, 1894, REP EARTH INV COMM, V2, P103
OMORI F, 1969, TOKUJI UTSU, V3, P129
PACZUSKI M, IN PRESS
PIETRONERO L, 1994, PHYS REV LETT, V72, P1690
SORNETTE A, 1989, EUROPHYS LETT, V9, P197
NR 25
TC 99
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD DEC 19
PY 1994
VL 73
IS 25
BP 3423
EP 3426
PG 4
SC Physics, Multidisciplinary
GA PX387
UT ISI:A1994PX38700024
ER
PT J
AU CALDARELLI, G
CASTELLANO, C
VESPIGNANI, A
TI FRACTAL AND TOPOLOGICAL PROPERTIES OF DIRECTED FRACTURES
SO PHYSICAL REVIEW E
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN; ELASTIC NETWORKS;
MODEL; GROWTH
AB We use the Born model for the energy of elastic networks to simulate
''directed'' fracture growth. We define directed fractures as crack
patterns showing a preferential evolution direction imposed by the type
of stress and boundary conditions applied. This type of fracture allows
a more realistic description of some kinds of experimental cracks and
presents several advantages in order to distinguish between the various
growth regimes. By choosing this growth geometry it is also possible to
use without ambiguity the box-counting method to obtain the fractal
dimension for different subsets of the patterns and for a wide range of
the internal parameters of the model. We find a continuous dependence
of the fractal dimension of the whole patterns and of their backbones
on the ratio between the central- and noncentral-force contributions.
For the chemical distance we find a one-dimensional behavior
independent of the relevant parameters, which seems to be a common
feature for fractal growth processes.
C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
UNIV NAPLES,DIPARTIMENTO SCI FIS,I-80125 NAPLES,ITALY.
RP CALDARELLI, G, SCUOLA INT SUPER STUDI AVANZATI,VIA BEIRUT 2-4,I-34014
GRIGNANO,ITALY.
CR EVERTSZ C, 1990, PHYS REV A, V41, P1830
FENG S, 1984, PHYS REV LETT, V52, P216
HERRMANN HJ, 1990, STATISTICAL MODELS F
HERRMANN HJ, 1991, PHYS SCR T, V38, P13
HORVATH VK, 1991, CHAOS SOLITON FRACT, V1, P395
LANDAU LD, 1960, ELASTICITY
LOUIS E, 1987, EUROPHYS LETT, V3, P871
MEAKIN P, 1984, J PHYS A, V17, L975
MEAKIN P, 1989, J PHYS A-MATH GEN, V22, P1393
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
OSSADNIK P, 1993, HLRZ10L9I REP
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
SEN PN, 1977, PHYS REV B, V15, P4030
VICSEK T, 1992, FRACTAL GROWTH PHENO
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
YAN H, 1989, EUROPHYS LETT, V10, P7
NR 17
TC 20
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD APR
PY 1994
VL 49
IS 4
PN Part A
BP 2673
EP 2679
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA NJ379
UT ISI:A1994NJ37900027
ER
PT J
AU PIETRONERO, L
VESPIGNANI, A
ZAPPERI, S
TI RENORMALIZATION SCHEME FOR SELF-ORGANIZED CRITICALITY IN SANDPILE MODELS
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID UNIVERSALITY
AB We introduce a renormalization scheme of novel type that allows us to
characterize the critical state and the scale invariant dynamics in
sandpile models. The attractive fixed point clarifies the nature of
self-organization in these systems. Universality classes can be
identified and the critical exponents can be computed analytically. We
obtain tau = 1.253 for the avalanche exponent and z = 1.234 for the
dynamical exponent. These results are in good agreement with computer
simulations. The method can be naturally extended to other problems
with nonequilibrium stationary states.
RP PIETRONERO, L, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR BAK P, BNL49030 REP
BAK P, 1987, PHYS REV LETT, V59, P381
BAK P, 1988, PHYS REV A, V38, P364
BAK P, 1993, FRACTALS DISORDERED, V2
CAFIERO R, 1993, PHYS REV LETT, V70, P3939
CHRISTENSEN K, 1992, PHYS REV A, V46, P1829
DHAR D, 1989, PHYS REV LETT, V63, P1659
DHAR D, 1990, J PHYS A-MATH GEN, V23, P4333
DHAR D, 1990, PHYS REV LETT, V64, P161
ERZAN A, IN PRESS FIXED SCALE
GRASSBERGER P, 1990, J PHYS-PARIS, V51, P1077
KADANOFF LP, 1989, PHYS REV A, V39, P6524
KADANOFF LP, 1990, PHYSICA A, V163, P1
KADANOFF LP, 1991, PHYS TODAY, V44, P9
MANNA SS, 1990, J STAT PHYS, V59, P509
MANNA SS, 1990, J STAT PHYS, V61, P923
MANNA SS, 1991, J PHYS A, V24, L363
MANNA SS, 1991, PHYSICA A, V179, P249
OLAMI Z, 1992, PHYS REV LETT, V68, P1244
PACZUSKI M, IN PRESS
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1991, PHYS REV LETT, V66, P2336
PIETRONERO L, 1991, PHYSICA A, V173, P22
SORNETTE D, 1992, J PHYS I, V2, P2065
VESPIGNANI A, IN PRESS
VICSEK T, 1992, FRACTAL GROWTH PHENO
ZHANG YC, 1989, PHYS REV LETT, V63, P470
NR 27
TC 103
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 14
PY 1994
VL 72
IS 11
BP 1690
EP 1693
PG 4
SC Physics, Multidisciplinary
GA NA492
UT ISI:A1994NA49200030
ER
PT J
AU DISTASIO, M
PIETRONERO, L
STELLA, A
VESPIGNANI, A
TI FIXED-SCALE TRANSFORMATION APPROACH TO LINEAR AND BRANCHED POLYMERS
SO JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; FRACTAL GROWTH; PERCOLATION;
RENORMALIZATION; LATTICE
AB The radius exponent of two- and three-dimensional self-avoiding walks
and branched polymers are computed in the fixed-scale transformation
framework. The method requires the knowledge of the critical fugacity
k(c), but from this non-universal parameter it is possible to compute
the universal critical exponent. The results obtained are within 1% of
exact or numerical values. This confirms the versatility and
quantitative power of this new theoretical approach and gives the
opportunity to provide a discussion of the analogies and differences
between the real space renormalization group and the fixed-scale
transformation method.
C1 UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,I-00185 ROME,ITALY.
UNIV BOLOGNA,DIPARTIMENTO FIS,BOLOGNA,ITALY.
RP DISTASIO, M, ISAS,SISSA,VIA BEIRUT 2,I-34100 MIRAMARE,ITALY.
CR BURKHARDT TW, 1982, REAL SPACE RENORMALI
DEGENNES PG, 1979, SCALING CONCEPTS POL
DERRIDA B, 1985, J PHYS-PARIS, V46, P1623
FAMILY F, 1980, J PHYS A, V13, L325
FAMILY F, 1980, J PHYS A-MATH GEN, V13, L403
FLORY PJ, 1971, PRINCIPLES POLYM CHE
GUTTMANN AJ, 1978, J PHYS A, V11, P949
HERRMANN HJ, 1986, GROWTH FORM
LEGUILLOU JC, 1980, PHYS REV B, V21, P3976
NENHUIS B, 1982, PHYS REV LETT, V49, P1062
NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
PIETRONERO L, 1990, PHYSICA A, V170, P64
PIETRONERO L, 1991, NONLINEAR PHENOMENA
SYKES MF, 1972, J PHYS A, V5, P653
VESPIGNANI A, 1991, PHYSICA A, V173, P21
VICSEK T, 1989, FRACTAL GROWTH PHENO
WATTS MG, 1975, J PHYS A, V8, P61
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 20
TC 2
PU IOP PUBLISHING LTD
PI BRISTOL
PA TECHNO HOUSE, REDCLIFFE WAY, BRISTOL, ENGLAND BS1 6NX
SN 0305-4470
J9 J PHYS-A-MATH GEN
JI J. Phys. A-Math. Gen.
PD JAN 21
PY 1994
VL 27
IS 2
BP 317
EP 326
PG 10
SC Physics, Multidisciplinary; Physics, Mathematical
GA MV126
UT ISI:A1994MV12600016
ER
PT J
AU CAFIERO, R
PIETRONERO, L
VESPIGNANI, A
TI PERSISTENCE OF SCREENING AND SELF-CRITICALITY IN THE SCALE-INVARIANT
DYNAMICS OF DIFFUSION-LIMITED AGGREGATION
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RENORMALIZATION-GROUP APPROACH; FRACTAL GROWTH; ANISOTROPY; PATTERNS
AB The origin of fractal properties in diffusion limited aggregation is
related to the persistence of screening in the scale invariant growth
regime. This effect is described by the effective noise reduction
parameter S spontaneously generated by the scale invariant dynamics.
The renormalization of this parameter under scale transformation shows
the following: (i) The fixed point is attractive, implying the
self-critical nature of the process. (ii) The fixed point value S* is
of the order of unity, showing that the small scale growth rules are
already close to the scale invariant ones and that screening effects
persist in the asymptotic regime.
RP CAFIERO, R, UNIV ROMA LA SAPIENZA,DIPARTIMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR AMAR MB, 1991, NATO ASI SER B, V276, P345
BARKER PW, 1990, PHYS REV A, V42, P6289
CAFIERO R, IN PRESS
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
ECKMANN JP, 1989, PHYS REV A, V39, P3185
ECKMANN JP, 1990, PHYS REV LETT, V65, P52
KERTESZ J, 1986, J PHYS A, V19, L257
MOUKARZEL C, 1992, PHYSICA A, V188, P469
NAGATANI T, 1987, J PHYS A, V20, L381
NAGATANI T, 1987, PHYS REV A, V36, P5812
NITTMANN J, 1986, NATURE, V321, P663
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
PIETRONERO L, 1990, PHYSICA A, V170, P64
PIETRONERO L, 1992, PHYSICA A, V191, P85
VICSEK T, 1992, FRACTAL GROWTH PHENO
WANG XR, 1989, J PHYS A, V22, L507
WANG XR, 1989, PHYS REV A, V39, P5974
WANG XZ, 1992, PHYS REV A, V46, P5038
NR 19
TC 31
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 21
PY 1993
VL 70
IS 25
BP 3939
EP 3942
PG 4
SC Physics, Multidisciplinary
GA LH554
UT ISI:A1993LH55400026
ER
PT J
AU VESPIGNANI, A
CAFIERO, R
PIETRONERO, L
TI ASYMPTOTIC SCREENING IN THE SCALE INVARIANT GROWTH RULES FOR LAPLACIAN
FRACTALS
SO PHYSICA A
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; ANISOTROPY; PATTERNS
AB A key element in the fixed scale transformation approach to fractal
growth is the use of the asymptotic scale invariant dynamics of the
growth process. This is a non-universal element, analogous to the
critical probability or temperature in percolation or Ising problems.
The essential property to generate fractal structure is the persistence
of screening effects in the asymptotic regime. To investigate this
problem we use a renormalization procedure in which the noise reduction
parameter is the critical one. The approach is based on the growth
process itself and shows a non-trivial fixed point where the screening
properties are preserved. This result guarantees the existence of the
asymptotic fractal structure and clearly defines the basic elements of
the growth rules used in the fixed scale transformation method.
RP VESPIGNANI, A, UNIV ROME LA SAPIENZA,DIPARTIMENTO FIS,P A MORO
2,I-00185 ROME,ITALY.
CR BARKER PW, 1990, PHYS REV A, V42, P6289
CAFIERO R, 1992, PREPRINT
DEANGELIS R, 1991, EUROPHYS LETT, V16, P417
DISTASIO M, 1992, PREPRINT
ECKMANN JP, 1989, PHYS REV A, V39, P3185
ERZAN A, 1991, J PHYS A, V24, P1875
KERTESZ J, 1986, J PHYS A, V19, L257
MEAKIN P, 1989, PHASE TRANSITIONS CR, V11
MOUKARZEL C, 1992, HLRZ1692 PREPR
NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
NITTMANN J, 1986, NATURE, V321, P663
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
PIETRONERO L, 1990, PHYSICA A, V170, P64
SELINGER RLB, 1989, PREPRINT
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 16
TC 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD DEC 15
PY 1992
VL 191
IS 1-4
BP 128
EP 133
PG 6
SC Physics, Multidisciplinary
GA KF666
UT ISI:A1992KF66600021
ER
PT J
AU SIDORETTI, S
VESPIGNANI, A
TI FIXED SCALE TRANSFORMATION APPLIED TO CLUSTER CLUSTER AGGREGATION IN
2-DIMENSIONS AND 3-DIMENSIONS
SO PHYSICA A
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION
AB Recently it has been introduced a new theoretical framework named fixed
scale transformation (FST), which appears particularly suitable to
study the growth of fractal structures. This method allows the first
study of the process of cluster-cluster aggregation (CCA). The FST
approach can in fact be generalized in a natural and relatively simple
way to the case of CCA. Here we present detailed results for the
analytical calculation of the fractal dimension of the aggregates. For
CCA in two dimensions the computed value is D = 1.39 and in three
dimensions is D = 1.9, to be compared with the simulation results that
are respectively D = 1.45 and D = 1.8. Furthermore the approximation
scheme of the FST can be implemented in a systematic way to estimate
quantitatively higher Order corrections and to study variation of the
original model. This application is of particular relevance because CCA
has eluded all the standard theoretical approach and in particular it
cannot even be formulated from the point of view of renormalization
group methods.
RP SIDORETTI, S, UNIV ROME LA SAPIENZA,DIPARTIMENTO FIS,P LE A MORO
2,I-00185 ROME,ITALY.
CR ERNST MH, 1986, FRACTALS PHYSICS, P289
ERZAN A, 1992, PHYSICA A, V185, P66
KOLB M, 1983, PHYS REV LETT, V51, P1123
LEYVRAZ F, 1986, GROWTH FORM, P136
MEAKIN P, 1983, PHYS REV LETT, V51, P1119
NIEMEYER L, 1984, PHYS REV LETT, V52, P1038
PIETRONERO L, IN PRESS NONLINEAR P
PIETRONERO L, PREPRINT
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V40, P5377
SMOLUCHOWSKI MV, 1916, PHYS Z, V17, P585
VESPIGNANI A, 1991, PHYSICA A, V173, P1
VICSEK T, 1984, PHYS REV LETT, V52, P1669
VICSEK T, 1985, PHYS REV A, V32, P1122
VICSEK T, 1989, FRACTAL GROWTH PHENO
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 16
TC 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUN 15
PY 1992
VL 185
IS 1-4
BP 202
EP 210
PG 9
SC Physics, Multidisciplinary
GA JC914
UT ISI:A1992JC91400028
ER
PT J
AU DEANGELIS, R
MARSILI, M
PIETRONERO, L
VESPIGNANI, A
WIESMANN, HJ
TI UNIVERSALITY OF GROWTH RULES IN FRACTAL GROWTH
SO EUROPHYSICS LETTERS
LA English
DT Article
ID DIFFUSION-LIMITED AGGREGATION; DIELECTRIC-BREAKDOWN MODEL
AB We consider the problem of the universality of growth rules in
fractal-growth models and introduce a theoretical scheme that allows us
to address this question. In particular we show that growth defined
per site and rules that include diagonal process renormalize
asymptotically into effective growth rules of simple bond type.
Therefore, we identify the general nature of the asymptotic,
scale-invariant growth dynamics for coarse-grained variables.
C1 ASEA BROWN BOVERI CORP RES,CH-5405 BADEN,SWITZERLAND.
RP DEANGELIS, R, UNIV ROME LA SAPIENZA,DIPARTMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR DEANGELIS R, PREPRINT
ERZAN A, 1991, J PHYS A, V24, P1875
EVERTSZ C, 1990, PHYS REV A, V41, P1830
MEAKIN P, 1989, FRACTALS PHYSICAL OR, P137
NAGATANI T, 1987, PHYS REV A, V36, P5812
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
PIETRONERO L, PREPRINT
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
PIETRONERO L, 1990, PHYS REV A, V42, P7496
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 11
TC 13
PU EDITIONS PHYSIQUE
PI LES ULIS CEDEX
PA Z I DE COURTABOEUF AVE 7 AV DU HOGGAR, BP 112, 91944 LES ULIS CEDEX,
FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD OCT 1
PY 1991
VL 16
IS 5
BP 417
EP 422
PG 6
SC Physics, Multidisciplinary
GA GJ340
UT ISI:A1991GJ34000001
ER
PT J
AU VERGASSOLA, M
VESPIGNANI, A
TI NONCONSERVATIVE CHARACTER OF THE INTERSECTION OF SELF-SIMILAR CASCADES
SO PHYSICA A
LA English
DT Article
ID FULLY-DEVELOPED TURBULENCE; MODEL
AB When a self-similar cascade is interested, the resulting cascade
process generating the intersection set is in general non-conservative,
i.e. in the fragmentation process the related measure is not conserved.
It is shown that the non-conservative character of a cascade
invalidates the experimental analysis of the process. In particular it
is possible to have self-similar cascades which do not show any fractal
or multifractal behaviour when the box-counting analysis is performed.
In the case of fractals the most relevant example is provided by
processes having negative dimensions. With respect to multifractals,
our results show that a strict interpretation of dissipation in a fully
developed turbulent fluid as a result of a self-similar cascade is
untenable.
C1 OBSERV NICE,CNRS,F-06003 NICE,FRANCE.
RP VERGASSOLA, M, UNIV ROME LA SAPIENZA,DIPARTMENTO FIS,P MORO 2,I-00185
ROME,ITALY.
CR BENZI R, 1984, J PHYS A-MATH GEN, V17, P3521
EVERSTSZ C, 1989, THESIS U GRONINGEN
FRISCH U, 1978, J FLUID MECH, V87, P719
JENSEN MH, 1991, PHYS REV A, V43, P798
MANDELBROT B, 1976, LECT NOTES MATH, V565, P127
MANDELBROT B, 1989, FRACTALS PHYSICAL OR
MANDELBROT BB, 1974, J FLUID MECH, V62, P331
MANDELBROT BB, 1982, FRACTAL GEOMETRY NAT
MENEVEAU C, 1987, NUCL PHYS B S, V2, P49
PALADIN G, 1987, PHYS REP, V156, P147
PARISI G, 1985, TURBULENCE PREDICTAB
PIETRONERO L, 1987, PHYSICA A, V144, P257
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
SCHERTZER D, 1990, FRACTALS PHYSICAL OR
SIEBESMA AP, 1989, THESIS U GRONINGEN
NR 16
TC 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUN 1
PY 1991
VL 174
IS 2-3
BP 425
EP 437
PG 13
SC Physics, Multidisciplinary
GA FU466
UT ISI:A1991FU46600013
ER
PT J
AU VESPIGNANI, A
PIETRONERO, L
TI FIXED SCALE TRANSFORMATION APPLIED TO DIFFUSION LIMITED AGGREGATION AND
DIELECTRIC-BREAKDOWN MODEL IN 3-DIMENSIONS
SO PHYSICA A
LA English
DT Article
ID FRACTAL GROWTH
AB We extend the method of the fixed scale transformation (FST) to the
case of fractal growth in three dimensions and apply it to diffusion
limited aggregation and to the dielectric breakdown model for different
values of the parameter eta. The scheme is formally similar to the
two-dimensional case with the following technical complications: (i)
The basis configurations for the fine graining process are five
(instead of two) and consist of 2 x 2 cells. (ii) The treatment of the
fluctuations of boundary conditions is far more complex and requires
new schemes of approximations. In order to test the convergency of the
theoretical results we consider three different schemes of increasing
complexity. For DBM in three dimensions the computed values of the
fractal dimension for eta = 1, 2 and 3 result to be in very good
agreement with corresponding values obtained by computer simulations.
These results provide an important test for the FST method as a new
theoretical tool to study irreversible fractal growth.
RP VESPIGNANI, A, UNIV ROME LA SAPIENZA,DIPARTMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR DEANGELIS R, IN PRESS
ERZAN A, 1991, IN PRESS J PHYS A
EVERTSZ C, 1990, PHYS REV A, V41, P1830
MEAKIN P, 1989, FRACTALS PHYSICAL OR
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
PIETRONERO L, 1990, PHYSICA A, V170, P64
PIETRONERO L, 1990, PHYSICA A, V170, P81
TOLMAN S, 1989, PHYSICA A, V158, P801
TREMBLAY RR, 1989, PHYS REV A, V40, P5377
VESPIGNANI A, 1990, PHYSICA A, V168, P723
NR 11
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD APR 15
PY 1991
VL 173
IS 1-2
BP 1
EP 21
PG 21
SC Physics, Multidisciplinary
GA FL190
UT ISI:A1991FL19000001
ER
PT J
AU VESPIGNANI, A
PIETRONERO, L
TI EFFECT OF EMPTY CONFIGURATIONS IN THE FIXED SCALE TRANSFORMATION THEORY
OF FRACTAL GROWTH
SO PHYSICA A
LA English
DT Article
RP VESPIGNANI, A, UNIV ROME LA SAPIENZA,DEPARTIMENTO FIS,PIAZZALE A MORO
2,I-00185 ROME,ITALY.
CR DEANGELIS R, PREPRINT
MARSILI M, UNPUB PHYSICA A
NIEMEYER L, 1984, PHYS REV LETT, V52, P1033
PIETRONERO L, UNPUB PHYS REV LETT
PIETRONERO L, 1988, PHYS REV LETT, V61, P861
PIETRONERO L, 1988, PHYSICA A, V151, P207
VESPIGNANI A, UNPUB
WITTEN TA, 1981, PHYS REV LETT, V47, P1400
NR 8
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD OCT 1
PY 1990
VL 168
IS 2
BP 723
EP 735
PG 13
SC Physics, Multidisciplinary
GA EH667
UT ISI:A1990EH66700005
ER
EF
FN ISI Export Format
VR 1.0
PT J
AU Pattison, P
Wasserman, S
Robins, G
Kanfer, AM
TI Statistical evaluation of algebraic constraints for social networks
SO JOURNAL OF MATHEMATICAL PSYCHOLOGY
LA English
DT Article
ID STOCHASTIC BLOCKMODELS; SOCIOMETRIC RELATIONS; LOGISTIC REGRESSIONS;
INFORMANT ACCURACY; MULTIPLE NETWORKS; DIRECTED-GRAPHS; LOGIT-MODELS;
HOMOMORPHISMS; CONFORMITY; SEMIGROUPS
AB A multirelational social network on a set of individuals may be
represented as a collection of binary relations. Compound relations
constructed from this collection represent various labeled paths
linking individuals in the network. Since many models of interest for
social networks can be formulated in terms of orderings among these
labeled paths, we consider the problem of evaluating an hypothesized
set of orderings, termed algebraic constraints. Each constraint takes
the form of an hypothesized inclusion relation for a pair of labeled
paths. In this paper, we establish conditions under which sets of such
constraints may be regarded as partial algebras. We describe the
structure of constraint sets and show that each corresponds to a subset
of consistent relation bundles between pairs of individuals. We thereby
construct measures of fit for;a given constraint set. Then, we show
how, in combination with the assumption of various conditional uniform
multigraph distributions, these measures lead to a flexible approach to
the evaluation of fit of an hypothesized constraint set. Several
applications are presented and some possible extensions of the approach
are briefly discussed. (C) 2000 Academic Press.
C1 Univ Melbourne, Dept Psychol, Parkville, Vic 3052, Australia.
Univ Illinois, Chicago, IL 60680 USA.
Deakin Univ, Geelong, Vic 3217, Australia.
RP Pattison, P, Univ Melbourne, Dept Psychol, Parkville, Vic 3052,
Australia.
CR ANDERSON CJ, 1992, SOC NETWORKS, V14, P137
ARABIE P, 1992, ANNU REV PSYCHOL, V43, P169
BIRKHOFF G, 1967, LATTICE THEORY
BOLLOBAS B, 1985, RANDOM GRAPHS
BONACHCH P, 1983, SOC NETWORKS, V5, P173
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BOYD JP, 1969, J MATH PSYCHOL, V6, P139
BOYD JP, 1990, SOCIAL SEMIGROUPS UN
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
BREIGER RL, 1978, SOCIOLOGICAL METHODS, V7, P213
CARTWRIGHT D, 1979, PERSPECTIVES SOCIAL, P25
DEVRIES H, 1993, PSYCHOMETRIKA, V58, P53
ERDOS P, 1960, PUBL MATH I HUNG, V5, P17
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1986, J AM STAT ASSOC, V81, P832
FRANK O, 1993, ANN DISCR M, V55, P349
GODEHARDT E, 1988, GRAPHS STRUCTURAL MO
GOOD IJ, 1987, J AM STAT ASSOC, V82, P125
GOOD P, 1994, PERMUTATION TESTS PR
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
KATZ L, 1953, PSYCHOMETRIKA, V18, P249
KATZ L, 1957, ANN MATH STAT, V28, P442
KIM KH, 1984, J MATH PSYCHOL, V28, P448
KRACKHARDT D, 1988, SOC NETWORKS, V10, P359
LEHMANN E, 1986, TESTING STAT HYPOTHE
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MANTEL N, 1967, CANCER RES, V27, P209
PATTISON P, 1995, J MATH PSYCHOL, V39, P57
PATTISON P, 1999, BRIT J MATH STAT P 2, V52, P169
PATTISON PE, 1982, J MATH PSYCHOL, V25, P87
PATTISON PE, 1993, ALGEBRAIC MODELS SOC
ROBINS G, 1994, THESIS U MELBOURNE
ROBINS G, 1997, UNPUB GROUP EFFECTIV
ROBINS G, 1999, PSYCHOMETRIKA, V64, P371
ROMNEY AK, 1984, SOC NETWORKS, V6, P59
ROMNEY AK, 1986, AM ANTHROPOL, V88, P313
SCHWARTZ JE, 1984, SOC NETWORKS, V6, P103
SNIJDERS TAB, 1987, SOC NETWORKS, V9, P249
SNIJDERS TAB, 1991, PSYCHOMETRIKA, V56, P397
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
STRAUSS D, 1992, AM STAT, V46, P321
VANDEBUNT G, 1995, P INT C SOC NETW 6 1, V1
WANG YJ, 1987, J AM STAT ASSOC, V82, P8
WASSERMAN S, IN PRESS MULTIVARIAT
WASSERMAN S, 1977, J MATH SOCIOL, V5, P61
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WASSERMAN S, 1996, PSYCHOMETRIKA, V61, P401
WHITE D, 1984, PRACTICING ANTHR, V6, P10
WHITE D, 1996, SOC NETWORKS, V18, P20
WHITE DR, 1983, SOC NETWORKS, V5, P193
WHITE DR, 1988, SOCIAL STRUCTURES NE, P380
WHITE HC, 1963, ANAT KINSHIP MATH MO
WHITE HC, 1976, AM J SOCIOL, V81, P730
NR 60
TC 4
PU ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0022-2496
J9 J MATH PSYCHOL
JI J. Math. Psychol.
PD DEC
PY 2000
VL 44
IS 4
BP 536
EP 568
PG 33
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA 389JU
UT ISI:000166235500002
ER
PT J
AU Pattison, P
Wasserman, S
TI Logit models and logistic regressions for social networks: II.
Multivariate relations
SO BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY
LA English
DT Article
ID STATISTICAL-ANALYSIS; MULTIPLE NETWORKS; BLOCKMODELS; EVOLUTION;
GRAPHS; ROLES
AB The research described here builds on our previous work by generalizing
the univariate models described there to models for multivariate
relations. This family, labelled p*, generalizes the Markov random
graphs of Frank and Strauss, which were further developed by them and
others, building on Besag's ideas on estimation. These models were
first used to model random variables embedded in lattices by Ising, and
have been quite common in the study of spatial data. Here, they are
applied to the statistical analysis of multigraphs, in general, and the
analysis of multivariate social networks, in particular. In this paper,
we show how to formulate models for multivariate social networks by
considering a range of theoretical claims about social structure. We
illustrate the models by developing structural models for several
multivariate networks.
C1 Univ Melbourne, Dept Psychol, Parkville, Vic 3052, Australia.
Univ Illinois, Chicago, IL 60680 USA.
RP Pattison, P, Univ Melbourne, Dept Psychol, Parkville, Vic 3052,
Australia.
CR BESAG J, 1975, STATISTICIAN, V24, P179
BESAG JE, 1972, J ROY STAT SOC B MET, V34, P75
BESAG JE, 1974, J ROYAL STAT SOC B, V36, P196
BESAG JE, 1977, BIOMETRIKA, V64, P616
BESAG JE, 1997, B INT STAT ASS, V47, P77
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BOYD JP, 1991, SOCIAL SEMIGROUPS UN
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
COLEMAN JS, 1966, MED INNOVATION DIFFU
CONTRACTOR N, 1999, 1999 INT NETW SOC NE
COX DR, 1996, MULTIVARIATE DEPENDE
CROUCH B, 1998, 1998 INT NETW SOC NE
DAVIS JA, 1968, SOCIOMETRY, V31, P102
DIGGLE PJ, 1996, ADV BIOMETRY
DOREIAN P, 1980, SOC NETWORKS, V2, P235
DOREIAN P, 1986, SOC NETWORKS, V8, P33
EDWARDS D, 1995, INTRO GRAPHICAL MODE
FIENBERG SE, 1981, INTERPRETING MULTIVA, P289
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1986, J AM STAT ASSOC, V81, P832
FRANK O, 1986, UNPUB ANAL COMPOSITI
FRANK O, 1987, OPERATIONS RES P, P455
FRANK O, 1991, STAT NEERL, V45, P283
FRANK O, 1993, ANN DISCR M, V55, P349
FRANK O, 1997, MATH INFORMATIQUE SC, V137, P11
GALASKIEWICZ J, 1978, SOC SCI RES, V7, P89
GEYER CJ, 1992, J ROY STAT SOC B MET, V54, P657
HOLLAND PW, 1973, J MATH SOCIOL, V3, P85
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
IACOBUCCI D, 1989, SOC NETWORKS, V11, P315
ISING E, 1925, Z PHYS, V31, P253
JOHNSEN EC, 1986, SOC NETWORKS, V8, P257
KATZ L, 1953, PSYCHOMETRIKA, V18, P249
KENT D, 1978, RISE MEDICI FACTION
LAURITZEN S, 1996, GRAPHICAL MODELS
LAZEGA E, 1998, 1998 INT NETW SOC NE
LEE NH, 1969, SEARCH ABORTIONIST
LEIFER EM, 1988, AM SOCIOL REV, V53, P865
LOMI A, 1998, 1998 INT NETW SOC NE
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MANDEL MJ, 1983, AM SOCIOL REV, V48, P376
MAYER AC, 1977, SOCIAL NETWORKS DEV, P293
MERTON RK, 1957, SOCIAL THEORY SOCIAL
MICHAELSON AG, 1990, THESIS U CALIFORNIA
NADEL SF, 1957, THEORY SOCIAL STRUCT
PADGETT JF, 1993, AM J SOCIOL, V98, P1259
PARSONS T, 1966, STRUCTURE SOCIAL ACT
PATTISON P, IN PRESS J MATH PSYC
PATTISON P, 1989, MATH THEORETICAL SYS, P139
PATTISON P, 1993, ALGEBRAIC MODELS SOC
PATTISON P, 1995, J MATH PSYCHOL, V39, P57
PREISLER HK, 1993, APPL STAT-J ROY ST C, V42, P501
RENNOLLS K, 1995, P 1995 INT C SOC NET, V1, P151
ROBINS GL, 1998, THESIS U MELBOURNE
STRAUSS D, 1986, SIAM REV, V28, P513
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
STRAUSS D, 1992, AM STAT, V46, P321
VICKERS M, 1981, REPRESENTING CLASSRO
VICKERS M, 1981, THESIS U MELBOURNE
WALKER ME, 1995, THESIS U ILLINOIS
WASSERMAN S, IN PRESS LECT NOTES
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WASSERMAN S, 1996, PSYCHOMETRIKA, V61, P401
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
WELLMAN B, 1991, SOC NETWORKS, V13, P223
WHITE HC, 1963, ANATOMY KINSHIP MATH
WHITE HC, 1976, AM J SOCIOL, V81, P730
WHITE HC, 1977, J MATH PSYCHOL, V16, P121
WHITTAKER J, 1990, GRAPHICAL MODELS APP
WINSHIP C, 1983, SOCIOL METHODOL, P314
NR 74
TC 30
PU BRITISH PSYCHOLOGICAL SOC
PI LEICESTER
PA ST ANDREWS HOUSE, 48 PRINCESS RD EAST, LEICESTER LE1 7DR, LEICS, ENGLAND
SN 0007-1102
J9 BRIT J MATH STATIST PSYCHOL
JI Br. J. Math. Stat. Psychol.
PD NOV
PY 1999
VL 52
PN Part 2
BP 169
EP 193
PG 25
SC Mathematics, Interdisciplinary Applications; Psychology, Mathematical;
Psychology, Experimental; Statistics & Probability
GA 262VE
UT ISI:000084087500002
ER
PT J
AU Robins, G
Pattison, P
Wasserman, S
TI Logit models and logistic regressions for social networks: III. Valued
relations
SO PSYCHOMETRIKA
LA English
DT Article
DE social networks; p(*) models; autologistic models; pseudo-likelihood
estimation
ID STATISTICAL-ANALYSIS
AB This paper generalizes the p* model for dichotomous social network data
(Wasserman & Pattison, 1996) to the polytomous case. The generalization
is achieved by transforming valued social networks into three-way
binary arrays. This data transformation requires a modification of the
Hammersley-Clifford theorem that underpins the p* class of models. We
demonstrate that, provided that certain (non-observed) data patterns
are excluded from consideration, a suitable version of the theorem can
be developed. We also show that the approach amounts to a model for
multiple logits derived from a pseudo-likelihood function. Estimation
within this model is analogous to the separate fitting of multinomial
baseline logits, except that the Hammersley-Clifford theorem requires
the equating of certain parameters across logits. The paper describes
how to convert a valued network into a data array suitable for fitting
the model and provides some illustrative empirical examples.
C1 Deakin Univ, Sch Psychol, Fac Hlth & Behav Sci, Geelong, Vic 3217, Australia.
Univ Melbourne, Parkville, Vic 3052, Australia.
Univ Illinois, Chicago, IL 60680 USA.
RP Robins, G, Deakin Univ, Sch Psychol, Fac Hlth & Behav Sci, Geelong, Vic
3217, Australia.
CR AGRESTI A, 1990, CATEGORICAL DATA ANA
ANDERSON CJ, IN PRESS SOCIAL NETW
ANDERSON CJ, 1995, SOCIOL METHOD RES, V24, P96
BEARMAN P, 1997, AM J SOCIOL, V102, P1383
BEGG CB, 1984, BIOMETRIKA, V71, P11
BESAG J, 1974, J R STAT SOC B, V36, P192
BESAG J, 1975, STATISTICIAN, V24, P179
BESAG J, 1977, B INT STAT I, V47, P77
BESAG J, 1989, BIOMETRIKA, V76, P633
BESAG JE, 1972, J ROY STAT SOC B MET, V34, P75
BESAG JE, 1977, BIOMETRIKA, V64, P616
CROUCH B, 1998, INT C SOC NETW BARC
FAUST K, 1993, SOCIOL METHODOL, P177
FRANK O, 1986, J AM STAT ASSOC, V81, P832
GEYER CJ, 1992, J ROY STAT SOC B MET, V54, P657
HAMMERSLEY JM, 1971, MARKOV FIELDS FINITE
HOSMER DW, 1989, APPL LOGISTIC REGRES
ISING E, 1925, Z PHYS, V31, P253
JOHNSEN EC, 1986, SOC NETWORKS, V8, P257
LAURIZEN SL, 1996, GRAPHICAL MODELS
LAZEGA E, 1998, UNPUB SOCIAL NETWORK
NORUSIS MJ, 1990, SPSS ADV STAT USERS
PATTISON P, IN PRESS BRIT J MATH
PREISLER HK, 1993, APPL STAT-J ROY ST C, V42, P501
RENNOLLS K, 1995, P 1995 INT C SOC NET, V1, P151
ROBINS GL, 1995, INT SOC NETW C LOND
ROBINS GL, 1997, INT SUNB SOC NETW C
ROBINS GL, 1998, THESIS U MELBOURNE A
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
STRAUSS D, 1992, AM STAT, V46, P321
VICKERS M, 1981, REPRESENTING CLASSRO
VICKERS M, 1981, THESIS U MELBOURNE
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1990, J MATH SOCIOL, V15, P11
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WASSERMAN S, 1996, PSYCHOMETRIKA, V61, P401
WASSERMAN S, 1999, SPRINGER LECT NOTES
WASSERMAN SS, 1989, SOCIOL METHODOL, P1
WONG GY, 1995, UNPUB EXPONENTIAL MO
NR 40
TC 26
PU PSYCHOMETRIC SOC
PI WILLIAMSBURG
PA COLLEGE OF WILLIAM AND MARY DEPT PSYCHOLOGY, WILLIAMSBURG, VA 23185 USA
SN 0033-3123
J9 PSYCHOMETRIKA
JI Psychometrika
PD SEP
PY 1999
VL 64
IS 3
BP 371
EP 394
PG 24
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA 236TG
UT ISI:000082614200007
ER
PT J
AU Anderson, CJ
Wasserman, S
Crouch, B
TI A p* primer: logit models for social networks
SO SOCIAL NETWORKS
LA English
DT Article
ID STATISTICAL-ANALYSIS; SOCIOMETRIC RELATIONS; MULTIPLE NETWORKS;
LONELINESS; GRAPHS; BLOCKMODELS
AB A major criticism of the statistical models for analyzing social
networks developed by Holland, Leinhardt, and others [Holland, P.W.,
Leinhardt, S., 1977. Notes on the statistical analysis of social
network data; Holland, P.W., Leinhardt, S., 1981. An exponential family
of probability distributions for directed graphs. Journal of the
American Statistical Association. 76, pp. 33-65 (with discussion);
Fienberg, S.E., Wasserman, S., 1981. Categorical data analysis of
single sociometric relations. In: Leinhardt,S. (Ed.), Sociological
Methodology 1981, San Francisco: Jossey-Bass, pp. 156-192; Fienberg,
S.E., Meyer, M.M., Wasserman, S., 1985. Statistical analysis of
multiple sociometric relations. Journal of the American Statistical
Association, 80, pp. 51-67; Wasserman, S., Weaver, S., 1985.
Statistical analysis of binary relational data: Parameter estimation.
Journal of Mathematical Psychology. 29, pp. 406-427; Wasserman, S.,
1987. Conformity of two sociometric relations. Psychometrika. 52, pp.
3-18] is the very strong independence assumption made on interacting
individuals or units within a network or group. This limiting
assumption is no longer necessary given recent developments on models
for random graphs made by Frank and Strauss [Frank, O., Strauss, D.,
1986. Markov graphs. Journal of the American Statistical Association.
81, pp. 832-842] and Strauss and Ikeda [Strauss, D., Ikeda, M., 1990.
Pseudolikelihood estimation for social networks. Journal of the
American Statistical Association. 85, pp. 204-212]. The resulting
models are extremely flexible and easy to fit to data. Although
Wasserman and Pattison [Wasserman, S., Pattison, P., 1996. Logit models
and logistic regressions for social networks: I. An introduction to
Markov random graphs and p*. Psychometrika. 60, pp. 401-426] present a
derivation and extension of these models, this paper is a primer on how
to use these important breakthroughs to model the relationships between
actors (individuals, units) within a single network and provides an
extension of the models to multiple networks. The models for multiple
networks permit researchers to study how groups are similar and/or how
they are different. The models for single and multiple networks and the
modeling process are illustrated using friendship data from elementary
school children from a study by Parker and Asher [Parker, J.G., Asher,
S.R., 1993. Friendship and friendship quality in middle childhood:
Links with peer group acceptance and feelings of loneliness and social
dissatisfaction. Developmental Psychology. 29, pp. 611-621].(C) 1999
Elsevier Science B.V. All rights reserved.
C1 Univ Illinois, Dept Educ Psychol, Champaign, IL 61820 USA.
Univ Illinois, Dept Psychol, Champaign, IL 61820 USA.
Univ Illinois, Dept Stat, Champaign, IL 61820 USA.
Univ Illinois, Beckman Inst Adv Sci & Technol, Champaign, IL 61820 USA.
RP Anderson, CJ, Univ Illinois, Dept Educ Psychol, 230 Educ Bldg,1310 S
6th St, Champaign, IL 61820 USA.
CR AGRESTI A, 1996, INTRO CATEGORICAL DA
AGRESTI, 1990, CATEGORICAL DATA ANA
ARABIE P, 1978, J MATH PSYCHOL, V17, P21
ARABIE P, 1982, CLASSIFYING SOCIAL D
ARABIE P, 1992, ANNU REV PSYCHOL, V43, P169
ARROW H, 1994, THESIS U ILLINOIS
ARROW H, 1997, J PERS SOC PSYCHOL, V72, P75
ASHER SR, 1984, CHILD DEV, V55, P1456
ASHER SR, 1985, J CONSULT CLIN PSYCH, V53, P500
BESAG J, 1974, J R STAT SOC B, V36, P192
BESAG J, 1977, B INT STAT I, V47, P77
BESAG JE, 1972, J ROY STAT SOC B MET, V34, P75
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
CRESSIE N, 1991, STAT SPATIAL DATA
DAVIS J, 1967, HUM RELAT, V20, P181
DAVIS JA, 1970, AM SOCIOL REV, V35, P843
DAVIS JA, 1972, SOCIOLOGICAL THEORIE, V2, P218
DAVIS JA, 1979, PERSPECTIVES SOCIAL, P51
DIGGLE PJ, 1996, ADV BIOMETRY, P363
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1986, J AM STAT ASSOC, V81, P832
FRANK O, 1991, STAT NEERL, V45, P283
FRANK O, 1993, ANN DISCR M, V55, P349
GAKLASKIEWICZ J, 1990, SOCIAL NETWORKS TIME, P1
GALASKIEWICZ J, 1989, ADMIN SCI QUART, V34, P454
GEYER CJ, 1992, J ROY STAT SOC B MET, V54, P657
GRIFFEATH D, 1979, LECT NOTES MATH, V724
HOLLAND PW, 1970, AM J SOCIOL, V70, P492
HOLLAND PW, 1971, COMP GROUP STUDIES, V2, P107
HOLLAND PW, 1972, AM J SOCIOL, V72, P1205
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1977, NOTES STAT ANAL SOCI
HOLLAND PW, 1978, SOCIOLOGICAL METHODS, V7, P227
HOLLAND PW, 1979, PERSPECTIVES SOCIAL, P63
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
IACOBUCCI D, 1990, PSYCHOMETRIKA, V55, P707
ISING E, 1925, Z PHYS, V31, P253
KINDERMANN RP, 1980, J MATH SOCIOL, V8, P1
KOEHLY L, 1996, THESIS U ILLINOIS
KRACKHARDT D, 1987, SOC NETWORKS, V9, P109
KUMBASAR E, 1994, AM J SOCIOL, V100, P477
LEINHARDT S, 1972, AM SOCIOL REV, V37, P202
LEINHARDT S, 1973, BEHAV SCI, V12, P260
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
PARKER JG, 1993, DEV PSYCHOL, V29, P611
PATTISON P, 1994, ADV SOCIAL NETWORK A, P79
PATTISON P, 1998, IN PRESS BRIT J MATH
PATTISON PE, 1993, ALGEBRAIC MODELS SOC
PRESTON CJ, 1974, GIBBS STATES COUNTAB
RENNOLLS K, 1995, P 1995 INT C SOC NET, V1, P151
RIPLEY BD, 1981, SPATIAL STAT
ROBINS G, 1995, INT NETW SOC NETW AN
ROBINS G, 1998, IN PRESS PSYCHOMETRI
RPBINS G, 1997, UNPUB PASTERISK MODE
SPEED TP, 1978, SUPPLEMENT ADV APPL, V10, P11
STRAUSS D, 1986, SIAM REV, V28, P513
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
STRAUSS D, 1992, AM STAT, V46, P321
STRAUSS DJ, 1977, J APPL PROBAB, V14, P135
WALKER ME, 1993, SOCIOL METHOD RES, V22, P71
WALKER ME, 1995, THESIS U ILLINOIS
WANG YJ, 1987, J AM STAT ASSOC, V83, P8
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1988, PSYCHOMETRIKA, V53, P261
WASSERMAN S, 1991, BRIT J MATH STAT PSY, V44, P13
WASSERMAN S, 1994, ADV SOCIAL NETWORK A
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WASSERMAN S, 1996, PSYCHOMETRIKA, V61, P401
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
WELLMAN B, 1983, SOCIOLOGICAL THEORY, P155
WELLMAN B, 1997, SOCIAL STRUCTURES NE
WELLMAN B, 1997, SOCIAL STRUCTURES NE, P1
WELLMAN B, 1998, IN PRESS ENCY PSYCHO
WHITE HC, 1976, AM J SOCIOL, V81, P730
WHITE HC, 1977, J MATH PSYCHOL, V16, P121
NR 78
TC 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
J9 SOC NETWORKS
JI Soc. Networks
PD JAN
PY 1999
VL 21
IS 1
BP 37
EP 66
PG 30
SC Anthropology; Sociology
GA 204KK
UT ISI:000080763300003
ER
PT J
AU Wasserman, S
Pattison, P
TI Logit models and logistic regressions for social networks .1. An
introduction to Markov graphs and p
SO PSYCHOMETRIKA
LA English
DT Article
DE categorical data analysis; social network analysis; random graphs
ID STATISTICAL-ANALYSIS; DIRECTED-GRAPHS
AB Spanning nearly sixty years of research, statistical network analysis
has passed through (at least) two generations of researchers and
models. Beginning in the late 1930's, the first generation of research
dealt with the distribution of various network statistics, under a
variety of null models. The second generation, beginning in the 1970's
and continuing into the 1980's, concerned models, usually for
probabilities of relational ties among very small subsets of actors, in
which various simple substantive tendencies were parameterized. Much of
this research, most of which utilized log linear models, first appeared
in applied statistics publications.
But recent developments in social network analysis promise to bring us
into a third generation. The Markov random graphs of Frank and Strauss
(1986) and especially the estimation strategy for these models
developed by Strauss and Ikeda (1990; described in brief in Strauss,
1992), are very recent and promising contributions to this field. Here
we describe a large class of models that can be used to investigate
structure in social networks. These models include several
generalizations of stochastic blockmodels, as well as models
parameterizing global tendencies towards clustering and centralization,
and individual differences in such tendencies. Approximate model fits
are obtained using Strauss and Ikeda's (1990) estimation strategy.
In this paper we describe and extend these models and demonstrate how
they can be used to address a variety of substantive questions about
structure in social networks.
C1 UNIV MELBOURNE,PARKVILLE,VIC 3052,AUSTRALIA.
RP Wasserman, S, UNIV ILLINOIS,603 E DANIEL ST,CHAMPAIGN,IL 61820.
CR AGRESTI A, 1990, CATEGROICAL DATA ANA
ANDERSON CJ, 1995, SOCIOL METHOD RES, V24, P96
BESAG J, 1974, J R STAT SOC B, V36, P192
FAUST K, 1992, J QUANTITATIVE ANTHR, V4, P23
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FRANK O, 1986, J AM STAT ASSOC, V81, P832
HOLLAND PW, 1973, J MATH SOCIOL, V3, P85
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1977, UNPUB NOTES STAT ANA
HOLLAND PW, 1978, SOCIOLOGICAL METHODS, V7, P227
HOLLAND PW, 1979, PERSPECTIVES SOCIAL, P63
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
IACOBUCCI D, 1990, PSYCHOMETRIKA, V55, P707
ISING E, 1925, Z PHYS, V31, P253
JOHNSEN EC, 1985, SOC NETWORKS, V7, P203
JOHNSEN EC, 1986, SOC NETWORKS, V8, P257
KINDERMANN RP, 1980, J MATH SOCIOL, V8, P1
KOEHLY L, 1994, UNPUB CLASSIFICATION
PATTISON P, IN PRESS J QUANTITAT
REITZ KP, 1982, SOC NETWORKS, V4, P243
RIPLEY BD, 1981, SPATIAL STATISTICS
SAMPSON SF, 1968, THESIS CORNELL U ITH
SNIJDERS TAB, 1991, PSYCHOMETRIKA, V56, P397
SPEED TP, 1978, SUPPLEMENT ADV APPL, V10, P111
STRAUSS D, 1986, SIAM REV, V28, P513
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
STRAUSS D, 1992, AM STAT, V46, P321
STRAUSS DJ, 1977, J APPL PROBAB, V14, P135
VICKERS M, 1981, REPRESENTING CLASSRO
VICKERS M, 1981, THESIS U MELBOURNE A
WALKER ME, 1995, THESIS U ILLINOIS
WANG YJ, 1987, J AM STAT ASSOC, V82, P8
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
NR 38
TC 99
PU PSYCHOMETRIC SOC
PI WILLIAMSBURG
PA COLLEGE OF WILLIAM AND MARY DEPT PSYCHOLOGY, WILLIAMSBURG, VA 23185
SN 0033-3123
J9 PSYCHOMETRIKA
JI Psychometrika
PD SEP
PY 1996
VL 61
IS 3
BP 401
EP 425
PG 25
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA VN080
UT ISI:A1996VN08000001
ER
PT J
AU ANDERSON, CJ
WASSERMAN, S
TI LOG-MULTIPLICATIVE MODELS FOR VALUED SOCIAL-RELATIONS
SO SOCIOLOGICAL METHODS & RESEARCH
LA English
DT Article
ID CROSS-CLASSIFIED DATA; CONTINGENCY-TABLES; ASSOCIATION MODELS;
STATISTICAL-ANALYSIS; CATEGORIES
AB The methodology described here is designed for social networks and is
based on the research of Holland and Leinhardt, Wasserman and
Iacobucci, and many others. Holland and Leinhardt termed the simplest
model form their family of log-linear models pt. The models presented
in this article are not log-linear-rather they are log-multiplicative,
in the spirit of other models described in this special issue. Our
models generalize the p(1) family of models for social networks by
introducing multiplicative interaction parameters. These
generalizations are applicable to a much wider range of data,
particularly valued relations.
RP ANDERSON, CJ, UNIV ILLINOIS,1310 S SIXTH ST,CHAMPAIGN,IL 61820.
CR *SAS INC, 1994, SAS P243 TECHN REP
AGRESTI A, 1990, CATEGORICAL DATA ANA
ANDERSON CJ, PSYCHOMETRIKA
BECKER MP, 1989, J AM STAT ASSOC, V84, P1014
BECKER MP, 1989, J AM STAT ASSOC, V84, P142
BECKER MP, 1990, 59TH INT WORKSH STAT
BECKER MP, 1990, APPL STAT-J ROY ST C, V39, P152
CHOULAKIAN V, 1988, PSYCHOMETRIKA, V53, P235
CLOGG CC, 1982, AM J SOCIOL, V88, P114
CLOGG CC, 1994, STATISTICAL MODELS O
FAUST K, 1993, SOCIOL METHODOL, P177
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANCIS B, 1993, GLIM SYSTEM RELEASE
FREEMAN LC, 1980, ELECTRONIC COMMUNICA, P77
FREEMAN LC, 1986, SOC NETWORKS, V6, P201
FREEMAN SC, 1979, NETWORKERS NETWORK S
GOODMAN LA, 1979, J AM STAT ASSOC, V74, P537
GOODMAN LA, 1985, ANN STAT, V13, P10
GOODMAN LA, 1986, INT STAT REV, V54, P243
GOODMAN LA, 1991, J AM STAT ASSOC, V86, P1085
HOLLAND PW, 1977, ADV RES S STOCH PROC
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
MCCULLAGH P, 1983, GENERALIZED LINEAR M
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1994, SOCILA NETWORK ANAL
XIE Y, 1992, AM SOCIOL REV, V57, P380
XIE Y, 1992, J AM STAT ASSOC, V87, P977
NR 30
TC 4
PU SAGE PUBL INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320
SN 0049-1241
J9 SOCIOL METHOD RES
JI Sociol. Methods. Res.
PD AUG
PY 1995
VL 24
IS 1
BP 96
EP 127
PG 32
SC Social Sciences, Mathematical Methods; Sociology
GA RN380
UT ISI:A1995RN38000005
ER
PT J
AU PATTISON, P
WASSERMAN, S
TI CONSTRUCTING ALGEBRAIC MODELS FOR LOCAL SOCIAL NETWORKS USING
STATISTICAL-METHODS
SO JOURNAL OF MATHEMATICAL PSYCHOLOGY
LA English
DT Article
ID ROLES
AB In this paper we discuss the construction and fitting of structural
models for local, or ego-centered, social networks. We define partial
algebraic structures from the collection of network paths having a
focal individual as their source. Such structures are constrained in
part by different methods of local network data collection. We present
a statistical method for deriving algebraic representations from local
network data. The method relies on a statistical strategy for
evaluating algebraic relations and is sensitive to the various
constraints associated with methods of data collection. The outcome of
the method is a set of partial algebras constructed from network paths
with a fixed, maximum length. (C) 1995 Academic Press, Inc.
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
UNIV MELBOURNE,MELBOURNE,VIC,AUSTRALIA.
CR AGRESTI A, 1990, CATEGORICAL DATA ANA
BIRKHOFF G, 1967, LATTICE THEORY
BONACICH P, 1979, SOCIOLOGICAL METHODO
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BOYD JP, 1989, RES METHODS SOCIAL N, P215
BOYD JP, 1991, SOCIAL SEMIGROUPS UN
BREIGER RL, 1978, SOCIOLOGICAL METHODS, V7, P213
BREIGER RL, 1986, SOC NETWORKS, V8, P215
BURT RS, 1984, SOC NETWORKS, V6, P293
FISCHER CS, 1982, DWELL FRIENDS
FLEISS JL, 1981, STATISTICAL METHODS
HOLLAND PW, 1973, J MATH SOCIOL, V3, P85
HUBERT LJ, 1987, ASSIGNMENT METHODS C
IACOBUCCI D, 1990, PSYCHOMETRIKA, V55, P707
KADUSHIN C, 1982, SOCIAL STRUCTURE NET, P147
LAUMANN EO, 1989, RES METHODS SOCIAL N, P61
MANDEL MJ, 1983, AM SOCIOL REV, V48, P376
MCCONAGHY MJ, 1981, SOCIOLOGICAL METHODS, V9, P267
PATTISON P, 1989, MATH THEORETICAL SYS, P139
PATTISON PE, 1981, SOCIOLOGICAL METHODS, V9, P286
PATTISON PE, 1982, J MATH PSYCHOL, V25, P51
PATTISON PE, 1982, J MATH PSYCHOL, V25, P87
PATTISON PE, 1993, ALGEBRAIC MODELS SOC
ROETHLISBERGER FJ, 1961, MANAGEMENT WORKER
SCHOFIELD P, 1993, 27TH AUSTR M SOC PSY
SCHWARTZ JE, 1984, SOC NETWORKS, V6, P103
SNIJDERS TAB, 1991, PSYCHOMETRIKA, V56, P397
WALKER ME, 1993, SOCIOL METHOD RES, V22, P71
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1988, PSYCHOMETRIKA, V53, P261
WASSERMAN S, 1994, SOCIAL NETWORK ANAL
WELLMAN B, 1979, AM J SOCIOL, V84, P1201
WU LL, 1983, SOCIOL METHODOL, P272
NR 34
TC 4
PU ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
PI SAN DIEGO
PA 525B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495
SN 0022-2496
J9 J MATH PSYCHOL
JI J. Math. Psychol.
PD MAR
PY 1995
VL 39
IS 1
BP 57
EP 72
PG 16
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA QR781
UT ISI:A1995QR78100004
ER
PT S
AU FAUST, K
WASSERMAN, S
TI CORRELATION AND ASSOCIATION MODELS FOR STUDYING MEASUREMENTS ON ORDINAL
RELATIONS
SO SOCIOLOGICAL METHODOLOGY 1993, VOL 23
SE SOCIOLOGICAL METHODOLOGY
LA English
DT Article
ID CROSS-CLASSIFIED DATA; CONTINGENCY-TABLES; ORDERED CATEGORIES;
CANONICAL-ANALYSIS; MAXIMUM-LIKELIHOOD; GRAPHICAL DISPLAYS; USEFUL
EXTENSIONS; CLASSIFICATIONS; STRENGTH; TIE
AB This paper describes and illustrates correlation models (correspondence
analysis and canonical correlation analysis) and association models for
studying the order and spacing of categories of ordinal relational
variables. Both correlation models and association models study
departures from independence in two-way contingency tables. One result
of fitting these models is the possibility of assignment of scores to
the categories of the row and/or the column variables to reflect the
relative spacing of these categories. If the model fitting is done
using statistical procedures, then restricted versions of these models
allow one to test hypotheses about the spacing, linearity, or equality
of the categories. Correlation and association models are especially
useful for studying discrete ordinal variables, which arise quite
frequently in the social and behavioral sciences. We illustrate
correlation and association models using two empirical examples in
which respondents wed ordered categories to rate the strength of their
liking for, or acquaintance with, others in a social network. In this
paper we describe how to use both correlation models and association
models to test specific hypotheses about the spacing of these response
categories.
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHICAGO,IL 60680.
UNIV ILLINOIS,DEPT SOCIOL,CHICAGO,IL.
UNIV ILLINOIS,DEPT STAT,CHICAGO,IL.
RP FAUST, K, UNIV S CAROLINA,DEPT SOCIOL,COLUMBIA,SC 29208.
CR ANDERSON CJ, 1992, THESIS U ILLINOIS
BECKER MP, 1989, J AM STAT ASSOC, V84, P142
BECKER MP, 1990, APPL STAT-J ROY ST C, V39, P152
BERNARD HR, 1979, SOC NETWORKS, V2, P191
BERNARD HR, 1982, SOC SCI RES, V11, P30
BOCKENHOLT U, 1990, PSYCHOMETRIKA, V55, P633
BURT RS, 1986, SOC NETWORKS, V8, P387
CARROLL DC, 1986, J MARKETING RES, V24, P271
CLOGG CC, 1982, AM J SOCIOL, V88, P114
CLOGG CC, 1982, J AM STAT ASSOC, V77, P803
CLOGG CC, 1986, INT STAT REV, V54, P284
CLOGG CC, 1991, J AM STAT ASSOC, V86, P1118
ELIASON SR, 1990, CATEGORICAL DATA ANA
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FREEMAN LC, 1980, AAAS S, V53, P77
FREEMAN LC, 1986, SOC NETWORKS, V6, P201
FREEMAN LC, 1992, AM J SOCIOL, V98, P55
FREEMAN SC, 1979, 46 U CAL SOC SCI RES
FRIEDKIN NE, 1990, SOC NETWORKS, V12, P239
GIFI A, 1990, NONLINEAR MULTIVARIA
GILULA Z, 1986, J AM STAT ASSOC, V81, P773
GILULA Z, 1986, J AM STAT ASSOC, V81, P780
GILULA Z, 1988, J AM STAT ASSOC, V83, P540
GILULA Z, 1988, J AM STAT ASSOC, V83, P760
GOODMAN LA, 1979, J AM STAT ASSOC, V74, P537
GOODMAN LA, 1981, AM J SOCIOL, V87, P612
GOODMAN LA, 1981, J AM STAT ASSOC, V76, P320
GOODMAN LA, 1985, ANN STAT, V13, P10
GOODMAN LA, 1986, INT STAT REV, V54, P243
GOODMAN LA, 1987, AM J SOCIOL, P529
GOODMAN LA, 1991, J AM STAT ASSOC, V86, P1085
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GREENACRE M, 1987, J AM STAT ASSOC, V82, P437
GREENACRE MJ, 1984, THEORY APPLICATION C
GREENACRE MJ, 1986, PSYCHOMETRIKA, V51, P172
HABERMAN SJ, 1981, ANN STAT, V9, P1178
HOLLAND PW, 1975, SOCIOL METHODOL, P1
MARSDEN PV, 1984, SOC FORCES, V63, P482
NISHISATO S, 1980, ANAL CATEGORICAL DAT
TAKANE Y, 1991, PSYCHOMETRIKA, V56, P667
VANDERHEIJDEN PGM, 1985, PSYCHOMETRIKA, V50, P429
VANDERHEIJDEN PGM, 1989, SOCIOL METHODOL, P43
VANDERKRUIT PC, 1989, MILKY WAY GALAXY, P185
WASSERMAN S, 1990, J MATH SOCIOL, V15, P11
WASSERMAN SS, 1989, SOCIOL METHODOL, P1
WELLER SC, 1990, METRIC SCALING CORRE
WINSHIP C, 1977, J MATH SOCIOL, V5, P21
NR 47
TC 2
PU BLACKWELL PUBL
PI CAMBRIDGE
PA 238 MAIN ST, CAMBRIDGE, MA 02142
SN 0081-1750
J9 SOCIOL METHOD
PY 1993
VL 23
BP 177
EP 215
PG 39
SC Sociology
GA BA15M
UT ISI:A1993BA15M00006
ER
PT J
AU GALASKIEWICZ, J
WASSERMAN, S
TI SOCIAL NETWORK ANALYSIS - CONCEPTS, METHODOLOGY, AND DIRECTIONS FOR THE
1990S
SO SOCIOLOGICAL METHODS & RESEARCH
LA English
DT Review
ID MULTIPLE NETWORKS; POWER; POSITIONS; EXCHANGE; CLIQUE; DEPENDENCE;
DYNAMICS
AB Network analysis has been used extensively in sociology over the last
twenty years. This special issue of Sociological Methods & Research
reviews the substantive contributions that network analysis has made to
five areas: political sociology, interorganizational relations, social
support, social influence, and epidemiology. To introduce the novice to
current developments in the field, this introductory article presents
an overview of the key concepts and methods which are popular among
sociologists and which have been used to advance knowledge in these
substantive areas. Remaining articles are also discussed briefly, with
speculations offered on some of the more promising avenues of inquiry
recently under exploration.
C1 UNIV ILLINOIS, DEPT PSYCHOL, CHAMPAIGN, IL 61820 USA.
UNIV ILLINOIS, DEPT STAT, CHAMPAIGN, IL 61820 USA.
RP GALASKIEWICZ, J, UNIV MINNESOTA, DEPT SOCIOL, MINNEAPOLIS, MN 55455 USA.
CR ALBA RD, 1973, J MATH SOCIOL, V3, P113
ALBA RD, 1974, SOCIOLOGICAL METHODS, V3, P489
ALDRICH HE, 1976, ADMIN SOC, V7, P419
BARNES JA, 1954, HUM RELAT, V7, P39
BAVELAS A, 1948, APPLIED ANTHR, V7, P16
BERNARD HR, 1977, HUMAN COMMUNICATION, V4, P3
BLAU PM, 1955, DYNAMICS BUREAUCRACY
BLAU PM, 1964, EXCHANGE POWER SOCIA
BONACICH P, 1972, J MATH SOCIOL, V2, P113
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BURT RS, 1976, SOC FORCES, V55, P93
BURT RS, 1977, SOC FORCES, V56, P106
BURT RS, 1977, SOC FORCES, V56, P551
BURT RS, 1982, STRUCTURAL THEORY AC
BURT RS, 1983, COROPORATE PROFITS C
BURT RS, 1984, SOC NETWORKS, V6, P293
BURT RS, 1985, CONNECTIONS, V8, P119
BURT RS, 1987, AM J SOCIOL, V92, P1287
CARTWRIGHT D, 1956, PSYCHOL REV, V63, P277
CARTWRIGHT D, 1959, STUDIES SOCIAL POWER
COLEMAN J, 1957, SOCIOMETRY, V20, P253
COLEMAN JS, 1961, ADOLESCENT SOC
COLEMAN JS, 1966, MED INNOVATION DIFFU
COLEMAN JS, 1973, MATH COLLECTIVE ACTI
COLEMAN JS, 1986, AM J SOCIOL, V91, P1309
COLEMAN JS, 1988, AM J SOCIOLOGY S, V94, S95
COOK KS, 1977, SOCIOLOGICAL Q, V18, P62
DAVIS J, 1967, HUM RELAT, V20, P181
DAVIS JA, 1963, AM J SOCIOL, V68, P444
DAVIS JA, 1968, SOCIOMETRY, V31, P102
DAVIS JA, 1979, PERSPECTIVES SOCIAL, P51
EMERSON RM, 1962, AM SOCIOL REV, V27, P31
FESTINGER L, 1954, HUM RELAT, V7, P117
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FISCHER CS, 1982, DWELL FRIENDS
FRANK O, 1971, STATISTICAL INFERENC
FRANK O, 1978, SOC NETWORKS, V1, P91
FRANK O, 1979, J STATISTICAL COMPUT, V9, P31
FRANK O, 1981, SOCIOL METHODOL, P110
FREEMAN LC, 1977, SOCIOMETRY, V40, P35
GALASKIEWICZ J, 1979, EXCHANGE NETWORKS CO
GALASKIEWICZ J, 1981, ADM SCI Q, V26, P434
GALASKIEWICZ J, 1985, SOCIAL ORG URBAN GRA
GRANOVETTER M, 1977, AM J SOCIOL, V81, P1287
GRANOVETTER M, 1985, AM J SOCIOL, V91, P481
GRANOVETTER MS, 1974, GETTING JOB STUDY CO
HARARY F, 1965, STRUCTURAL MODELS IN
HEIDER F, 1944, PSYCHOL REV, V51, P358
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUBERT L, 1976, BRIT J MATH STAT PSY, V29, P190
HUNTER F, 1953, COMMUNITY POWER STRU
KILLWORTH PD, 1976, HUM ORGAN, V35, P269
KILLWORTH PD, 1978, SOC NETWORKS, V1, P159
KILLWORTH PD, 1979, SOC NETWORKS, V2, P10
LAUMANN EO, 1966, PRESTIGE ASS URBAN C
LAUMANN EO, 1969, SOCIOMETRY, V32, P54
LAUMANN EO, 1976, NETWORKS COLLECTIVE
LAUMANN EO, 1977, AM J SOCIOL, V83, P594
LAWLER EL, 1973, NETWORKS, V3, P275
LEVINE JH, 1972, AM SOCIOL REV, V37, P14
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MARIOLIS P, 1983, SOCIOLOGICAL SPECTRU, V3, P237
MARSDEN PV, 1983, AM J SOCIOL, V88, P686
MARSDEN PV, 1987, AM SOCIOL REV, V52, P122
MARSDEN PV, 1988, SOC NETWORKS, V10, P57
MARSDEN PV, 1990, ANNU REV SOCIOL, V16, P435
MARWELL G, 1988, AM J SOCIOL, V94, P502
MCPHERSON JM, 1992, AM SOCIOL REV, V57, P153
MERTON RK, 1957, SOCIAL THEORY SOCIAL
MILGRAM S, 1967, PSYCHOL TODAY, V1, P61
MITCHELL JC, 1969, SOCIAL NETWORKS URBA
MOKKEN RJ, 1979, QUAL QUANT, V13, P161
MOLM LD, 1991, AM SOCIOL REV, V56, P475
MORENO JL, 1934, WHO SHALL SURVIVE NE
NADEL SF, 1957, THEORY SOCIAL STRUCT
NEWCOMB TM, 1961, ACQUAINTANCE PROCESS
PFEFFER J, 1977, SOC FORCES, V55, P775
POWELL WW, 1990, RES ORGAN BEHAV, V12, P295
RAUB W, 1990, AM J SOCIOL, V96, P626
SEIDMAN SB, 1978, J MATH SOCIOL, V6, P139
VANDEVEN AH, 1984, ADMIN SCI QUART, V29, P598
WASSERMAN S, 1993, SOCIAL NETWORK ANAL
WELLMAN B, 1979, AM J SOCIOL, V84, P1201
WELLMAN B, 1988, SOCIAL STRUCTURES NE, P1
WELLMAN B, 1988, SOCIAL STRUCTURES NE, P19
WHITE HC, 1976, AM J SOCIOL, V81, P730
YAMAGISHI T, 1988, AM J SOCIOL, V93, P833
NR 89
TC 15
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320
SN 0049-1241
J9 SOCIOL METHOD RES
JI Sociol. Methods. Res.
PD AUG
PY 1993
VL 22
IS 1
BP 3
EP 22
PG 20
SC Social Sciences, Mathematical Methods; Sociology
GA LN226
UT ISI:A1993LN22600001
ER
PT J
AU WALKER, ME
WASSERMAN, S
WELLMAN, B
TI STATISTICAL-MODELS FOR SOCIAL SUPPORT NETWORKS
SO SOCIOLOGICAL METHODS & RESEARCH
LA English
DT Review
ID METHODOLOGICAL ISSUES; CONTINGENCY-TABLES; GENDER DIFFERENCES;
HOST-RESISTANCE; LIFE STRESS; WOMEN; TIES; FRIENDSHIP; COMMUNITY; HEALTH
AB In recent years, the conceptualization of social support in the
literature has become increasingly sophisticated, facilitating the
consideration of more complex theories. Researchers no longer consider
the mere availability of social ties, but look instead at the flow of
specific resources through a social network. This article discusses how
the social network has been defined in the context of social support.
Research is reviewed, indicating how characteristics of individual tie
(eg., tie strength, proximity, frequency of contact, similarity) are
related to the provision of support. Also examined are how
characteristics of the personal network (e.g., size, density) relate to
support and well-being. Statistical models for network analysis and how
they should prove useful in studying social support are then discussed.
C1 UNIV TORONTO,CTR URBAN & COMMUNITY STUDIES,TORONTO M5S 1A1,ONTARIO,CANADA.
RP WALKER, ME, UNIV ILLINOIS,DEPT PSYCHOL,60 E DANIEL ST,CHAMPAIGN,IL
61820.
CR ANTONUCCI TC, 1987, SEX ROLES, V17, P737
ARGYLE M, 1984, J SOCIAL PERSONAL RE, V1, P209
BALL RE, 1980, ETHNICITY, V7, P70
BARRERA M, 1981, SOCIAL NETWORKS SOCI, P69
BARRERA M, 1983, J COMMUNITY PSYCHOL, V11, P133
BERKMAN LF, 1979, AM J EPIDEMIOL, V109, P186
BERNARD HR, 1981, CONNECTIONS, V4, P11
BERNARD HR, 1990, REPORT ANTHR MMDI PR
BERSCHEID E, 1989, CLOSE RELATIONSHIPS, P63
BLAU P, 1984, CROSSCUTTING SOCIAL
BLUMSTEIN P, 1988, ANNU REV SOCIOL, V14, P467
BOYD JP, 1990, SOCIAL SEMIGROUPS UN
BRIER SS, 1980, BIOMETRIKA, V67, P591
BULMER M, 1986, NEIGBOURS WORK P ABR
BURT RS, 1984, SOC NETWORKS, V6, P293
BURT RS, 1987, SOC NETWORKS, V9, P311
CAMPBELL GE, 1991, AGROFOREST SYST, V13, P203
CAMPBELL KE, 1990, SOCIOL QUART, V31, P495
CAMPBELL KE, 1992, SOC FORCES, V70, P1077
CASSEL J, 1974, INT J HLTH SERVICES, V4, P471
CASSEL J, 1976, AM J EPIDEMIOL, V104, P107
CHATTERS LM, 1989, J MARRIAGE FAM, V51, P667
COBB S, 1976, PSYCHOSOM MED, V38, P300
COE RM, 1984, RES AGING, V6, P243
CROHAN SE, 1989, OLDER ADULT FRIENDSH, P129
CUTRONA CE, 1990, SOCIAL SUPPORT INTER, P319
DEAN A, 1977, J NERV MENT DIS, V165, P403
DIMATTEO MR, 1981, SOCIAL NETWORKS SOCI, P117
DRESSLER WW, 1985, J HEALTH SOC BEHAV, V26, P39
DUCK S, 1983, FRIENDS LIFE
DURKHEIM E, 1897, SUICIDE
ERICKSON B, 1985, J PERS SOC PSYCHOL, V48, P624
ESPINOZA V, 1992, THESIS U TORONTO
ESSOCKVITALE SM, 1985, ETHOL SOCIOBIOL, V6, P155
FAUST K, 1992, J QUANTITATIVE ANTHR, V4, P23
FELD S, 1982, AM SOCIOL REV, V47, P797
FERRAND A, 1989, FEB SUNB SOC NETW C
FISCHER CS, 1982, DWELL FRIENDS
FISCHER JL, 1989, J MARRIAGE FAM, V51, P521
FRANK O, 1986, J AM STAT ASSOC, V81, P832
GALASKIEWICZ J, 1985, SOCIAL ORG URBAN GRA
GERSTEL N, 1988, J MARRIAGE FAM, V50, P209
GOTTLIEB BH, 1981, SOCIAL NETWORKS SOCI, P201
GOTTLIEB BH, 1983, SOCIAL SUPPORT STRAT
GRANOVET.MS, 1973, AM J SOCIOL, V78, P1360
GRANOVETTER M, 1974, GETTING JOB
GRANOVETTER M, 1982, SOCIAL STRUCTURE NET, P105
HAINES VA, 1992, J HEALTH SOC BEHAV, V33, P254
HALL A, 1985, SOCIAL SUPPORT HLTH, P23
HAMMER M, 1981, SCHIZOPHRENIA B, V7, P45
HAMMER M, 1983, SOC SCI MED, V17, P405
HIRSCH BJ, 1980, AM J COMMUN PSYCHOL, V8, P159
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOMANS GC, 1950, HUMAN GROUP
HOMANS GC, 1961, SOCIAL BEHAVIOR ITS
HUNTER A, 1986, J COMMUNITY PSYCHOL, V14, P25
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
IACOBUCCI D, 1988, PSYCHOL BULL, V103, P379
ISRAEL BA, 1987, HEALTH EDUC QUART, V14, P461
JONES WH, 1982, LONELINESS SOURCEBOO, P238
KELLER S, 1968, URBAN NEIGHBORHOOD
KEMPER TD, 1972, AM SOCIOL REV, V37, P739
KESSLER RC, 1985, SOCIAL SUPPORT HLTH, P219
KNOKE D, 1983, APPLIED NETWORK ANAL
LAZARSFELD PF, 1964, FREEDOM CONTROL MODE, P18
LEE BA, 1991, SOCIOL FORUM, V6, P525
LEIGHTON B, 1986, THESIS U TORONTO
LIN N, 1982, SOCIAL STRUCTURE NET, P131
LIN N, 1986, SOCIAL SUPPORT LIFE, P17
LIU W, 1972, PUBLIC OPIN QUART, V78, P361
MARSDEN PV, 1984, SOC FORCES, V63, P482
MARSDEN PV, 1988, SOC NETWORKS, V10, P57
MARSDEN PV, 1990, ANNU REV SOCIOL, V16, P435
MAXWELL GM, 1985, J SOC PERS RELAT, V2, P215
MILARDO R, 1991, MAY INT NETW C PERS
MILARDO RM, 1989, J MARRIAGE FAM, V51, P165
MILIC A, 1991, UNPUB FAMILY SOCIAL
MITCHELL JC, 1969, SOCIAL NETWORKS URBA
MITCHELL JC, 1987, SOC NETWORKS, V9, P37
NEYER F, 1991, CONNECTINS, V14, P14
OCONNELL L, 1984, J SOCIAL PERSONAL RE, V1, P333
OLIVER ML, 1988, SOCIOL QUART, V29, P623
OLSON P, 1982, URBAN AFF QUART, V17, P491
PATTISON PE, 1993, ALGEBRAIC MODELS SOC
PERLMAN D, 1987, INTIMATE RELATIONSHI, P13
PESCOSOLIDO BA, 1989, AM SOCIOL REV, V54, P33
RADOEVA D, 1993, FEB INT SUNB SOC NET
REIS HT, 1988, HDB PERSONAL RELATIO, P367
REITZ KP, 1989, J MATH SOCIOL, V14, P85
RILEY D, 1985, J MARRIAGE FAM, V47, P275
RILEY D, 1986, J PERS SOC PSYCHOL, V51, P770
ROBERTS B, 1991, URBAN LIFE TRANSITIO, P135
ROOK KS, 1984, J PERS SOC PSYCHOL, V46, P1097
ROOK KS, 1987, J PERS SOC PSYCHOL, V52, P145
ROSENTHAL CJ, 1985, J MARRIAGE FAM, V47, P965
SANDLER IN, 1984, AM J COMMUN PSYCHOL, V12, P37
SARASON IG, 1986, J PERS SOC PSYCHOL, V50, P845
SEEMAN TE, 1988, SOC SCI MED, V26, P737
SIK E, 1993, FEB INT SUNB SOC NET
SILVERMAN CJ, 1986, URBAN AFF QUART, V22, P312
SOLDO B, 1986, NOV ANN M GER SOC AM
STOKES JP, 1983, AM J COMMUN PSYCHOL, V11, P141
STOKES JP, 1984, AM J COMMUN PSYCHOL, V12, P53
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
THOITS PA, 1982, J HEALTH SOC BEHAV, V23, P145
UNGER DG, 1985, AM J COMMUN PSYCHOL, V13, P139
VANTILBURG T, 1991, SOC PSYCHOL QUART, V54, P54
VERBRUGGE LM, 1977, SOC FORCES, V56, P576
WAGNER RM, 1987, J DIVORCE, V11, P89
WARING EM, 1985, PSYCHOL MED, V15, P9
WARREN D, 1981, HELPING NETWORKS
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1993, SOCIAL NETWORK ANAL
WELLMAN B, IN PRESS EGOCENTRIC
WELLMAN B, 1979, AM J SOCIOL, V84, P1201
WELLMAN B, 1981, SOCIAL NETWORKS SOCI, P171
WELLMAN B, 1982, SOCIAL STRUCTURE NET, P61
WELLMAN B, 1985, UNDERSTANDING PERSON, P159
WELLMAN B, 1988, POWER COMMUNITY CITY, P81
WELLMAN B, 1988, SOCIAL STRUCTURES NE, P130
WELLMAN B, 1989, SOCIOL PERSPECT, V32, P273
WELLMAN B, 1990, AM J SOCIOL, V96, P558
WELLMAN B, 1992, ADV GROUP PROCESSES, V9, P207
WELLMAN B, 1992, MENS FRIENDSHIPS, P74
WELLMAN B, 1993, ADV COMMUNICATION NE, P63
WELLMAN B, 1993, FEB INT SUNB SOC NET
WILCOX BL, 1981, SOCIAL NETWORKS SOCI, P97
WILLMOTT P, 1986, SOCIAL NETWORKS INFO
WILLMOTT P, 1987, FRIENDSHIP NETWORKS
YOUNG CE, 1982, AM J COMMUN PSYCHOL, V10, P457
NR 130
TC 16
PU SAGE PUBLICATIONS INC
PI THOUSAND OAKS
PA 2455 TELLER RD, THOUSAND OAKS, CA 91320
SN 0049-1241
J9 SOCIOL METHOD RES
JI Sociol. Methods. Res.
PD AUG
PY 1993
VL 22
IS 1
BP 71
EP 98
PG 28
SC Social Sciences, Mathematical Methods; Sociology
GA LN226
UT ISI:A1993LN22600004
ER
PT J
AU ANDERSON, CJ
WASSERMAN, S
TI CATEGORICAL-DATA ANALYSIS - AGRESTI,A
SO JOURNAL OF MATHEMATICAL PSYCHOLOGY
LA English
DT Book Review
C1 UNIV ILLINOIS,603 E DANIEL ST,CHAMPAIGN,IL 61820.
CR AGRESTI A, 1990, CATEGORICAL DATA ANA
NR 1
TC 0
PU ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495
SN 0022-2496
J9 J MATH PSYCHOL
JI J. Math. Psychol.
PD JUN
PY 1993
VL 37
IS 2
BP 299
EP 310
PG 12
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA LE961
UT ISI:A1993LE96100007
ER
PT J
AU ANDERSON, CJ
WASSERMAN, S
TI MULTIWAY CONTINGENCY-TABLES ANALYSIS FOR THE SOCIAL-SCIENCES -
WICKENS,TD
SO JOURNAL OF MATHEMATICAL PSYCHOLOGY
LA English
DT Book Review
RP WASSERMAN, S, UNIV ILLINOIS,603 E DANIEL ST,CHAMPAIGN,IL 61820.
CR WICKENS TD, 1989, MULTIWAY CONTINGENCY
NR 1
TC 0
PU ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495
SN 0022-2496
J9 J MATH PSYCHOL
JI J. Math. Psychol.
PD JUN
PY 1993
VL 37
IS 2
BP 299
EP 310
PG 12
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA LE961
UT ISI:A1993LE96100008
ER
PT J
AU FAUST, K
WASSERMAN, S
TI BLOCKMODELS - INTERPRETATION AND EVALUATION
SO SOCIAL NETWORKS
LA English
DT Article
ID STRUCTURAL EQUIVALENCE; STOCHASTIC BLOCKMODELS; DYAD DISTRIBUTIONS;
MULTIPLE NETWORKS; SOCIAL-STRUCTURE; WORLD SYSTEM; ROLES; POSITIONS;
ASSOCIATION; CONFORMITY
AB Many methods for the description of social network structural
properties are concerned with the dual notions of social position and
social role. Common goals of these methods are to represent patterns in
complex social network data in simplified form, to reveal sets of
actors who are similarly embedded in networks of relations, and to
describe the associations among relations in multirelational social
networks. Often these representations take the form of a blockmodel. In
a blockmodel actors are assigned to positions and network relations are
presented among positions, rather than among actors.
The literature on blockmodels is extensive and is overflowing with
computation and applications of blockmodels. However, there is a
surprising lack of attention to two very important aspects of
block-model analyses: the interpretation and evaluation of the results.
The purpose of this paper is to focus on these topics, primarily
reviewing and synthesizing the approaches to interpretation and
evaluation currently in use.
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
RP FAUST, K, UNIV S CAROLINA,DEPT SOCIOL,COLUMBIA,SC 29208.
CR 1984, EUROPA YB
*UN, 1984, STAT PAP COMM TRAD D, V34
*WORLD BANK, 1983, WORLD BANK WORLD TAB, V1
*WORLD BANK, 1983, WORLD BANK WORLD TAB, V2
ANDERSON CJ, 1992, SOC NETWORKS, V14, P137
ARABIE P, 1978, J MATH PSYCHOL, V17, P21
ARABIE P, 1982, CLASSIFYING SOCIAL D
ARABIE P, 1984, SOC NETWORKS, V6, P373
ARABIE P, 1990, SOC NETWORKS, V12, P99
BAKER FB, 1981, SOCIOL METHOD RES, V9, P339
BATAGELJ V, 1992, SOC NETWORKS, V14, P121
BATAGELJ V, 1992, SOC NETWORKS, V14, P63
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BORGATTI SP, 1991, UNPUB UCINET 4 0
BREEDLOVE WL, 1988, INT J CONT SOCIOLOGY, V25, P105
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
BREIGER RL, 1976, AM SOCIOL REV, V41, P117
BREIGER RL, 1981, CONTINUITIES STRUCTU, P353
BREIGER RL, 1981, J AM STAT ASSOC, V76, P51
BREIGER RL, 1986, SOC NETWORKS, V8, P215
BURT RS, 1976, SOC FORCES, V55, P93
BURT RS, 1986, SOC NETWORKS, V8, P205
CARRINGTON PJ, 1979, SOC NETWORKS, V2, P219
CARRINGTON PJ, 1981, J MATH SOCIOL, V8, P103
COXON APM, 1982, USERS GUIDE MULTIDIM
CRONBACH LJ, 1953, PSYCHOL BULL, V50, P456
DOREIAN P, 1985, J AM SOC INFORM SCI, V36, P28
ENNIS JG, 1982, CLASSIFYING SOCIAL D, P199
EVERETT MG, 1992, SOC NETWORKS, V14, P91
FAUST K, 1985, BRIT J MATH STAT PSY, V38, P152
FAUST K, 1985, SOC NETWORKS, V7, P77
FAUST K, 1988, SOC NETWORKS, V10, P313
FOX J, 1982, CLASSIFYING SOCIAL D
FRANK O, 1985, J CLASSIF, V2, P219
FRANK O, 1985, J MATH SOCIOL, V11, P47
GALASKIEWICZ J, 1984, SOCIOL QUART, V25, P527
HARARY F, 1965, STRUCTURAL MODELS IN
HEIL G, 1976, BEHAV SCI, V21, P26
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
HUBERT L, 1976, BRIT J MATH STAT PSY, V29, P190
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
HUBERT LJ, 1983, NUMERICAL TAXONOMY
HUBERT LJ, 1985, PSYCHOMETRIKA, V50, P449
HUBERT LJ, 1987, ASSIGNMENT METHODS C
HUBERT LJ, 1989, APPLIED STOCHASTIC M, V5, P273
KATZ L, 1953, PSYCHOMETRIKA, V18, P249
KICK EL, UNPUB WORLD SYSTEM S
KNOKE D, 1979, SOCIOL SOC RES, V64, P28
KRACKHARDT D, 1987, SOC NETWORKS, V9, P109
KRACKHARDT D, 1987, SOC NETWORKS, V9, P171
KRACKHARDT D, 1988, SOC NETWORKS, V10, P359
LAUMANN EO, 1974, AM SOCIOL REV, V39, P164
LAUMANN EO, 1977, AM J SOCIOL, V83, P594
LENSKI G, 1984, SOC FORCES, V63, P1
LIGHT JM, 1979, PERSPECTIVES SOCIAL, P85
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MACEVOY B, UCINET VERSION 3 0 M
MANDEL MJ, 1983, AM SOCIOL REV, V48, P376
MARSDEN PV, 1989, RES METHODS SOCIAL N, P489
MULLINS NC, 1977, AM SOCIOL REV, V42, P552
NEMETH R, 1985, REVIEW, V8, P517
NOLAN PD, 1983, INT J COMP SOCIOL, V24, P109
NOLAN PD, 1987, INT J COMP SOCIOL, V28, P69
NOLAN PD, 1988, SOCIOL FOCUS, V21, P9
NOMA E, 1985, PSYCHOL BULL, V97, P583
PANNING WH, 1982, AM J POLIT SCI, V26, P585
PANNING WH, 1982, SOC NETWORKS, V4, P81
PATTISON PE, 1982, J MATH PSYCHOL, V25, P87
PATTISON PE, 1988, SOC NETWORKS, V10, P383
RICHARDS WD, 1989, UNPUB NECOPY ANAL PR
ROHLF FJ, 1965, U KANSAS SCI B, V45, P3
SAILER LD, 1978, SOC NETWORKS, V1, P73
SMITH D, 1988, UNPUB STRUCTURE DYNA
SNEATH PHA, 1973, NUMERICAL TAXONOMY P
SNYDER D, 1979, AM J SOCIOL, V84, P1096
SOKAL RR, 1963, PRINCIPLES NUMERICAL
WANG YJ, 1987, J AM STAT ASSOC, V82, P8
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1992, SOCIAL NETWORK ANAL
WHITE DR, 1989, RES METHODS SOCIAL N, P429
WHITE HC, 1976, AM J SOCIOL, V81, P730
WHITE HC, 1977, J MATH PSYCHOL, V16, P121
WILKINSON L, 1987, SYSTAT SYSTEM STATIS
WINSHIP C, 1983, SOCIOL METHODOL, P314
WINSHIP C, 1988, SOC NETWORKS, V10, P209
WU LL, 1983, SOCIOL METHODOL, P272
ZEGERS FE, 1985, PSYCHOMETRIKA, V50, P17
NR 88
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
J9 SOC NETWORKS
JI Soc. Networks
PD MAR-JUN
PY 1992
VL 14
IS 1-2
BP 5
EP 61
PG 57
SC Anthropology; Sociology
GA HR571
UT ISI:A1992HR57100002
ER
PT J
AU ANDERSON, CJ
WASSERMAN, S
FAUST, K
TI BUILDING STOCHASTIC BLOCKMODELS
SO SOCIAL NETWORKS
LA English
DT Article
ID STATISTICAL-ANALYSIS; CONTINGENCY-TABLES; MULTIPLE NETWORKS;
SOCIAL-STRUCTURE; DIRECTED-GRAPHS; RELATIONAL DATA; MODELS
AB The literature devoted to the construction of stochastic blockmodels is
relatively rare compared to that of the deterministic variety. In this
paper, a general definition of a stochastic blockmodel is given and a
number of techniques for building such blockmodels are presented. In
the statistical approach, the likelihood ratio statistic provides a
natural index to evaluate the fit of the model to the data. The model
itself consists of a set of actors partitioned into positions with
respect to a definition of equivalence, and a representation based on
estimated probabilities. The specific statistical model that is used to
illustrate the techniques is p1, which was first introduced as a method
for stochastic blockmodeling by Fienberg and Wasserman (1981), and
developed by Holland et al. (1983) and Wasserman and Anderson (1987).
C1 UNIV ILLINOIS,DEPT STAT,URBANA,IL 61801.
UNIV S CAROLINA,DEPT SOCIOL,COLUMBIA,SC 29208.
RP ANDERSON, CJ, UNIV ILLINOIS,DEPT PSYCHOL,URBANA,IL 61801.
CR *UN, 1984, STAT PAP COMM TRAD D, V34
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BREIGER RL, 1981, J AM STAT ASSOC, V76, P51
FAUST K, 1991, UNPUB CENTRALITY PRE
FAUST K, 1992, SOC NETWORKS, V14, P5
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
GABRIEL KR, 1979, TECHNOMETRICS, V21, P489
GABRIEL KR, 1982, ENCY STATISTICAL SCI, V1, P263
GOODMAN LA, 1985, ANN STAT, V13, P10
GOODMAN LA, 1986, INT STAT REV, V54, P243
GREENACRE MJ, 1984, THEORY APPLICATION C
HABERMAN SJ, 1981, J AM STAT ASSOC, V76, P60
HARTIGAN JA, 1976, CLUSTERING ALGORITHM
HEIL G, 1976, BEHAV SCI, V21, P26
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
IACOBUCCI D, 1990, PSYCHOMETRIKA, V55, P707
WANG YJ, 1987, J AM STAT ASSOC, V82, P8
WASSERMAN S, SOCIAL NETWORK ANAL
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1990, J MATH SOCIOL, V15, P11
WASSERMAN SS, 1989, SOCIOL METHODOL, P1
WHITE HC, 1976, AM J SOCIOL, V81, P730
WONG GY, 1989, UNPUB COMPUTATION AS
NR 27
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
J9 SOC NETWORKS
JI Soc. Networks
PD MAR-JUN
PY 1992
VL 14
IS 1-2
BP 137
EP 161
PG 25
SC Anthropology; Sociology
GA HR571
UT ISI:A1992HR57100006
ER
PT J
AU WASSERMAN, S
IACOBUCCI, D
TI STATISTICAL MODELING OF ONE-MODE AND 2-MODE NETWORKS - SIMULTANEOUS
ANALYSIS OF GRAPHS AND BIPARTITE GRAPHS
SO BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY
LA English
DT Article
ID 3-MODE FACTOR-ANALYSIS; STOCHASTIC BLOCKMODELS; INDIVIDUAL-DIFFERENCES;
SOCIOMETRIC RELATIONS; DYADIC INTERACTIONS; DIRECTED-GRAPHS; LINEAR
MODELS; POWER; INFORMATION; ALGORITHM
AB A bipartite graph, in which the nodes (or actors in a social network)
are partitioned into two sets, can be studied using recent statistical
models for dyadic interactions. These models, which are longlinear for
the probabilities of dyadic choices or interactions, allow not only
arcs or relationships to exist between the sets but also within the
sets. Thus, the methods described here are applicable not only to
bipartite graphs, consisting of arcs existing between nodes in
different sets, but also to directed graphs that are defined within the
two sets of nodes. Data on both types of graphs can be analysed
simultaneously.
A bipartite graph has an adjacency matrix (or sociomatrix) with two
'modes'. The set of nodes in the row mode differs from the set of
nodes in the column mode. For example, in marketing, one could study
the dyadic relations in a 'buyers-by-sellers' network. Generally, the
relations observed in a one-mode network, which has a square
sociomatrix (row mode = column mode) are bidirectional-the actors
indexing the columns may also 'relate to' the actors indexing the rows.
The relations observed in a two-mode network are generally
unidirectional-the row actors relate to or choose the column actors,
but the column actors do not relate to the row actors. Referring to
our example, a buyer might pay a seller for some item, but a seller
would not pay a buyer.
Statistical models for the separate analysis of these one-mode and
two-mode matrices are extended in this paper to the simultaneous
analysis of both types of networks. A superordinate one-mode
sociomatrix is created in which the rows and columns consist of all
actors (that is, all buyers and sellers). This larger matrix contains
both the one-mode matrices and the two-mode matrices. Multivariate
analysis of unidirectional and bidirectional relations in social
networks and complex directed graphs becomes possible with this
simultaneous consideration of both types of matrices.
C1 UNIV ILLINOIS,DEPT CHIM FARMACEUT,CHAMPAIGN,IL 61820.
NORTHWESTERN UNIV,KELLOGG GRAD SCH MANAGEMENT,DEPT MKT,EVANSTON,IL 60201.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHAMPAIGN,IL
61820.
CR ANDERSON E, 1987, J MARKETING RES, V22, P365
ARABIE P, 1978, J MATH PSYCHOL, V17, P21
ARABIE P, 1987, 3 WAY SCALING CLUSTE
ARNDT J, 1967, J MARKETING RES, V15, P291
BEARDEN WO, 1982, J CONSUM RES, V9, P183
BENTLER PM, 1978, PSYCHOMETRIKA, V43, P343
BREEN R, 1984, SOCIOLOGICAL METHODS, V13, P77
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
CARROLL JD, 1970, PSYCHOMETRIKA, V35, P283
CARROLL JD, 1983, PSYCHOMETRIKA, V48, P157
COLLINS LM, 1987, MULTIDIMENSIONAL SCA, P179
CONTRACTOR N, 1987, 1987 SUNB SOC NETW C
DESARBO WS, 1987, APPLIED PSYCHOL MEAS, V11, P397
DOREIAN P, 1987, SOC NETWORKS, V9, P89
DWYER FR, 1987, J MARKETING, V51, P11
FEICK LF, 1987, J MARKETING, V51, P83
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1986, J AM STAT ASSOC, V81, P832
FRAZIER GL, 1986, J MARKETING RES, V23, P169
GALASKIEWICZ J, 1989, ADMIN SCI QUART, V34, P454
GASKI JF, 1984, J MARKETING, V48, P9
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
IACOBUCCI D, 1987, THESIS U ILLINOIS
IACOBUCCI D, 1989, SOC NETWORKS, V11, P315
IACOBUCCI D, 1990, PSYCHOL BULL, V107, P114
KROONENBERG PM, 1983, 3 MODE PRINCIPAL COM
LAW HG, 1983, RES METHODS MULTIMOD
LAW HG, 1984, RES METHODS MULTIMOD
MCALISTER L, 1986, J MARKETING RES, V23, P228
MEYER MM, 1981, ANN STAT, V10, P1172
NELDER JA, 1972, J ROYAL STATISTICA A, V135, P370
PARASURAMAN A, 1985, J MARKETING, V49, P41
PAYNE CD, 1985, GENERALIZED LINEAR I
REINGEN PH, 1986, J MARKETING RES, V23, P370
REYNOLDS FD, 1971, J MARKETING RES, V8, P449
RICHINS ML, 1983, J MARKETING, V47, P68
SAMPSON SF, 1968, THESIS CORNELL U
STERN LW, 1982, MARKETING CHANNELS
SUJAN M, 1986, J MARKETING RES, V23, P346
TUCKER LR, 1964, CONTRIBUTIONS MATH P, P109
TUCKER LR, 1972, PSYCHOMETRIKA, V37, P3
WANG YJ, 1987, J AM STAT ASSOC, V82, P8
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1988, PSYCHOMETRIKA, V53, P261
WASSERMAN S, 1989, J MATH SOCIOL, V15, P11
WHITE HC, 1976, AM J SOCIOL, V81, P730
NR 52
TC 3
PU BRITISH PSYCHOLOGICAL SOC
PI LEICESTER
PA ST ANDREWS HOUSE, 48, PRINCESS RD, EAST, LEICESTER, LEICS, ENGLAND LE1
7DR
SN 0007-1102
J9 BRIT J MATH STATIST PSYCHOL
JI Br. J. Math. Stat. Psychol.
PD MAY
PY 1991
VL 44
PN Part 1
BP 13
EP 43
PG 31
SC Mathematics, Interdisciplinary Applications; Psychology, Mathematical;
Psychology, Experimental; Statistics & Probability
GA FQ408
UT ISI:A1991FQ40800002
ER
PT J
AU IACOBUCCI, D
WASSERMAN, S
TI SOCIAL NETWORKS WITH 2 SETS OF ACTORS
SO PSYCHOMETRIKA
LA English
DT Article
DE RELATIONAL DATA; BIPARTITE GRAPHS; SOCIOMATRIX; CATEGORICAL DATA
ANALYSIS
ID STATISTICAL-ANALYSIS; SOCIOMETRIC RELATIONS; DYADIC INTERACTION;
BLOCKMODELS; CONFORMITY; GRAPHS
AB Traditional network research analyzes relational ties within a single
group of actors; the models presented in this paper involve relational
ties that exist between two distinct sets of actors. Statistical
models for traditional networks in which relations are measured within
a group simplify when modeling unidirectional relations measured
between groups. The traditional paradigm results in a one-mode
sociomatrix; the network paradigm considered in this paper results in a
two-mode sociomatrix. A statistical model is presented, illustrated on
a sample data set, and compared to its traditional counterpart.
Extensions are discussed, including those that model multivariate
relations simultaneously, and those that allow for the inclusion of
attributes of the individuals in the group.
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
RP IACOBUCCI, D, NORTHWESTERN UNIV,KELLOGG GRAD SCH MANAGEMENT,DEPT
MKT,2001 SHERIDAN RD,EVANSTON,IL 60208.
CR ALLISON PD, 1982, PSYCHOL BULL, V91, P393
ARABIE P, 1978, J MATH PSYCHOL, V17, P21
BONDY JA, 1976, GRAPH THEORY APPLICA
DRAPER NR, 1981, APPLIED REGRESSION A
FARARO TJ, 1984, SOC NETWORKS, V6, P141
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, J AM STAT ASSOC, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1986, J AM STAT ASSOC, V81, P832
FRIEDLAND MH, 1988, FEB SUNB SOC NETW C
GALASKIEWICZ J, 1985, SOCIAL ORG URBAN GRA
GORSUCH RL, 1983, FACTOR ANAL
GOTTMAN JM, 1979, PSYCHOL BULL, V86, P338
HAGE P, 1983, STRUCTURAL MODELS AN
HARMAN HH, 1976, MODERN FACTOR ANAL
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
IACOBUCCI D, 1988, PSYCHOL BULL, V103, P379
IACOBUCCI D, 1989, SOC NETWORKS, V11, P315
KENNY DA, 1984, ADV EXP SOC PSYCHOL, V18, P141
KNOKE D, 1982, NETWORK ANAL
KRUSKAL JB, 1978, MULTIDIMENSIONAL SCA
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MCDONALD RP, 1985, FACTOR ANAL RELATED
SAMPSON SF, 1968, NOVITIATE PERIOD CHA
SCHEFFE HA, 1959, ANAL VARIANCE
STRAUSS D, 1990, J AM STAT ASSOC, V85, P204
TORGERSON WS, 1958, THEORY METHODS SCALI
TUCKER LR, 1963, PROBLEMS MEASURING C, P122
TUCKER LR, 1966, PSYCHOMETRIKA, V31, P279
TUCKER LR, 1972, PSYCHOMETRIKA, V37, P3
WASSERMAN S, IN PRESS BRIT J MATH
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1988, PSYCHOMETRIKA, V53, P261
WASSERMAN S, 1990, SOCIAL NETWORK ANAL
WHITE HC, 1976, AM J SOCIOL, V81, P730
WILSON TP, 1982, SOC NETWORKS, V4, P105
WONG G, 1989, APR STOCKH C RAND GR
NR 41
TC 7
PU PSYCHOMETRIC SOC
PI WILLIAMSBURG
PA COLLEGE OF WILLIAM AND MARY DEPT PSYCHOLOGY, WILLIAMSBURG, VA 23185
SN 0033-3123
J9 PSYCHOMETRIKA
JI Psychometrika
PD DEC
PY 1990
VL 55
IS 4
BP 707
EP 720
PG 14
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA ET087
UT ISI:A1990ET08700011
ER
PT J
AU WASSERMAN, S
FAUST, K
GALASKIEWICZ, J
TI CORRESPONDENCE AND CANONICAL-ANALYSIS OF RELATIONAL DATA
SO JOURNAL OF MATHEMATICAL SOCIOLOGY
LA English
DT Review
C1 UNIV ILLINOIS,DEPT STAT,CHICAGO,IL 60680.
UNIV S CAROLINA,COLUMBIA,SC 29208.
UNIV MINNESOTA,DEPT SOCIOL,MINNEAPOLIS,MN 55455.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHICAGO,IL
60680.
CR AGRESTI A, 1983, J AM STAT ASSOC, V78, P184
AGRESTI A, 1984, ANAL ORDINAL CATEGOR
ALLISON PD, 1982, PSYCHOL BULL, V91, P393
ANDERSEN EB, 1980, DISCRETE STATISTICAL
ARABIE P, 1978, J MATH PSYCHOL, V17, P21
BENZECRI JP, 1969, METHODOLOGIES PATTER, P35
BENZECRI JP, 1973, ANAL DONNEES, V2
BERKOWITZ SD, 1982, INTRO STRUCTURAL ANA
BEUM CO, 1950, SOCIOMETRY, V13, P141
BLAU PM, 1977, AM J SOCIOL, V83, P26
BREIGER RL, 1974, SOC FORCES, V53, P181
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
BREIGER RL, 1981, J AM STAT ASSOC, V76, P51
BUDESCU DV, 1984, PSYCHOL BULL, V96, P402
BURT C, 1950, BRIT J PSYCHOL, V3, P166
BURT RS, 1980, ANNU REV SOCIOL, V6, P79
BURT RS, 1983, APPLIED NETWORK ANAL
CLOGG CC, 1982, AM J SOCIOL, V88, P114
CLOGG CC, 1982, J AM STAT ASSOC, V77, P803
CLOGG CC, 1986, INT STAT REV, V54, P284
COLEMAN JS, 1960, AM SOCIOL REV, V25, P722
DAVIS A, 1941, DEEP S SOCIAL ANTHR
DELEEUW J, 1973, THESIS U LEIDEN LEID
DEUTSCH SB, 1971, OPER RES, V19, P1350
DEVILLE JC, 1983, J ECONOMETRICS, V22, P169
DILLON WR, 1983, PSYCHOL BULL, V94, P564
FAUST K, 1987, 7 SUNB SOC NETW C CL
FEICK LF, 1985, PSYCHOL BULL, V98, P600
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FISHER RA, 1940, ANN EUGENIC, V10, P422
FRANK O, 1981, SOCIOL METHODOL, P110
FRANK O, 1985, J CLASSIF, V2, P219
FRANK O, 1985, J MATH SOCIOL, V11, P47
FRANK O, 1986, UNPUB ANAL COMPOSITI
FREEMAN LC, 1989, RES METHODS SOCIAL N
GALASKIEWICZ J, 1985, SOCIAL ORG URBAN GRA
GALASKIEWICZ J, 1986, 11 WORLD C SOC NEW D
GALASKIEWICZ J, 1986, 1986 ANN AM SOC ASS
GALASKIEWICZ J, 1987, RES METHODS ELITE ST, P147
GALASKIEWICZ J, 1989, ADMIN SCI QUART, V34, P454
GAUCH HG, 1977, J ECOL, V65, P157
GILULA Z, 1986, 48 U CHIC STAT RES C
GILULA Z, 1986, J AM STAT ASSOC, V81, P773
GILULA Z, 1986, J AM STAT ASSOC, V81, P780
GOODMAN LA, 1979, BIOMETRIKA, V66, P413
GOODMAN LA, 1979, J AM STAT ASSOC, V74, P537
GOODMAN LA, 1981, BIOMETRIKA, V68, P347
GOODMAN LA, 1981, J AM STAT ASSOC, V76, P320
GOODMAN LA, 1981, SOCIOLOGICAL METHODO
GOODMAN LA, 1983, BIOMETRICS, V39, P149
GOODMAN LA, 1984, ANAL CROSS CLASSIFIE
GOODMAN LA, 1985, ANN STAT, V13, P10
GOODMAN LA, 1986, INT STAT REV, V54, P243
GOTTMAN JM, 1979, MARITAL INTERACTION
GOTTMAN JM, 1979, PSYCHOL BULL, V86, P338
GREENACRE MJ, 1981, INTERPRETING MULTIVA
GREENACRE MJ, 1984, THEORY APPLICATION C
GREENACRE MJ, 1986, PSYCHOMETRIKA, V51, P172
GUTTMAN L, 1941, PREDICTION PERSONAL, P319
GUTTMAN L, 1946, ANN MATH STAT, V17, P144
GUTTMAN L, 1959, SANKHYA, V21, P257
HABERMAN SJ, 1974, BIOMETRICS, V30, P589
HAYASHI C, 1980, DATA ANAL INFORMATIC, P31
HEISER WJ, 1983, J ECONOMETRICS, V22, P139
HILL MO, 1974, J ROY STAT SOC C-APP, V23, P340
HILL MO, 1982, ENCY STATISTICAL SCI, P204
HIRSCHFELD AO, 1935, P CAMBRIDGE PHIL SOC, V31, P520
HOLLAND PW, 1977, ADV RES S STOCHASTIC
HOLLAND PW, 1979, PERSPECTIVES SOCIAL
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
IACOBUCCI D, 1988, PSYCHOL BULL, V103, P379
IWATSUBO S, 1978, BEHAVIORMETRIKA, V5, P1
KADUSHIN C, 1966, AM SOCIOL REV, V31, P786
KATZ L, 1947, SOCIOMETRY, V10, P233
KENDALL DG, 1971, MATH ARCHAEOLOGICAL, P215
KENDALL MG, 1973, ADV THEORY STATISTIC, V2
KNOKE D, 1982, NETWORK ANAL
LANCASTER HO, 1966, BIOMETRIKA, V53, P585
LEBART L, 1984, MULTIVARIATE DESCRIP
LEVINE JH, 1979, PSYCHOMETRIKA, V44, P85
LEVINE JH, 1984, ATLAS CORPORATE INTE, V1
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MARSDEN PV, 1982, SOCIAL STRUCTURE NET
MAUNG K, 1941, ANN EUGEN, V11, P189
MCCULLAGH P, 1983, GENERALIZED LINEAR M
MEYER MM, 1981, THESIS U MINNESOTA
MEYER MM, 1982, ANN STATIS, V10, P1172
NELDER JA, 1972, J ROYAL STATISTICA A, V135, P370
NISHISATO S, 1978, PSYCHOMETRIKA, V43, P263
NISHISATO S, 1980, ANAL CATEGORICAL DAT
NOMA E, 1982, INFORMATION PROCESSI, V18, P43
NOMA E, 1982, SCIENTOMETRICS, V4, P205
NOMA E, 1985, MULTIVAR BEHAV RES, V20, P179
PAYNE CD, 1985, GLIM SYSTEM RELEASE
ROMNEY AK, 1986, 6 SUNB SOC NETW C SA
SCHRIEVER BF, 1983, INT STAT REV, V51, P225
SIMMEL G, 1955, CONFLICT WEB GROUP A
SIMON G, 1974, J AM STAT ASSOC, V69, P971
SPATH H, 1980, CLUSTER ANAL ALGORIT
TENENHAUS M, 1985, PSYCHOMETRIKA, V50, P91
TORGERSON WS, 1958, THEORY METHODS SCALI
TUCKER LR, 1964, CONTRIBUTIONS MATH P
VANDERHEIJDEN PGM, 1985, PSYCHOMETRIKA, V50, P429
WAMPOLD BE, 1982, PSYCHOL BULL, V92, P755
WAMPOLD BE, 1984, PSYCHOL BULL, V96, P424
WANG YJ, 1987, J AM STAT ASSOC, V82, P8
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1988, PSYCHOMETRIKA, V53, P261
WEAVER S, 1986, CONNECTIONS B INT NE, V9, P38
WHITE HC, 1976, AM J SOCIOL, V81, P730
WHITING JWM, 1986, 85TH M AM ANTHR ASS
NR 119
TC 5
PU GORDON BREACH SCI PUBL LTD
PI READING
PA C/O STBS LTD PO BOX 90, READING, BERKS, ENGLAND RG1 8JL
SN 0022-250X
J9 J MATH SOCIOL
JI J. Math. Sociol.
PY 1990
VL 15
IS 1
BP 11
EP 64
PG 54
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Sociology
GA CU287
UT ISI:A1990CU28700002
ER
PT J
AU GALASKIEWICZ, J
WASSERMAN, S
TI MIMETIC PROCESSES WITHIN AN INTERORGANIZATIONAL FIELD - AN
EMPIRICAL-TEST
SO ADMINISTRATIVE SCIENCE QUARTERLY
LA English
DT Article
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
RP GALASKIEWICZ, J, UNIV MINNESOTA,SOCIOL & STRATEG MANAGEMENT,1114 SOCIAL
SCI TOWER,MINNEAPOLIS,MN 55455.
CR AGRESTI A, 1984, ANAL ORDINAL CATEGOR
ALDRICH H, 1979, ORG ENV
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
BOULDING KE, 1973, EC LOVE FEAR
BURT RS, 1983, CORPORATE PROFITS CO
BURT RS, 1987, AM J SOCIOL, V92, P1287
COLEMAN JS, 1966, MED INNOVATION DIFFU
COX DR, 1970, ANAL BINARY DATA
DIMAGGIO PJ, 1983, AM SOCIOL REV, V48, P147
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, J AM STAT ASSOC, V76, P54
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
GALASKIEWICZ J, 1985, AM SOCIOL REV, V50, P639
GALASKIEWICZ J, 1985, SOC FORCES, V64, P403
GALASKIEWICZ J, 1985, SOCIAL ORG URBAN GRA
GALASKIEWICZ J, 1986, 11 WORLD C SOC
GALASKIEWICZ J, 1987, RES METHODS ELITE ST, P147
GALASKIEWICZ J, 1988, RES DEPENDENCY COMMU, P119
GRANOVETTER M, 1985, AM J SOCIOL, V91, P481
HABERMAN SJ, 1979, ANAL QUALITATIVE DAT, V2
HARARY F, 1965, STRUCTURAL MODELS IN
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
MACAULAY S, 1963, AM SOCIOL REV, V28, P55
MARCH J, 1958, ORGANIZATIONS
MILLIKEN FJ, 1987, ACAD MANAGE REV, V12, P133
NELSON R, 1970, EC FACTORS GROWTH CO
PAYNE CD, 1985, GENERALIZED LINEAR L
PERROW C, 1961, AM J SOCIOL, V66, P335
PFEFFER J, 1972, ADM SCI Q, V17, P218
PFEFFER J, 1973, ADM SCI Q, V18, P349
ROGERS EM, 1983, DIFFUSION INNOVATION
SHAPIRO SP, 1987, AM J SOCIOL, V93, P623
SIMON HA, 1965, ADM BEHAVIOR
SNOW DA, 1980, AM SOCIOL REV, V45, P787
USEEM M, 1987, HDB NONPROFIT ORG, P341
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN S, 1988, 1988 ANN M PSYCH SOC
WASSERMAN S, 1988, PSYCHOMETRIKA, V53, P261
WASSERMAN, 1988, BRIT J MATH STAT PSY, V53, P261
WILLIAMSON OE, 1975, MARKETS HIERARCHIES
WILLIAMSON OE, 1981, AM J SOCIOL, V87, P548
NR 46
TC 122
PU ADMINISTRATIVE, SCI QUARTERLY
PI ITHACA
PA CORNELL UNIV, JOHNSON SCHOOL, 20 THORNWOOD DR, STE 100, ITHACA, NY
14850-1265
SN 0001-8392
J9 ADMIN SCI QUART
JI Adm. Sci. Q.
PD SEP
PY 1989
VL 34
IS 3
BP 454
EP 479
PG 26
SC Business; Management
GA AP816
UT ISI:A1989AP81600006
ER
PT J
AU WASSERMAN, S
IACOBUCCI, D
TI SEQUENTIAL SOCIAL NETWORK DATA
SO PSYCHOMETRIKA
LA English
DT Article
C1 UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
NORTHWESTERN UNIV,JL KELLOGG GRAD SCH MANAGEMENT,DEPT MKT,EVANSTON,IL 60201.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHAMPAIGN,IL
61820.
CR AGRESTI A, 1984, ANAL ORDINAL CATEGOR
ALLISON PD, 1982, PSYCHOL BULL, V91, P393
ARABIE P, 1980, PSYCHOMETRIKA, V45, P211
ARABIE P, 1984, SOC NETWORKS, V6, P373
BAKER RJ, 1978, GLIM SYSTEM RELEASE
BERKOWITZ SD, 1982, INTRO STRUCTURAL ANA
BERNARD HR, 1979, PERSPECTIVES SOCIAL, P165
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
BUDESCU DV, 1984, PSYCHOL BULL, V96, P402
BURT RS, 1980, ANNU REV SOCIOL, V6, P79
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, ENCY STATISTICAL SCI, V6, P40
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
GOTTMAN JM, 1979, MARITAL INTERACTIONS
GOTTMAN JM, 1981, CHILD DEV, V52, P393
HABERMAN SJ, 1978, ANAL QUALITATIVE DAT, V1
HABERMAN SJ, 1979, ANAL QUALITATIVE DAT, V2
HAGE P, 1983, STRUCTURAL MODELS AN
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUBERT L, 1976, BRIT J MATH STAT PSY, V29, P190
HUBERT LJ, 1978, BRIT J MATH STAT PSY, V31, P179
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
HUBERT LJ, 1979, PSYCHOMETRIKA, V44, P135
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
IACOBUCCI D, 1988, PSYCHOL B, V103, P279
KATZ L, 1953, PSYCHOMETRIKA, V18, P249
KATZ L, 1959, PSYCHOMETRIKA, V24, P317
KNOKE D, 1982, NETWORK ANAL
KOEHLER KJ, 1980, J AM STAT ASSOC, V75, P336
MEYER MM, 1982, ANN STATIS, V10, P1172
NOMA E, 1985, PSYCHOL BULL, V97, P583
PAYNE CD, 1985, GLIM SYSTEM RELEASE
RICE RE, 1985, PROGR COMMUNICATION, V6, P105
SAMPSON SF, 1968, THESIS CORNELL U
SHEPARD RN, 1979, PSYCHOL REV, V86, P87
WAMPOLD BE, 1982, PSYCHOL BULL, V92, P755
WAMPOLD BE, 1984, PSYCHOL BULL, V96, P424
WASSERMAN S, 1980, J AM STAT ASSOC, V75, P280
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WASSERMAN S, 1987, SOC NETWORKS, V9, P1
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
NR 44
TC 18
PU PSYCHOMETRIC SOC
PI WILLIAMSBURG
PA COLLEGE OF WILLIAM AND MARY DEPT PSYCHOLOGY, WILLIAMSBURG, VA 23185
SN 0033-3123
J9 PSYCHOMETRIKA
JI Psychometrika
PD JUN
PY 1988
VL 53
IS 2
BP 261
EP 282
PG 22
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA P5786
UT ISI:A1988P578600010
ER
PT J
AU IACOBUCCI, D
WASSERMAN, S
TI A GENERAL FRAMEWORK FOR THE STATISTICAL-ANALYSIS OF SEQUENTIAL DYADIC
INTERACTION DATA
SO PSYCHOLOGICAL BULLETIN
LA English
DT Article
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHICAGO,IL 60680.
UNIV ILLINOIS,DEPT STAT,CHICAGO,IL 60680.
RP IACOBUCCI, D, NORTHWESTERN UNIV,JL KELLOGG GRAD SCH MANAGEMENT,DEPT
MKT,2001 SHERIDAN RD,EVANSTON,IL 60208.
CR *SAS I, 1985, US GUID STAT
ALLISON PD, 1982, PSYCHOL BULL, V91, P393
BAKER FB, 1981, SOCIOL METHOD RES, V9, P339
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
BONETT DG, 1983, PSYCHOL BULL, V93, P149
BUDESCU DV, 1984, PSYCHOL BULL, V96, P402
DILLON WR, 1983, PSYCHOL BULL, V94, P564
DIXON WJ, 1983, BMDP STATISTICAL SOF
DUMAS JE, 1984, J CONSULT CLIN PSYCH, V52, P946
DUMAS JE, 1985, J ABNORM CHILD PSYCH, V13, P1
FEICK LF, 1985, PSYCHOL BULL, V98, P600
FIENBERG SE, 1981, ANAL CROSS CLASSIFIE
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
GOODMAN LA, 1964, J AM STAT ASSOC, V59, P319
GOODMAN LA, 1968, J AM STAT ASSOC, V63, P1091
GOODMAN LA, 1970, J AM STAT ASSOC, V65, P226
GOODMAN LA, 1971, J AM STAT ASSOC, V66, P339
GOODMAN LA, 1971, TECHNOMETRICS, V13, P33
GOTTMAN JM, 1977, J MARRIAGE FAM, V39, P461
GOTTMAN JM, 1978, SINGLE SUBJECT RES S, P237
GOTTMAN JM, 1979, MARITAL INTERACTION
GOTTMAN JM, 1979, PSYCHOL BULL, V86, P338
GOTTMAN JM, 1979, SOCIAL INTERACTION A, P185
GOTTMAN JM, 1979, SOCIAL INTERACTION A, P207
GOTTMAN JM, 1981, TIME SERIES ANAL COM
GRIZZLE JE, 1969, BIOMETRICS, V25, P489
HABER M, 1986, PSYCHOL BULL, V99, P129
HUBERT L, 1976, BRIT J MATH STAT PSY, V29, P190
HUBERT LJ, 1977, J MATH PSYCHOL, V16, P233
IACOBUCCI D, 1987, PSYCHOL BULL, V102, P293
INGRAHAM LJ, 1986, SOC PSYCHOL QUART, V49, P93
ISAAC PD, 1983, PSYCHOL BULL, V93, P378
JONES EE, 1986, SCIENCE, V234, P41
KENNY D, 1981, KNOWING VALIDATING S, P288
KENNY DA, 1984, ADV EXP SOC PSYCHOL, V18, P141
KENNY DA, 1986, PSYCHOL BULL, V99, P422
KNOKE D, 1982, NETWORK ANAL
KOMORITA SS, 1973, PSYCHOL REV, V80, P149
KOMORITA SS, 1976, J PERS SOC PSYCHOL, V33, P371
KOMORITA SS, 1978, J PERS SOC PSYCHOL, V36, P392
KRAEMER HC, 1979, PSYCHOL BULL, V86, P217
LAVOIE L, 1982, THESIS U CONNECTICUT
MARGOLIN G, 1981, J CONSULT CLIN PSYCH, V49, P554
MARTIN JA, 1981, DEV PSYCHOL, V17, P146
MENDOZA JL, 1982, PSYCHOL BULL, V92, P532
MISHLER EG, 1975, FAM PROCESS, V14, P17
NORUSIS MJ, 1985, SPSSX ADV STATISTICS
OLZAK LA, 1983, PSYCHOL BULL, V93, P574
PAYNE CD, 1985, GLIM SYSTEM RELEASE
SACKETT GP, 1979, HDB INFANT DEV, P623
TANNER MA, 1985, PSYCHOL BULL, V98, P408
THIBAUT JW, 1959, SOCIAL PSYCHOL GROUP
WAMPOLD BE, 1982, PSYCHOL BULL, V92, P755
WAMPOLD BE, 1984, PSYCHOL BULL, V96, P424
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
WILKINSON L, 1984, SYSTAT
WRIGHT JC, 1986, J PERS SOC PSYCHOL, V50, P523
WRIGHT TL, 1985, J PERS SOC PSYCHOL, V48, P1041
WRIGHT TL, 1986, J PERS SOC PSYCHOL, V50, P631
NR 61
TC 34
PU AMER PSYCHOLOGICAL ASSOC
PI WASHINGTON
PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242
SN 0033-2909
J9 PSYCHOL BULL
JI Psychol. Bull.
PD MAY
PY 1988
VL 103
IS 3
BP 379
EP 390
PG 12
SC Psychology; Psychology, Multidisciplinary
GA N2861
UT ISI:A1988N286100009
ER
PT J
AU IACOBUCCI, D
WASSERMAN, S
TI DYADIC SOCIAL INTERACTIONS
SO PSYCHOLOGICAL BULLETIN
LA English
DT Article
C1 UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHAMPAIGN,IL 61820.
UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
CR AGRESTI A, 1984, ANAL ORDINAL CATEGOR
BALLARD M, 1977, J EDUC PSYCHOL, V69, P605
BERKOWITZ SD, 1982, INTRO STRUCTURAL ANA
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, INTERPRETING MULTIVA, P289
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
GREEN JA, 1985, UNPUB ANAL CATEGORIC
HOLLAND PW, 1979, PERSPECTIVES SOCIAL
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
JACKLIN CN, 1978, CHILD DEV, V49, P557
KATZ L, 1953, PSYCHOMETRIKA, V18, P249
KENNEDY JJ, 1983, ANAL QUALITATIVE DAT
KENNY D, 1981, KNOWING VALIDATING S, P288
KENNY DA, 1984, ADV EXP SOC PSYCHOL, V18, P141
KRAEMER HC, 1979, PSYCHOL BULL, V86, P217
LEINHARDT S, 1977, SOCIAL NETWORKS DEV
MENDOZA JL, 1982, PSYCHOL BULL, V92, P532
MORENO JL, 1934, WHO SHALL SURVIVE
NEWCOMB TM, 1961, ACQUAINTANCE PROCESS
SAMPSON SF, 1968, THESIS CORNELL U ITH
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WASSERMAN S, 1987, PSYCHOMETRIKA, V52, P3
NR 25
TC 20
PU AMER PSYCHOLOGICAL ASSOC
PI WASHINGTON
PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242
SN 0033-2909
J9 PSYCHOL BULL
JI Psychol. Bull.
PD SEP
PY 1987
VL 102
IS 2
BP 293
EP 306
PG 14
SC Psychology; Psychology, Multidisciplinary
GA J9979
UT ISI:A1987J997900008
ER
PT J
AU WASSERMAN, S
GALASKIEWICZ, J
TI LEVINE ATLAS OF CORPORATE INTERLOCKS - VOL 1, VOL 2 - LEVINE,JH
SO JOURNAL OF CLASSIFICATION
LA English
DT Book Review
C1 UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
UNIV MINNESOTA,DEPT SOCIOL,MINNEAPOLIS,MN 55455.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHAMPAIGN,IL
61820.
CR LEVINE JH, 1972, AM SOCIOL REV, V37, P14
LEVINE JH, 1972, BEHAVIORAL SCI, V17, P455
LEVINE JH, 1979, PSYCHOMETRIKA, V44, P85
LEVINE JH, 1984, LEVINES ATLAS CORPOR, V1
LEVINE JH, 1984, LEVINES ATLAS CORPOR, V2
NR 5
TC 0
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0176-4268
J9 J CLASSIF
JI J. Classif.
PY 1987
VL 4
IS 1
BP 118
EP 122
PG 5
SC Mathematics, Interdisciplinary Applications; Psychology, Mathematical
GA H2889
UT ISI:A1987H288900010
ER
PT J
AU WASSERMAN, S
ANDERSON, C
TI STOCHASTIC A POSTERIORI BLOCKMODELS - CONSTRUCTION AND ASSESSMENT
SO SOCIAL NETWORKS
LA English
DT Article
C1 UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHAMPAIGN,IL
61820.
CR ARABIE P, 1978, J MATH PSYCHOL, V17, P21
ARABIE P, 1984, SOC NETWORKS, V6, P373
ARABIE PA, 1982, CLASSIFYING SOCIAL D
BAKER RJ, 1978, GLIM SYSTEM RELEASE
BENZECRI JP, 1973, ANAL DONNEES, V2
BERGE C, 1962, THEORY GRAPHS ITS AP
BERKOWITZ SD, 1982, INTRO STRUCTURAL ANA
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
BONACICH P, 1979, SOCIOLOGICAL METHODO
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
BOYD JP, 1979, SOCIAL NETWORKS, V2, P91
BOYD JP, 1983, SOC NETWORKS, V5, P157
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
BURT RS, 1976, SOC FORCES, V55, P93
BURT RS, 1980, ANNU REV SOCIOL, V6, P79
BURT RS, 1983, STRUCTURAL THEORY AC
CARRINGTON PJ, 1979, SOC NETWORKS, V2, P219
CARRINGTON PJ, 1981, J MATH SOCIOL, V8, P103
FARARO TJ, 1981, SOC NETWORKS, V3, P137
FARARO TJ, 1984, SOC NETWORKS, V6, P223
FAUST K, 1985, SOC NETWORKS, V7, P77
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FISHER RA, 1940, ANN EUGENIC, V10, P422
FRANK O, 1985, J CLASSIF, V2, P219
FRANK O, 1985, J MATH SOCIOL, V11, P47
FRIEDKIN NE, 1984, SOCIOL METHOD RES, V12, P235
FURNIVAL GM, 1974, TECHNOMETRICS, V16, P499
GALASKIEWICZ J, 1985, SOC FORCES, V64, P403
GALASKIEWICZ J, 1985, UNPUB APPROACH STUDY
GOODMAN LA, 1981, AM J SOCIOL, V87, P612
GOODMAN LA, 1981, BIOMETRIKA, V68, P347
GOODMAN LA, 1981, J AM STAT ASSOC, V76, P320
GOODMAN LA, 1985, ANN STAT, V13, P10
GREENACRE MJ, 1984, THEORY APPLICATION C
HABERMAN SJ, 1981, J AM STAT ASSOC, V76, P60
HEIL G, 1976, BEHAV SCI, V21, P26
HILL MO, 1974, J ROY STAT SOC C-APP, V23, P340
HIRSCHFELD AO, 1935, P CAMBRIDGE PHIL SOC, V31, P520
HOLLAND PW, 1977, ADV RES S STOCHASTIC
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
HOLTGRAVE DR, 1986, UNPUB COMMENT CORRES
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
IACOBUCCI D, 1987, IN PRESS PSYCHOL B, V101
KNOKE D, 1982, NETWORK ANAL
KRIER MJ, 1984, P AM STATISTICAL ASS, P213
LEBART L, 1984, MULTIVARIATE DESCRIP
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MANDEL MJ, 1983, AM SOCIOL REV, V48, P376
MERTON RK, 1959, SOCIAL THEORY SOCIAL
MEYER MM, 1982, ANN STATIS, V10, P1172
NADEL SF, 1957, THEORY SOCIAL STRUCT
NISHISATO S, 1980, ANAL CATEGORICAL DAT
NOMA E, 1985, MULTIVAR BEHAV RES, V20, P179
NOMA E, 1985, PSYCHOL BULL, V97, P583
PANNING WH, 1982, SOC NETWORKS, V4, P81
RAPOPORT A, 1977, B MATH BIOPHYSICS, V19, P257
RICE RE, 1985, PROGR COMMUNICATION, V6
ROETHLISBERGER FJ, 1939, MANAGEMENT WORKER
SAILER LD, 1978, SOC NETWORKS, V1, P73
SAMPSON SF, 1968, THESIS CORNELL U
SCHRIEVER BF, 1983, INT STAT REV, V51, P225
SCHWARTZ JE, 1976, SOCIOLOGICAL METHODO
SIMMEL G, 1950, SOCIOLOGY G SIMMEL
SPATH H, 1980, CLUSTER ANAL ALGORIT
VANDERHEIJDEN PGM, 1985, PSYCHOMETRIKA, V50, P429
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1986, IN PRESS BRIT J MATH, V39
WASSERMAN S, 1986, IN PRESS PSYCHOMETRI, V51
WHITE DR, 1983, SOC NETWORKS, V5, P193
WHITE HC, 1976, AM J SOCIOL, V81, P730
WINSHIP C, 1983, SOCIOLOGICAL METHODO
WONG GY, 1986, IN PRESS J AM STATIS, V81
NR 76
TC 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
J9 SOC NETWORKS
JI Soc. Networks
PD MAR
PY 1987
VL 9
IS 1
BP 1
EP 36
PG 36
SC Anthropology; Sociology
GA H2473
UT ISI:A1987H247300001
ER
PT J
AU WASSERMAN, S
TI CONFORMITY OF 2 SOCIOMETRIC RELATIONS
SO PSYCHOMETRIKA
LA English
DT Article
C1 UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,60 E DANIEL ST,CHAMPAIGN,IL
61820.
CR AGRESTI A, 1984, ANAL ORDINAL CATEGOR
BAKER RJ, 1978, GLIM SYSTEM RELEASE
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
GALASKIEWICZ J, 1978, SOC SCI RES, V7, P89
HABERMAN SJ, 1981, J AM STAT ASSOC, V76, P60
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUBERT LJ, 1978, PSYCHOMETRIKA, V43, P31
KATZ L, 1953, PSYCHOMETRIKA, V18, P249
KENNY DA, 1981, SCI INQUIRY SOCIAL S, P288
KENNY DA, 1984, ADV EXP SOC PSYCHOL, V18, P141
MCCULLAGH P, 1983, GENERALIZED LINEAR M
MENDOZA JL, 1982, PSYCHOL BULL, V92, P532
MEYER MM, 1981, THESIS U MINNESOTA M
MEYER MM, 1982, ANN STATIS, V10, P1172
WASSERMAN S, 1980, J AM STAT ASSOC, V75, P280
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WASSERMAN S, 1986, BRIT J MATH STAT PSY, V39, P41
WEAVER SO, 1986, B INT NEWTORK SOCIAL, V9, P38
NR 21
TC 28
PU PSYCHOMETRIC SOC
PI WILLIAMSBURG
PA COLLEGE OF WILLIAM AND MARY DEPT PSYCHOLOGY, WILLIAMSBURG, VA 23185
SN 0033-3123
J9 PSYCHOMETRIKA
JI Psychometrika
PD MAR
PY 1987
VL 52
IS 1
BP 3
EP 18
PG 16
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA G7220
UT ISI:A1987G722000001
ER
PT J
AU WASSERMAN, S
IACOBUCCI, D
TI STATISTICAL-ANALYSIS OF DISCRETE RELATIONAL DATA
SO BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY
LA English
DT Article
C1 UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
CR AGRESTI A, 1983, COMMUN STAT THEORY, V12, P1261
AGRESTI A, 1983, J AM STAT ASSOC, V78, P184
AGRESTI A, 1984, ANAL ORDINAL CATEGOR
ALLISON PD, 1982, PSYCHOL BULL, V91, P393
BAKER RJ, 1978, GLIM SYSTEM
BERKOWITZ SD, 1982, INTRO STRUCTURAL ANA
BLAU PM, 1977, AM J SOCIOL, V83, P26
BREEN R, 1984, SOCIOLOGICAL METHODS, V13, P77
BUDESCU DV, 1984, PSYCHOL BULL, V96, P402
BURT RS, 1980, ANN REV SOCIOLOGY
CARTWRIGHT D, 1956, PSYCHOL REV, V63, P277
CLOGG CC, 1982, J AM STAT ASSOC, V77, P803
DAVIS JA, 1979, PERSPECTIVES SOCIAL
DILLON WR, 1983, PSYCHOL BULL, V94, P564
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, INTERPRETING MULTIVA
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1981, SOCIOLOGICAL METHODO
FRANK O, 1983, UNPUB MARKOV GRAPHS
GALASKIEWICZ J, 1985, SOC FORCES, V64, P403
GOODMAN LA, 1979, J AM STAT ASSOC, V74, P537
HOLLAND PW, 1975, SOCIOLOGICAL METHODO
HOLLAND PW, 1977, ADV RES S STOCHASTIC
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
HOLLAND PW, 1979, PERSPECTIVES SOCIAL
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
JACKLIN CN, 1978, CHILD DEV, V49, P557
KENNY DA, 1981, KNOWING VALIDATING S
KENNY DA, 1984, ADV EXPT SOCIAL PSYC, V18
KNOKE D, 1982, NETWORK ANAL
KRAEMER HC, 1979, PSYCHOL BULL, V86, P217
LAUMANN EO, 1982, SOC NETWORKS, V4, P329
MCCULLAGH P, 1983, GENERALIZED LINEAR M
MENDOZA JL, 1982, PSYCHOL BULL, V92, P532
MEYER MM, 1981, THESIS U MINNESOTA
MEYER MM, 1982, ANN STATIS, V10, P1172
MORENO JL, 1934, WHO SHALL SURVIVE
NELDER JA, 1972, J ROYAL STATISTICA A, V135, P370
REITZ KP, 1982, SOC NETWORKS, V4, P243
WAMPOLD BE, 1982, PSYCHOL BULL, V92, P755
WAMPOLD BE, 1984, PSYCHOL BULL, V96, P424
WARNER RM, 1979, J PERS SOC PSYCHOL, V37, P1742
WASSERMAN S, 1977, J MATH SOCIOL, V5, P61
WASSERMAN S, 1978, ADV APPLIED PROBABIL, V10, P808
WASSERMAN S, 1980, J AM STAT ASSOC, V75, P280
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WASSERMAN S, 1985, J MATH PSYCHOL, V29, P406
WONG GY, 1983, UNPUB BAYESIAN MODEL
NR 50
TC 33
PU BRITISH PSYCHOLOGICAL SOC
PI LEICESTER
PA ST ANDREWS HOUSE, 48 PRINCESS RD EAST, LEICESTER, LEICS, ENGLAND LE1 7DR
SN 0007-1102
J9 BRIT J MATH STATIST PSYCHOL
JI Br. J. Math. Stat. Psychol.
PD MAY
PY 1986
VL 39
PN Part 1
BP 41
EP 64
PG 24
SC Mathematics, Interdisciplinary Applications; Psychology, Mathematical;
Psychology, Experimental; Statistics & Probability
GA E1821
UT ISI:A1986E182100004
ER
PT J
AU WASSERMAN, S
WEAVER, SO
TI STATISTICAL-ANALYSIS OF BINARY RELATIONAL DATA - PARAMETER-ESTIMATION
SO JOURNAL OF MATHEMATICAL PSYCHOLOGY
LA English
DT Article
C1 UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,603 E DANIEL ST,CHAMPAIGN,IL
61820.
CR *IMSL INC, 1982, LIBR REF MAN
*SPSS INC, 1983, SPSS X US GUID
ARABIE P, 1978, J MATH PSYCHOL, V17, P21
ARABIE P, 1981, AUG M SOC MATH PSYCH
ARABIE P, 1984, SOCIAL NETWORKS, V6, P313
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
DARROCH JN, 1972, ANN MATH STAT, V43, P1470
DIXON WJ, 1983, BMDP STATISTICAL SOF
DURAN BS, 1974, CLUSTER ANAL SURVEY
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1985, J AM STAT ASSOC, V80, P51
FRANK O, 1983, UNPUB MARKOV GRAPHS
FRANK O, 1984, 1984 SUNB SOC NETW C
GALASKIEWICZ J, 1985, SOCIAL FORCES, V64
GRIZZLE JE, 1972, BIOMETRICS, V28, P137
HABERMAN SJ, 1972, APPLIED STATISTICS, V21, P218
HABERMAN SJ, 1978, ANAL QUALITATIVE DAT, V1
HABERMAN SJ, 1981, J AM STAT ASSOC, V76, P60
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
KENNEDY JJ, 1983, ANAL QUALITATIVE DAT
KENNY DA, 1984, ADV EXPT SOCIAL PSYC, V18
KRAEMER HC, 1979, PSYCHOL BULL, V86, P217
LARNTZ K, 1976, J AM STAT ASSOC, V71, P455
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MENDOZA JL, 1982, PSYCHOL BULL, V92, P532
MEYER MM, 1981, THESIS U MINNESOTA
MEYER MM, 1982, ANN STATIS, V10, P1172
RIETZ KP, 1982, SOCIAL NETWORKS, V4, P243
WARNER RM, 1978, THESIS HARVARD U
WARNER RM, 1979, J PERS SOC PSYCHOL, V37, P1742
WASSERMAN S, 1982, UNPUB CTAB USERS GUI
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WHITE HC, 1976, AM J SOCIOL, V81, P730
WONG GY, 1982, J AM STAT ASSOC, V77, P714
WONG GY, 1984, J AM STAT ASSOC, V79, P136
NR 38
TC 18
PU ACADEMIC PRESS INC JNL-COMP SUBSCRIPTIONS
PI SAN DIEGO
PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495
SN 0022-2496
J9 J MATH PSYCHOL
JI J. Math. Psychol.
PY 1985
VL 29
IS 4
BP 406
EP 427
PG 22
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Psychology, Mathematical
GA AWE82
UT ISI:A1985AWE8200003
ER
PT J
AU GALASKIEWICZ, J
WASSERMAN, S
RAUSCHENBACH, B
BIELEFELD, W
MULLANEY, P
TI THE INFLUENCE OF CORPORATE-POWER, SOCIAL-STATUS, AND MARKET POSITION ON
CORPORATE INTERLOCKS IN A REGIONAL NETWORK
SO SOCIAL FORCES
LA English
DT Article
C1 UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
UNIV ILLINOIS,DEPT STAT,CHAMPAIGN,IL 61820.
UNIV MINNESOTA,TWIN CITIES,MN.
CR 1978, CORPORATE REPORT FAC
1979, CORPORATE REPORT FAC
1980, CORPORATE REPORT FAC
1980, MILLION DOLLAR DIREC, V1
1980, MILLION DOLLAR DIREC, V2
1980, MILLION DOLLAR DIREC, V3
1981, CORPORATE REPORT FAC
1981, STANDARD POORS REGIS, V1
1982, STANDARD POORS REGIS, V2
*US BUR CENS, 1976, 1972 CENS MAN, V1
*US DEP COMM, 1979, SURV CURR BUS
ALDRICH H, 1979, ORG ENV
ALLEN MP, 1974, AM SOCIOL REV, V39, P393
ARIAN E, 1971, BACH BEETHOVEN BUREA
BALTZELL E, 1964, PROTESTANT ESTABLISH
BEARDEN J, 1975, ANN M AM SOCIOLOGICA
BERKOWITZ SD, 1982, INTRO STRUCTURAL ANA
BISHOP Y, 1975, DISCRETE MULTIVARIAT
BURT R, 1982, STRUCTURAL THEORY AC
BURT RS, 1976, SOC FORCES, V55, P93
BURT RS, 1980, ADM SCI Q, V25, P557
BURT RS, 1980, AM SOCIOL REV, V45, P821
DIMAGGIO P, 1978, THEOR SOC, V5, P141
DIMAGGIO PJ, 1983, AM SOCIOL REV, V48, P147
DOMHOFF G, 1970, HIGHER CIRCLES GOVER
DOOLEY PC, 1969, AM ECON REV, V59, P314
FENNEMA M, 1979, SOC NETWORKS, V1, P297
FIENBERG S, 1980, ANAL CLASSIFIED CATE
FIENBERG S, 1981, SOCIOLOGICAL METHODO
GALASKIEWICZ J, 1981, AM SOCIOL REV, V46, P475
GOODE W, 1978, CELEBRATION HEROES P
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HUNTER F, 1959, TOP LEADERSHIP
KAMENS DH, 1977, AM SOCIOL REV, V42, P208
KOENIG T, 1979, AM J ECON SOCIOL, V38, P173
LAUMANN EO, 1966, PRESTIGE ASS URBAN C
LEE ML, 1971, SO EC J, V38, P48
MACE M, 1971, DIRECTORS MYTHS REAL
MEYER JW, 1977, AM J SOCIOL, V83, P340
MEYER MM, 1982, ANN STATIS, V10, P1172
MILES RH, 1982, COFFIN NAILS CORPORA
MILLS C, 1956, POWER ELITE
MINTZ B, 1981, AM SOCIOL REV, V46, P851
MIZRUCHI MS, 1982, AM CORPORATE NETWORK
ORNSTEIN MD, 1982, SOC NETWORKS, V4, P3
PARSONS T, 1956, ADM SCI Q, V1, P63
PARSONS T, 1956, ADM SCI Q, V1, P74
PARSONS T, 1960, STRUCTURE PROCESS MO
PENNINGS JM, 1980, INTERLOCKING DIRECTO
PERROW C, 1961, AM J SOCIOL, V66, P335
PFEFFER J, 1972, ADM SCI Q, V17, P218
PFEFFER J, 1978, EXTERNAL CONTROL ORG
RATCLIFF R, 1980, AM SOCIOL REV, V45, P553
RATCLIFF RE, 1979, SOC PROBL, V26, P298
SALEM M, 1976, ORG SURVIVAL PERFORM
SELZNICK P, 1949, TVA GRASS ROOTS STUD
SONQUIST J, 1975, INSURGENT SOC, V5, P196
SOREF M, 1976, SOCIOLOGICAL Q, V17, P360
USEEM M, 1978, SOC PROBL, V25, P225
USEEM M, 1979, AM SOCIOL REV, V44, P553
USEEM M, 1980, ANN REV SOCIOLOGY, V6
USEEM M, 1982, ADM SCI Q, V27, P199
WASSERMAN S, 1984, SOC NETWORKS, V6, P177
WEBER M, 1947, THEORY SOCIAL EC ORG
WHITE HC, 1976, AM J SOCIOL, V81, P730
NR 65
TC 20
PU UNIV NORTH CAROLINA PRESS
PI CHAPEL HILL
PA BOX 2288, CHAPEL HILL, NC 27515-2288
SN 0037-7732
J9 SOC FORCES
JI Soc. Forces
PY 1985
VL 64
IS 2
BP 403
EP 431
PG 29
SC Sociology
GA AUU79
UT ISI:A1985AUU7900008
ER
PT J
AU FIENBERG, SE
MEYER, MM
WASSERMAN, SS
TI STATISTICAL-ANALYSIS OF MULTIPLE SOCIOMETRIC RELATIONS
SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
LA English
DT Article
C1 UNIV WISCONSIN,DEPT STAT,MADISON,WI 53706.
UNIV ILLINOIS,DEPT PSYCHOL,CHAMPAIGN,IL 61820.
UNIV ILLINOIS,DEPT MATH,CHAMPAIGN,IL 61820.
RP FIENBERG, SE, CARNEGIE MELLON UNIV,STAT & SOCIAL SCI,PITTSBURGH,PA
15213.
CR BISHOP YMM, 1975, DISCRETE MULTIVARIAT
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
BREIGER RL, 1981, J AM STAT ASSOC, V76, P51
BURT RS, 1980, ANNU REV SOCIOL, V6, P79
CARTWRIGHT D, 1956, PSYCHOL REV, V63, P277
DARROCH JN, 1972, ANN MATH STAT, V43, P1470
DAVIS JA, 1968, SOCIOMETRY, V31, P102
DAVIS JA, 1970, AM SOCIOL REV, V35, P843
FESTINGER L, 1949, HUM RELAT, V2, P153
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, INTERPRETING MULTIVA, P289
FIENBERG SE, 1981, J AM STAT ASSOC, V76, P54
FIENBERG SE, 1981, SOCIOL METHODOL, P156
FRANK O, 1981, SOCIOL METHODOL, P110
FRANK O, 1983, UNPUB MARKOV GRAPHS
GALASKIEWICZ J, 1978, SOC SCI RES, V7, P89
GALASKIEWICZ J, 1981, AM SOCIOL REV, V46, P475
HABERMAN SJ, 1974, ANAL FREQUENCY DATA
HABERMAN SJ, 1981, J AM STAT ASSOC, V76, P60
HEIDER F, 1958, PSYCHOL INTERPERSONA
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1979, PERSPECTIVES SOCIAL
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
KATZ L, 1947, SOCIOMETRY, V10, P233
KATZ L, 1953, PSYCHOMETRIKA, V18, P39
KATZ L, 1955, SOCIOMETRY, V18, P659
KATZ L, 1959, PSYCHOMETRIKA, V24, P317
LARNTZ K, 1978, J AM STAT ASSOC, V73, P253
LEINHARDT S, 1977, SOCIAL NETWORKS DEV
LORRAIN F, 1971, J MATH SOCIOL, V1, P49
MEYER MM, 1981, THESIS U MINNESOTA
MEYER MM, 1982, ANN STATIS, V10, P1172
MORENO JL, 1934, WHO SHALL SURVIVE
NELDER JA, 1972, J ROYAL STATISTICA A, V135, P370
REITZ KP, 1982, SOC NETWORKS, V4, P243
SAMPSON SF, 1969, THESIS CORNELL U
WASSERMAN S, 1977, J MATH SOCIOL, V5, P61
WASSERMAN S, 1980, J AM STAT ASSOC, V75, P280
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
WHITE HC, 1976, AM J SOCIOL, V81, P730
NR 40
TC 47
PU AMER STATISTICAL ASSOC
PI ALEXANDRIA
PA 1429 DUKE ST, ALEXANDRIA, VA 22314
SN 0162-1459
J9 J AMER STATIST ASSN
JI J. Am. Stat. Assoc.
PY 1985
VL 80
IS 389
BP 51
EP 67
PG 17
SC Statistics & Probability
GA ACT46
UT ISI:A1985ACT4600012
ER
PT J
AU WASSERMAN, S
GALASKIEWICZ, J
TI SOME GENERALIZATIONS OF P1 - EXTERNAL CONSTRAINTS, INTERACTIONS AND
NON-BINARY RELATIONS
SO SOCIAL NETWORKS
LA English
DT Article
C1 UNIV ILLINOIS,DIV STAT,URBANA,IL 61801.
UNIV MINNESOTA,DEPT SOCIOL,MINNEAPOLIS,MN 55455.
RP WASSERMAN, S, UNIV ILLINOIS,DEPT PSYCHOL,URBANA,IL 61801.
CR 1978, CORPORATE REPORT FAC
1979, CORPORATE REPORT FAC
1980, CORPORATE REPORT FAC
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
CARTWRIGHT D, 1970, BEHAV SCI, V15, P497
DEMING WE, 1940, ANN MATH STAT, V11, P427
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1981, SOCIOLOGICAL METHODO
FIENBERG SE, 1983, UNPUB J AM STATISTIC
FRANK O, 1983, UNPUB J AM STATISTIC
GALASKIEWICZ J, 1983, UNPUB SOCIAL FORCES
HABERMAN SJ, 1981, J AM STAT ASSOC, V76, P60
HAGE P, 1983, STRUCTURAL MODELS AN
HOLLAND PW, 1981, J AM STAT ASSOC, V76, P33
HOLLAND PW, 1983, SOC NETWORKS, V5, P109
MEYER MM, 1982, ANN STATIS, V10, P1172
REITZ KP, 1982, SOC NETWORKS, V4, P243
WASSERMAN S, 1984, UNPUB STATISTICAL AN
WONG GY, 1983, UNPUB BAYESIAN MODEL
NR 19
TC 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
J9 SOC NETWORKS
JI Soc. Networks
PY 1984
VL 6
IS 2
BP 177
EP 192
PG 16
SC Anthropology; Sociology
GA TL514
UT ISI:A1984TL51400003
ER
PT J
AU GALASKIEWICZ, J
WASSERMAN, S
TI A DYNAMIC STUDY OF CHANGE IN A REGIONAL CORPORATE NETWORK
SO AMERICAN SOCIOLOGICAL REVIEW
LA English
DT Note
C1 UNIV MINNESOTA,SCH STAT,ST PAUL,MN 55108.
RP GALASKIEWICZ, J, UNIV MINNESOTA,DEPT SOCIOL,MINNEAPOLIS,MN 55455.
CR ALLEN MP, 1974, AM SOCIOL REV, V39, P393
ALLEN MP, 1978, SOCIAL SCI Q, V58, P597
BERKOWITZ SD, 1979, SOC NETWORKS, V1, P391
BURT RS, 1979, SOC NETWORKS, V1, P415
DOOLEY PC, 1969, AM ECON REV, V59, P314
EMERSON RM, 1962, AM SOCIOL REV, V27, P31
FENNEMA M, 1979, SOC NETWORKS, V1, P297
FITCH R, 1970, SOCIALIST REVOLUTION, V1, P73
GOULDNER AW, 1960, AM SOCIOL REV, V25, P161
HERMAN ES, 1973, MONTHLY REV, V25, P12
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
HOLLAND PW, 1977, Z SOZIOL, V6, P386
KARLIN S, 1975, 1ST COURSE STOCHASTI
LEVINE JH, 1972, AM SOCIOL REV, V37, P14
MACE M, 1971, DIRECTORS MYTH REALI
MARIOLIS P, 1975, SOCIAL SCI Q, V56, P425
MINTZ B, 1977, SEP ANN M AM POL SCI
NEWCOMB T, 1961, ACQUAINTANCE PROCESS
OCONNOR J, 1968, MONTHLY REV, V20, P30
PERLO V, 1957, EMPIRE HIGH FINANCE
PFEFFER J, 1972, ADM SCI Q, V17, P218
RUNGER G, 1980, SOC NETWORKS, V2, P143
SONQUIST J, 1975, INSURGENT SOC, V5, P196
WARNER WL, 1967, EMERGENT AM SOC LARG, P121
WASSERMAN S, 1979, SOCIOL METHODOL, P392
WASSERMAN S, 1980, J AM STAT ASSOC, V75, P280
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
NR 28
TC 16
PU AMER SOCIOLOGICAL ASSOC
PI WASHINGTON
PA 1722 N ST NW, WASHINGTON, DC 20036-2981
SN 0003-1224
J9 AMER SOCIOL REV
JI Am. Sociol. Rev.
PY 1981
VL 46
IS 4
BP 475
EP 484
PG 10
SC Sociology
GA ME587
UT ISI:A1981ME58700008
ER
PT J
AU FIENBERG, SE
WASSERMAN, S
TI AN EXPOTENTIAL FAMILY OF PROBABILITY-DISTRIBUTIONS FOR DIRECTED-GRAPHS
- COMMENT
SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
LA English
DT Note
C1 CARNEGIE MELLON UNIV,DEPT SOCIAL SCI,PITTSBURGH,PA 15213.
UNIV MINNESOTA,SCH STAT,DEPT APPL STAT,ST PAUL,MN 55108.
RP FIENBERG, SE, CARNEGIE MELLON UNIV,DEPT STAT,PITTSBURGH,PA 15213.
CR ALTHAM PME, 1971, BIOMETRIKA, V58, P679
FIENBERG SE, 1980, ANAL CROSS CLASSIFIE
FIENBERG SE, 1980, P C RECENT DEV STATI, P137
FIENBERG SE, 1981, INTERPRETING MULTIVA
FIENBERG SE, 1981, SOCIOL METHODOL, P156
HABERMAN SJ, 1977, ANN STAT, V5, P1148
KOEHLER KJ, 1977, THESIS U MINNESOTA
MEYER MM, 1980, 371 U MINN TECHN REP
PLACKETT RL, 1974, ANAL CATEGORICAL DAT
WASSERMAN S, 1977, J MATH SOCIOL, V5, P61
NR 10
TC 5
PU AMER STATISTICAL ASSOC
PI ALEXANDRIA
PA 1429 DUKE ST, ALEXANDRIA, VA 22314
SN 0162-1459
J9 J AMER STATIST ASSN
JI J. Am. Stat. Assoc.
PY 1981
VL 76
IS 373
BP 54
EP 57
PG 4
SC Statistics & Probability
GA LL120
UT ISI:A1981LL12000008
ER
PT J
AU WASSERMAN, S
TI ANALYZING SOCIAL NETWORKS AS STOCHASTIC-PROCESSES
SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
LA English
DT Article
RP WASSERMAN, S, UNIV MINNESOTA,DEPT APPL STAT,ST PAUL,MN 55108.
CR ARABIE P, 1978, J MATH PSYCHOL, V17, P21
BLUMEN I, 1955, IND MOBILITY LABOR P
BOORMAN SA, 1976, AM J SOCIOL, V81, P1384
COLEMAN JS, 1965, INTRO MATH SOC
HOLLAND PW, 1970, AM J SOCIOL, V70, P492
HOLLAND PW, 1973, J MATH SOCIOL, V3, P85
HOLLAND PW, 1975, SOCIOL METHODOL, P1
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
HOLLAND PW, 1977, Z SOZIOL, V6, P386
KARLIN S, 1975, 1ST COURSE STOCHASTI
KATZ L, 1959, PSYCHOMETRIKA, V24, P317
KAUFFMAN SA, 1969, J THEOR BIOL, V22, P437
LEINHARDT S, 1978, SOCIOLOGICAL METHODO, P311
MAYER TF, 1977, MSSB ADV RES S STOCH
NEWCOMB TM, 1961, ACQUAINTANCE PROCESS
NORDLIE PG, 1958, THESIS U MICHIGAN
PROCTOR CH, 1951, RES METHODS SOCIAL R, P561
SINGER B, 1974, SOCIOL METHODOL, P356
SINGER B, 1976, AM J SOCIOL, V82, P1
SINGER B, 1977, MSSB ADV RES S STOCH
TABA H, 1955, PERSPECTIVE HUMAN RE
TUKEY JW, 1977, EXPLORATORY DATA ANA
WASSERMAN S, 1977, J MATH SOCIOL, V5, P61
WASSERMAN S, 1979, SOCIOL METHODOL, P392
WASSERMAN SS, 1977, THESIS HARVARD U
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
WHITE HC, 1976, AM J SOCIOL, V81, P730
NR 27
TC 38
PU AMER STATISTICAL ASSOC
PI ALEXANDRIA
PA 1429 DUKE ST, ALEXANDRIA, VA 22314
SN 0162-1459
J9 J AMER STATIST ASSN
JI J. Am. Stat. Assoc.
PY 1980
VL 75
IS 370
BP 280
EP 294
PG 15
SC Statistics & Probability
GA JX138
UT ISI:A1980JX13800004
ER
PT J
AU RUNGER, G
WASSERMAN, S
TI LONGITUDINAL ANALYSIS OF FRIENDSHIP NETWORKS
SO SOCIAL NETWORKS
LA English
DT Article
C1 UNIV MINNESOTA,SCH STAT,ST PAUL,MN 55108.
CR ANDERSON TW, 1957, ANN MATH STAT, V28, P89
BILLINGSLEY P, 1961, ANN MATH STAT, V32, P12
BISHOP YMM, 1975, DISCRETE MULTIVARIAT
FIENBERG S, 1979, 1979 P AM STAT ASS A
GALASKIEWICZ J, 1979, 1979 AM SOC ASS ANN
HALLINAN MT, 1978, SOC NETWORKS, V1, P193
HOLLAND PW, UNPUBLISHED
HOLLAND PW, 1973, J MATH SOCIOL, V3, P85
HOLLAND PW, 1977, INT ENCYCLOPEDIA NEU
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
KARLIN S, 1975, 1ST COURSE STOCHASTI
KATZ L, 1959, PSYCHOMETRIKA, V24, P317
KEIDING N, 1974, BIOMETRIKA, V61, P71
KEIDING N, 1975, ANN STAT, V3, P363
MILLER RG, 1977, J AM STAT ASSOC, V72, P779
NEWCOMB TM, 1961, AQUAINTANCE PROCESS
SINGER B, 1974, SOCIOL METHODOL, P356
SINGER B, 1976, AM J SOCIOL, V82, P1
SINGER B, 1977, ADV APPL PROBAB, V9, P747
SINGER B, 1978, 15 COL U CTR SOC SCI
SINGER B, 1978, SOCIOLOGICAL METHODO, P172
SORENSEN AB, 1976, SOC SCI RES, V5, P43
TUKEY JW, 1977, EXPLORATORY DATA ANA
TUMA NB, 1979, AM J SOCIOL, V84, P820
WASSERMAN S, UNPUBLISHED
WASSERMAN S, 1978, 332 U MINN SCH STAT
WASSERMAN S, 1979, SOC METHODOLOGY 1980
WASSERMAN SS, 1978, ADV APPL PROBAB, V10, P803
NR 28
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-8733
J9 SOC NETWORKS
JI Soc. Networks
PY 1980
VL 2
IS 2
BP 143
EP 154
PG 12
SC Anthropology; Sociology
GA JT133
UT ISI:A1980JT13300003
ER
PT J
AU WASSERMAN, SS
TI MODELS FOR BINARY DIRECTED GRAPHS AND THEIR APPLICATIONS
SO ADVANCES IN APPLIED PROBABILITY
LA English
DT Article
RP WASSERMAN, SS, UNIV MINNESOTA,MINNEAPOLIS,MN 55455.
CR BARTHOLOMEW DG, 1973, STOCHASTIC MODELS SO
BERNARD HR, 1979, DETERMINISTIC MODELS
BREIGER RL, 1975, J MATH PSYCHOL, V12, P328
BROADBENT SR, 1957, P CAMBRIDGE PHIL SOC, V53, P629
BUSH RR, 1955, STOCHASTIC MODELS LE
CARTWRIGHT D, 1956, PSYCHOL REV, V63, P277
CHUNG KL, 1967, MARKOV CHAINS STATIO
DAVIS J, 1967, HUM RELAT, V20, P181
DAVIS JA, 1979, SOCIAL NETWORKS SURV
FORD LR, 1962, FLOWS NETWORKS
FRISCH HL, 1963, J SOC IND APPL MATH, V11, P894
HAMMERSLEY JM, 1965, BERNOULLI BAYES LAPL, P61
HARARY F, 1965, STRUCTURAL MODELS IN
HEIDER F, 1958, PSYCHOLOGY INTERPERS
HOLLAND PW, 1975, SOC METHODOLOGY 1976
HOLLAND PW, 1977, J MATH SOCIOL, V5, P5
HOLLAND PW, 1977, Z SOZIOL, V6, P386
HOLLAND PW, 1979, SOCIAL NETWORKS SURV
KATZ L, 1959, PSYCHOMETRIKA, V24, P317
KINGMAN JFC, 1973, ANN PROBAB, V1, P883
LEINHARDT S, 1977, SOCIAL NETWORKS DEV
MORGAN BJT, 1976, ADV APPL PROBAB, V8, P30
RAINIO K, 1966, SOC THEORIES PROGR, V1
RAPOPORT A, 1957, B MATH BIOPHYS, V19, P257
RAPOPORT A, 1963, HDB MATH PSYCHOLOGY, V2
RAPOPORT A, 1977, SOCIAL NETWORKS DEV
SMYTHE RT, 1976, J APPL PROBABILITY, V13, P290
SMYTHE RT, 1977, ADV APPL PROBAB, V9, P38
SORENSEN AB, 1976, SOC SCI RES, V5, P43
WASSERMAN S, 1977, J MATH SOCIOL, V5, P61
WASSERMAN SS, 1977, THESIS HARVARD U
WHITE HC, 1976, AM J SOCIOL, V81, P730
WHITTLE P, 1965, P CAMB PHILOS SOC, V61, P475
WHITTLE P, 1965, P ROY SOC A, V285, P501
NR 34
TC 15
PU APPLIED PROBABILITY TRUST
PI SHEFFIELD
PA THE UNIVERSITY, SCHOOL MATHEMATICS STATISTICS, SHEFFIELD, ENGLAND S3 7RH
SN 0001-8678
J9 ADVAN APPL PROBAB
JI Adv. Appl. Probab.
PY 1978
VL 10
IS 4
BP 803
EP 818
PG 16
SC Statistics & Probability
GA GE670
UT ISI:A1978GE67000014
ER
PT J
AU WASSERMAN, SS
TI RANDOM DIRECTED GRAPH DISTRIBUTIONS AND TRIAD CENSUS IN SOCIAL NETWORKS
SO JOURNAL OF MATHEMATICAL SOCIOLOGY
LA English
DT Article
C1 HARVARD UNIV,CAMBRIDGE,MA 02138.
NATL BUR ECONOM RES,COMP RES CTR,WASHINGTON,DC.
CR DAVIS JA, 1970, AM SOCIOL REV, V35, P843
DAVIS JA, 1972, SOCIOLOGICAL THEORIE, V2
FORD LR, 1962, FLOWS NETWORKS
HARARY F, 1965, STRUCTURAL MODELS IN
HOLLAND PW, 1970, AM J SOCIOL, V70, P492
HOLLAND PW, 1971, COMP GROUP STUDIES, V2, P107
HOLLAND PW, 1975, SEP ADV RES S SOC NE
HOLLAND PW, 1975, SOCIOLOGICAL METHODO
LEINHARDT S, 1972, AM SOCIOL REV, V37, P202
MCKINNEY JC, 1948, SOCIOMETRY, V11, P358
NR 10
TC 27
PU GORDON BREACH SCI PUBL LTD
PI READING
PA C/O STBS LTD, PO BOX 90, READING, BERKS, ENGLAND RG1 8JL
SN 0022-250X
J9 J MATH SOCIOL
JI J. Math. Sociol.
PY 1977
VL 5
IS 1
BP 61
EP 86
PG 26
SC Mathematics, Interdisciplinary Applications; Social Sciences,
Mathematical Methods; Sociology
GA DG328
UT ISI:A1977DG32800005
ER
EF
apiVersion: 1
metadata:
dateCreated: 2019-06-11T16:02:49.480Z
dateSaved: 2019-06-11T16:03:05.077Z
dataSources:
- id: isiDataSource
template: isi
properties:
rawData: isiFile
parsedData: isiRawData
saveParsedData: false
recordStreams:
- id: publications
label: ISI Publications
- id: journals
label: Journals
- id: authors
label: Authors
- id: coAuthorLinks
label: Co-Author Links
- id: subdisciplines
label: Subdisciplines
- id: activityLog
template: activityLog
properties:
rawData: activityLog
keepPreviousActivity: true
freezeLogs: false
recordStreams:
- id: activityLog
label: Activity Log
recordSets:
- id: publication
label: ISI Publication
labelPlural: ISI Publications
description: FourNetSciResearchers.isi
defaultRecordStream: publications
dataVariables:
- id: title
label: Title
dataType: text
scaleType: nominal
- id: authors
label: Authors
dataType: text
scaleType: nominal
- id: journalName
label: Journal
dataType: text
scaleType: nominal
- id: publicationYear
label: Publication Year
dataType: integer
scaleType: interval
- id: numCites
label: '# Citations'
dataType: integer
scaleType: ratio
- id: discipline
label: Discipline
dataType: text
scaleType: nominal
- id: subdiscipline
label: Subdiscipline
dataType: text
scaleType: nominal
- id: id
label: WoS ID
dataType: text
scaleType: nominal
-
id: journal
label: Journal
labelPlural: Journals
parent: publication
description: from ISI Publications
defaultRecordStream: journals
dataVariables:
- id: name
label: Name
dataType: text
scaleType: nominal
- id: numPapers
label: '# Publications'
dataType: integer
scaleType: ratio
- id: numCites
label: '# Citations'
dataType: integer
scaleType: ratio
- id: firstYear
label: First Year
dataType: integer
scaleType: interval
- id: lastYear
label: Last Year
dataType: integer
scaleType: interval
-
id: author
label: Author
labelPlural: Authors
parent: publication
description: from ISI Publications
defaultRecordStream: authors
dataVariables:
- id: name
label: Name
dataType: text
scaleType: nominal
- id: numPapers
label: '# Publications'
dataType: integer
scaleType: ratio
- id: numCites
label: '# Citations'
dataType: integer
scaleType: ratio
- id: firstYear
label: First Year
dataType: integer
scaleType: interval
- id: lastYear
label: Last Year
dataType: integer
scaleType: interval
- id: fullname
label: Full Name
dataType: text
scaleType: nominal
- id: x
label: X
dataType: number
scaleType: interval
- id: 'y'
label: 'Y'
dataType: number
scaleType: interval
- id: latitude
label: Latitude
dataType: number
scaleType: interval
- id: longitude
label: Longitude
dataType: number
scaleType: interval
-
id: coAuthorLink
label: Co-Author Link
labelPlural: Co-Author Links
parent: publication
description: from ISI Publications
defaultRecordStream: coAuthorLinks
dataVariables:
- id: author1
label: Author 1
dataType: text
scaleType: nominal
- id: author2
label: Author 2
dataType: text
scaleType: nominal
- id: numPapers
label: '# Joint Publications'
dataType: integer
scaleType: ratio
- id: numCites
label: '# Joint Citations'
dataType: integer
scaleType: ratio
- id: firstYear
label: First Year
dataType: integer
scaleType: interval
- id: lastYear
label: Last Year
dataType: integer
scaleType: interval
- id: identifier
label: Identifier
dataType: text
scaleType: nominal
- id: sourceX
label: Author 1 X
dataType: number
scaleType: interval
- id: sourceY
label: Author 1 Y
dataType: number
scaleType: interval
- id: targetX
label: Author 2 X
dataType: number
scaleType: interval
- id: targetY
label: Author 2 Y
dataType: number
scaleType: interval
- id: latitude1
label: Author 1 Latitude
dataType: number
scaleType: interval
- id: longitude1
label: Author 1 Longitude
dataType: number
scaleType: interval
- id: latitude2
label: Author 2 Latitude
dataType: number
scaleType: interval
- id: longitude2
label: Author 2 Longitude
dataType: number
scaleType: interval
-
id: subdiscipline
label: Subdiscipline
labelPlural: Subdisciplines
parent: publication
description: from ISI Publications
defaultRecordStream: subdisciplines
dataVariables:
- id: name
label: Name
dataType: text
scaleType: nominal
- id: numPapers
label: '# Publications'
dataType: integer
scaleType: ratio
- id: numCites
label: '# Citations'
dataType: integer
scaleType: ratio
- id: firstYear
label: First Year
dataType: integer
scaleType: interval
- id: lastYear
label: Last Year
dataType: integer
scaleType: interval
- id: discipline
label: Discipline
dataType: text
scaleType: nominal
- id: id
label: ID
dataType: text
scaleType: nominal
graphicVariableMappings:
- recordStream: publications
mappings:
publication:
id:
identifier:
- id: identifier
label: WoS ID
selector: id
transparency:
- id: fixed
label: Default
selector: defaultStyles.transparency
strokeColor:
- id: fixed
label: Default
selector: defaultStyles.strokeColor
strokeWidth:
- id: fixed
label: Default
selector: defaultStyles.strokeWidth
strokeTransparency:
- id: fixed
label: Default
selector: defaultStyles.strokeTransparency
title:
axis:
- id: axis
label: Title
selector: title
text:
- id: text
label: Title
selector: title
authors:
text:
- id: text
label: Authors
selector: authorsLabel
discipline:
text:
- id: text
label: Discipline
selector: Journal.Subdiscipline.Discipline.name
axis:
- id: axis
label: Discipline
selector: Journal.Subdiscipline.Discipline.name
input:
- id: input
label: Discipline
selector: Journal.Subdiscipline.Discipline.name
label:
- id: label
label: Discipline
selector: Journal.Subdiscipline.Discipline.name
order:
- id: order
label: Discipline
selector: Journal.Subdiscipline.Discipline.id
color:
- id: color
label: Discipline
selector: Journal.Subdiscipline.Discipline.color
subdiscipline:
text:
- id: text
label: Subdiscipline
selector: Journal.Subdiscipline.name
axis:
- id: axis
label: Subdiscipline
selector: Journal.Subdiscipline.name
numCites:
axis:
- id: axis
label: '# Citations'
selector: numCitesLabel
text:
- id: text
label: '# Citations'
selector: numCitesLabel
input:
- id: input
label: '# Citations'
selector: numCites
label:
- id: label
label: '# Citations'
selector: numCitesLabel
order:
- id: order
label: '# Citations'
selector: numCites
areaSize:
- id: areaSize
label: '# Citations'
selector: numCitesAreaSize
fontSize:
- id: fontSize
label: '# Citations'
selector: numCitesFontSize
color:
- id: color
label: '# Citations'
selector: numCitesColor
strokeColor:
- id: strokeColor
label: '# Citations'
selector: numCitesStrokeColor
transparency:
- id: transparency
label: '# Citations'
selector: numCitesTransparency
strokeTransparency:
- id: strokeTransparency
label: '# Citations'
selector: numCitesTransparency
publicationYear:
axis:
- id: axis
label: Publication Year
selector: publicationYearLabel
text:
- id: text
label: Publication Year
selector: publicationYearLabel
input:
- id: input
label: Publication Year
selector: publicationYear
label:
- id: label
label: Publication Year
selector: publicationYearLabel
order:
- id: order
label: Publication Year
selector: publicationYear
areaSize:
- id: areaSize
label: Publication Year
selector: publicationYearAreaSize
fontSize:
- id: fontSize
label: Publication Year
selector: publicationYearFontSize
color:
- id: color
label: Publication Year
selector: publicationYearColor
strokeColor:
- id: strokeColor
label: Publication Year
selector: publicationYearStrokeColor
- recordStream: journals
mappings:
journal:
name:
identifier:
- id: identifier
label: Name
selector: name
axis:
- id: axis
label: Name
selector: name
text:
- id: text
label: Name
selector: name
transparency:
- id: fixed
label: Default
selector: defaultStyles.transparency
strokeColor:
- id: fixed
label: Default
selector: defaultStyles.strokeColor
strokeWidth:
- id: fixed
label: Default
selector: defaultStyles.strokeWidth
strokeTransparency:
- id: fixed
label: Default
selector: defaultStyles.strokeTransparency
numCites:
axis:
- id: axis
label: '# Citations'
selector: numCitesLabel
text:
- id: text
label: '# Citations'
selector: numCitesLabel
input:
- id: input
label: '# Citations'
selector: numCites
label:
- id: label
label: '# Citations'
selector: numCitesLabel
order:
- id: order
label: '# Citations'
selector: numCites
areaSize:
- id: areaSize
label: '# Citations'
selector: numCitesAreaSize
fontSize:
- id: fontSize
label: '# Citations'
selector: numCitesFontSize
color:
- id: color
label: '# Citations'
selector: numCitesColor
strokeColor:
- id: strokeColor
label: '# Citations'
selector: numCitesStrokeColor
numPapers:
axis:
- id: axis
label: '# Publications'
selector: numPapersLabel
text:
- id: text
label: '# Publications'
selector: numPapersLabel
input:
- id: input
label: '# Publications'
selector: numPapers
label:
- id: label
label: '# Publications'
selector: numPapersLabel
order:
- id: order
label: '# Publications'
selector: numPapers
areaSize:
- id: areaSize
label: '# Publications'
selector: numPapersAreaSize
fontSize:
- id: fontSize
label: '# Publications'
selector: numPapersFontSize
color:
- id: color
label: '# Publications'
selector: numPapersColor
transparency:
- id: transparency
label: '# Publications'
selector: numPapersTransparency
strokeTransparency:
- id: strokeTransparency
label: '# Publications'
selector: numPapersTransparency
strokeColor:
- id: strokeColor
label: '# Publications'
selector: numPapersStrokeColor
firstYear:
axis:
- id: axis
label: First Year
selector: firstYearLabel
text:
- id: text
label: First Year
selector: firstYearLabel
input:
- id: input
label: First Year
selector: firstYear
label:
- id: label
label: First Year
selector: firstYearLabel
order:
- id: order
label: First Year
selector: firstYear
areaSize:
- id: areaSize
label: First Year
selector: firstYearAreaSize
fontSize:
- id: fontSize
label: First Year
selector: firstYearFontSize
color:
- id: color
label: First Year
selector: firstYearColor
strokeColor:
- id: strokeColor
label: First Year
selector: firstYearStrokeColor
lastYear:
axis:
- id: axis
label: Last Year
selector: lastYearLabel
text:
- id: text
label: Last Year
selector: lastYearLabel
input:
- id: input
label: Last Year
selector: lastYear
label:
- id: label
label: Last Year
selector: lastYearLabel
order:
- id: order
label: Last Year
selector: lastYear
areaSize:
- id: areaSize
label: Last Year
selector: lastYearAreaSize
fontSize:
- id: fontSize
label: Last Year
selector: lastYearFontSize
color:
- id: color
label: Last Year
selector: lastYearColor
strokeColor:
- id: strokeColor
label: Last Year
selector: lastYearStrokeColor
- recordStream: subdisciplines
mappings:
subdiscipline:
id:
identifier:
- id: identifier
label: ID
selector: id
axis:
- id: axis
label: ID
selector: id
text:
- id: text
label: ID
selector: id
transparency:
- id: fixed
label: Default
selector: defaultStyles.transparency
strokeColor:
- id: fixed
label: Default
selector: defaultStyles.strokeColor
strokeWidth:
- id: fixed
label: Default
selector: defaultStyles.strokeWidth
strokeTransparency:
- id: fixed
label: Default
selector: defaultStyles.strokeTransparency
name:
axis:
- id: axis
label: Name
selector: name
text:
-
label: Name
selector: name
- id: tooltip
label: Name
selector: id
discipline:
text:
- id: text
label: Discipline
selector: Discipline.name
axis:
- id: axis
label: Discipline
selector: Discipline.name
input:
- id: input
label: Discipline
selector: Discipline.name
label:
- id: label
label: Discipline
selector: Discipline.name
order:
- id: order
label: Discipline
selector: Discipline.id
color:
- id: color
label: Discipline
selector: Discipline.color
numCites:
axis:
- id: axis
label: '# Citations'
selector: numCitesLabel
text:
- id: text
label: '# Citations'
selector: numCitesLabel
input:
- id: input
label: '# Citations'
selector: numCites
label:
- id: label
label: '# Citations'
selector: numCitesLabel
order:
- id: order
label: '# Citations'
selector: numCites
areaSize:
- id: areaSize
label: '# Citations'
selector: numCitesAreaSize
fontSize:
- id: fontSize
label: '# Citations'
selector: numCitesFontSize
color:
- id: color
label: '# Citations'
selector: numCitesColor
strokeColor:
- id: strokeColor
label: '# Citations'
selector: numCitesStrokeColor
numPapers:
axis:
- id: axis
label: '# Publications'
selector: numPapersLabel
text:
- id: text
label: '# Publications'
selector: numPapersLabel
input:
- id: input
label: '# Publications'
selector: numPapers
label:
- id: label
label: '# Publications'
selector: numPapersLabel
order:
- id: order
label: '# Publications'
selector: numPapers
areaSize:
- id: areaSize
label: '# Publications'
selector: numPapersAreaSize
fontSize:
- id: fontSize
label: '# Publications'
selector: numPapersFontSize
color:
- id: color
label: '# Publications'
selector: numPapersColor
transparency:
- id: transparency
label: '# Publications'
selector: numPapersTransparency
strokeTransparency:
- id: strokeTransparency
label: '# Publications'
selector: numPapersTransparency
strokeColor:
- id: strokeColor
label: '# Publications'
selector: numPapersStrokeColor
firstYear:
axis:
- id: axis
label: First Year
selector: firstYearLabel
text:
- id: text
label: First Year
selector: firstYearLabel
input:
- id: input
label: First Year
selector: firstYear
label:
- id: label
label: First Year
selector: firstYearLabel
order:
- id: order
label: First Year
selector: firstYear
areaSize:
- id: areaSize
label: First Year
selector: firstYearAreaSize
fontSize:
- id: fontSize
label: First Year
selector: firstYearFontSize
color:
- id: color
label: First Year
selector: firstYearColor
strokeColor:
- id: strokeColor
label: First Year
selector: firstYearStrokeColor
lastYear:
axis:
- id: axis
label: Last Year
selector: lastYearLabel
text:
- id: text
label: Last Year
selector: lastYearLabel
input:
- id: input
label: Last Year
selector: lastYear
label:
- id: label
label: Last Year
selector: lastYearLabel
order:
- id: order
label: Last Year
selector: lastYear
areaSize:
- id: areaSize
label: Last Year
selector: lastYearAreaSize
fontSize:
- id: fontSize
label: Last Year
selector: lastYearFontSize
color:
- id: color
label: Last Year
selector: lastYearColor
strokeColor:
- id: strokeColor
label: Last Year
selector: lastYearStrokeColor
- recordStream: authors
mappings:
author:
name:
identifier:
- id: identifier
label: Name
selector: name
axis:
- id: axis
label: Name
selector: name
text:
- id: text
label: Name
selector: name
transparency:
- id: fixed
label: Default
selector: defaultStyles.transparency
strokeColor:
- id: fixed
label: Default
selector: defaultStyles.strokeColor
strokeWidth:
- id: fixed
label: Default
selector: defaultStyles.strokeWidth
strokeTransparency:
- id: fixed
label: Default
selector: defaultStyles.strokeTransparency
labelPosition:
- id: fixed
label: Default
selector: defaultStyles.labelPosition
- id: fixedCenter
label: Centered Label
selector: defaultStyles.labelPositionCenter
latitude:
text:
- id: text
label: Latitude
selector: 'latlng[0]'
axis:
- id: axis
label: Latitude
selector: 'latlng[0]'
latitude:
- id: latitude
label: Latitude
selector: 'latlng[0]'
longitude:
text:
- id: text
label: Longitude
selector: 'latlng[1]'
axis:
- id: axis
label: Longitude
selector: 'latlng[1]'
longitude:
- id: longitude
label: Longitude
selector: 'latlng[1]'
x:
text:
- id: text
label: X
selector: 'positionLabel[0]'
axis:
- id: axis
label: X
selector: 'position[0]'
'y':
text:
- id: text
label: 'Y'
selector: 'positionLabel[1]'
axis:
- id: axis
label: 'Y'
selector: 'position[1]'
fullname:
axis:
- id: axis
label: Full Name
selector: fullname
text:
- id: text
label: Full Name
selector: fullname
numCites:
axis:
- id: axis
label: '# Citations'
selector: numCitesLabel
text:
- id: text
label: '# Citations'
selector: numCitesLabel
input:
- id: input
label: '# Citations'
selector: numCites
label:
-
label: '# Citations'
selector: numCitesLabel
- id: topLabels
label: '# Citations'
selector: numCitesTopLabel
order:
- id: order
label: '# Citations'
selector: numCites
areaSize:
- id: areaSize
label: '# Citations'
selector: numCitesAreaSize
fontSize:
- id: fontSize
label: '# Citations'
selector: numCitesFontSize
color:
- id: color
label: '# Citations'
selector: numCitesColor
strokeColor:
- id: strokeColor
label: '# Citations'
selector: numCitesStrokeColor
numPapers:
axis:
- id: axis
label: '# Publications'
selector: numPapersLabel
text:
- id: text
label: '# Publications'
selector: numPapersLabel
input:
- id: input
label: '# Publications'
selector: numPapers
label:
- id: label
label: '# Publications'
selector: numPapersLabel
order:
- id: order
label: '# Publications'
selector: numPapers
areaSize:
- id: areaSize
label: '# Publications'
selector: numPapersAreaSize
fontSize:
- id: fontSize
label: '# Publications'
selector: numPapersFontSize
color:
- id: color
label: '# Publications'
selector: numPapersColor
strokeColor:
- id: strokeColor
label: '# Publications'
selector: numPapersStrokeColor
transparency:
- id: transparency
label: '# Publications'
selector: numPapersTransparency
strokeTransparency:
- id: strokeTransparency
label: '# Publications'
selector: numPapersTransparency
firstYear:
axis:
- id: axis
label: First Year
selector: firstYearLabel
text:
- id: text
label: First Year
selector: firstYearLabel
input:
- id: input
label: First Year
selector: firstYear
label:
- id: label
label: First Year
selector: firstYearLabel
order:
- id: order
label: First Year
selector: firstYear
areaSize:
- id: areaSize
label: First Year
selector: firstYearAreaSize
fontSize:
- id: fontSize
label: First Year
selector: firstYearFontSize
color:
- id: color
label: First Year
selector: firstYearColor
strokeColor:
- id: strokeColor
label: First Year
selector: firstYearStrokeColor
lastYear:
axis:
- id: axis
label: Last Year
selector: lastYearLabel
text:
- id: text
label: Last Year
selector: lastYearLabel
input:
- id: input
label: Last Year
selector: lastYear
label:
- id: label
label: Last Year
selector: lastYearLabel
order:
- id: order
label: Last Year
selector: lastYear
areaSize:
- id: areaSize
label: Last Year
selector: lastYearAreaSize
fontSize:
- id: fontSize
label: Last Year
selector: lastYearFontSize
color:
- id: color
label: Last Year
selector: lastYearColor
strokeColor:
- id: strokeColor
label: Last Year
selector: lastYearStrokeColor
- recordStream: coAuthorLinks
mappings:
coAuthorLink:
author1:
identifier:
- id: identifier
label: Author 1
selector: author1
axis:
- id: axis
label: Author 1
selector: author1
text:
- id: text
label: Author 1
selector: author1
author2:
identifier:
- id: identifier
label: Author 2
selector: author2
axis:
- id: axis
label: Author 2
selector: author2
text:
- id: text
label: Author 2
selector: author2
identifier:
identifier:
- id: identifier
label: Identifier
selector: identifier
transparency:
- id: fixed
label: Default
selector: defaultStyles.transparency
strokeColor:
- id: fixed
label: Default
selector: defaultStyles.strokeColor
strokeWidth:
- id: fixed
label: Default
selector: defaultStyles.strokeWidth
strokeTransparency:
- id: fixed
label: Default
selector: defaultStyles.strokeTransparency
sourceX:
text:
- id: text
label: Author 1 X
selector: 'Author1.positionLabel[0]'
axis:
- id: axis
label: Author 1 X
selector: 'Author1.position[0]'
sourceY:
text:
- id: text
label: Author 1 Y
selector: 'Author1.positionLabel[1]'
axis:
- id: axis
label: Author 1 Y
selector: 'Author1.position[1]'
targetX:
text:
- id: text
label: Author 2 X
selector: 'Author2.positionLabel[0]'
axis:
- id: axis
label: Author 2 X
selector: 'Author2.position[0]'
targetY:
text:
- id: text
label: Author 2 Y
selector: 'Author2.positionLabel[1]'
axis:
- id: axis
label: Author 2 Y
selector: 'Author2.position[1]'
latitude1:
text:
- id: text
label: Author 1 Latitude
selector: 'Author1.latlng[0]'
axis:
- id: axis
label: Author 1 Latitude
selector: 'Author1.latlng[0]'
latitude:
- id: latitude
label: Author 1 Latitude
selector: 'Author1.latlng[0]'
longitude1:
text:
- id: text
label: Author 1 Longitude
selector: 'Author1.latlng[1]'
axis:
- id: axis
label: Author 1 Longitude
selector: 'Author1.latlng[1]'
longitude:
- id: longitude
label: Author 1 Longitude
selector: 'Author1.latlng[1]'
latitude2:
text:
- id: text
label: Author 2 Latitude
selector: 'Author2.latlng[0]'
axis:
- id: axis
label: Author 2 Latitude
selector: 'Author2.latlng[0]'
latitude:
- id: latitude
label: Author 2 Latitude
selector: 'Author2.latlng[0]'
longitude2:
text:
- id: text
label: Author 2 Longitude
selector: 'Author2.latlng[1]'
axis:
- id: axis
label: Author 2 Longitude
selector: 'Author2.latlng[1]'
longitude:
- id: longitude
label: Author 2 Longitude
selector: 'Author2.latlng[1]'
numCites:
axis:
- id: axis
label: '# Joint Citations'
selector: numCitesLabel
text:
- id: text
label: '# Joint Citations'
selector: numCitesLabel
input:
- id: input
label: '# Joint Citations'
selector: numCites
label:
- id: label
label: '# Joint Citations'
selector: numCitesLabel
order:
- id: order
label: '# Joint Citations'
selector: numCites
areaSize:
- id: areaSize
label: '# Joint Citations'
selector: numCitesAreaSize
strokeWidth:
- id: strokeWidth
label: '# Joint Citations'
selector: numCitesStrokeWidth
fontSize:
- id: fontSize
label: '# Joint Citations'
selector: numCitesFontSize
color:
- id: color
label: '# Joint Citations'
selector: numCitesColor
strokeColor:
- id: strokeColor
label: '# Joint Citations'
selector: numCitesStrokeColor
numPapers:
axis:
- id: axis
label: '# Joint Publications'
selector: numPapersLabel
text:
- id: text
label: '# Joint Publications'
selector: numPapersLabel
input:
- id: input
label: '# Joint Publications'
selector: numPapers
label:
- id: label
label: '# Joint Publications'
selector: numPapersLabel
order:
- id: order
label: '# Joint Publications'
selector: numPapers
areaSize:
- id: areaSize
label: '# Joint Publications'
selector: numPapersAreaSize
strokeWidth:
- id: strokeWidth
label: '# Joint Publications'
selector: numPapersStrokeWidth
fontSize:
- id: fontSize
label: '# Joint Publications'
selector: numPapersFontSize
color:
- id: color
label: '# Joint Publications'
selector: numPapersColor
transparency:
- id: transparency
label: '# Joint Publications'
selector: numPapersTransparency
strokeTransparency:
- id: strokeTransparency
label: '# Joint Publications'
selector: numPapersTransparency
strokeColor:
- id: strokeColor
label: '# Joint Publications'
selector: numPapersStrokeColor
firstYear:
axis:
- id: axis
label: First Year
selector: firstYearLabel
text:
- id: text
label: First Year
selector: firstYearLabel
input:
- id: input
label: First Year
selector: firstYear
label:
- id: label
label: First Year
selector: firstYearLabel
order:
- id: order
label: First Year
selector: firstYear
areaSize:
- id: areaSize
label: First Year
selector: firstYearAreaSize
strokeWidth:
- id: strokeWidth
label: First Year
selector: firstYearStrokeWidth
fontSize:
- id: fontSize
label: First Year
selector: firstYearFontSize
color:
- id: color
label: First Year
selector: firstYearColor
strokeColor:
- id: strokeColor
label: First Year
selector: firstYearStrokeColor
lastYear:
axis:
- id: axis
label: Last Year
selector: lastYearLabel
text:
- id: text
label: Last Year
selector: lastYearLabel
input:
- id: input
label: Last Year
selector: lastYear
label:
- id: label
label: Last Year
selector: lastYearLabel
order:
- id: order
label: Last Year
selector: lastYear
areaSize:
- id: areaSize
label: Last Year
selector: lastYearAreaSize
strokeWidth:
- id: strokeWidth
label: Last Year
selector: lastYearStrokeWidth
fontSize:
- id: fontSize
label: Last Year
selector: lastYearFontSize
color:
- id: color
label: Last Year
selector: lastYearColor
strokeColor:
- id: strokeColor
label: Last Year
selector: lastYearStrokeColor
graphicSymbolMappings:
- id: publicationPoints
type: area
recordStream: publications
graphicVariables:
identifier:
recordSet: publication
dataVariable: id
graphicVariableType: identifier
graphicVariableId: identifier
x:
recordSet: publication
dataVariable: publicationYear
graphicVariableType: axis
graphicVariableId: axis
'y':
recordSet: publication
dataVariable: numCites
graphicVariableType: axis
graphicVariableId: axis
areaSize:
recordSet: publication
dataVariable: numCites
graphicVariableType: areaSize
graphicVariableId: areaSize
color:
recordSet: publication
dataVariable: discipline
graphicVariableType: color
graphicVariableId: color
tooltip:
recordSet: publication
dataVariable: title
graphicVariableType: text
graphicVariableId: text
transparency:
recordSet: publication
dataVariable: id
graphicVariableType: transparency
graphicVariableId: fixed
strokeTransparency:
recordSet: publication
dataVariable: id
graphicVariableType: strokeTransparency
graphicVariableId: fixed
strokeWidth:
recordSet: publication
dataVariable: id
graphicVariableType: strokeWidth
graphicVariableId: fixed
strokeColor:
recordSet: publication
dataVariable: id
graphicVariableType: strokeColor
graphicVariableId: fixed
- id: journalPoints
type: area
recordStream: journals
graphicVariables:
identifier:
recordSet: journal
dataVariable: name
graphicVariableType: identifier
graphicVariableId: identifier
x:
recordSet: journal
dataVariable: firstYear
graphicVariableType: axis
graphicVariableId: axis
'y':
recordSet: journal
dataVariable: numPapers
graphicVariableType: axis
graphicVariableId: axis
areaSize:
recordSet: journal
dataVariable: numCites
graphicVariableType: areaSize
graphicVariableId: areaSize
color:
recordSet: journal
dataVariable: numCites
graphicVariableType: color
graphicVariableId: color
label:
recordSet: journal
dataVariable: name
graphicVariableType: text
graphicVariableId: text
labelSize:
recordSet: journal
dataVariable: numCites
graphicVariableType: fontSize
graphicVariableId: fontSize
tooltip:
recordSet: journal
dataVariable: name
graphicVariableType: text
graphicVariableId: text
transparency:
recordSet: journal
dataVariable: name
graphicVariableType: transparency
graphicVariableId: fixed
strokeTransparency:
recordSet: journal
dataVariable: name
graphicVariableType: strokeTransparency
graphicVariableId: fixed
strokeWidth:
recordSet: journal
dataVariable: name
graphicVariableType: strokeWidth
graphicVariableId: fixed
strokeColor:
recordSet: journal
dataVariable: name
graphicVariableType: strokeColor
graphicVariableId: fixed
- id: subdisciplinePoints
type: area
recordStream: subdisciplines
graphicVariables:
identifier:
recordSet: subdiscipline
dataVariable: id
graphicVariableType: identifier
graphicVariableId: identifier
areaSize:
recordSet: subdiscipline
dataVariable: numCites
graphicVariableType: areaSize
graphicVariableId: areaSize
color:
recordSet: subdiscipline
dataVariable: discipline
graphicVariableType: color
graphicVariableId: color
tooltip:
recordSet: subdiscipline
dataVariable: name
graphicVariableType: text
graphicVariableId: tooltip
transparency:
recordSet: subdiscipline
dataVariable: id
graphicVariableType: transparency
graphicVariableId: fixed
strokeTransparency:
recordSet: subdiscipline
dataVariable: id
graphicVariableType: strokeTransparency
graphicVariableId: fixed
strokeWidth:
recordSet: subdiscipline
dataVariable: id
graphicVariableType: strokeWidth
graphicVariableId: fixed
strokeColor:
recordSet: subdiscipline
dataVariable: id
graphicVariableType: strokeColor
graphicVariableId: fixed
- id: authorPoints
type: area
recordStream: authors
graphicVariables:
identifier:
recordSet: author
dataVariable: name
graphicVariableType: identifier
graphicVariableId: identifier
latitude:
recordSet: author
dataVariable: latitude
graphicVariableType: latitude
graphicVariableId: latitude
longitude:
recordSet: author
dataVariable: longitude
graphicVariableType: longitude
graphicVariableId: longitude
x:
recordSet: author
dataVariable: x
graphicVariableType: axis
graphicVariableId: axis
'y':
recordSet: author
dataVariable: 'y'
graphicVariableType: axis
graphicVariableId: axis
areaSize:
recordSet: author
dataVariable: numCites
graphicVariableType: areaSize
graphicVariableId: areaSize
color:
recordSet: author
dataVariable: firstYear
graphicVariableType: color
graphicVariableId: color
tooltip:
recordSet: author
dataVariable: name
graphicVariableType: text
graphicVariableId: text
transparency:
recordSet: author
dataVariable: name
graphicVariableType: transparency
graphicVariableId: fixed
strokeTransparency:
recordSet: author
dataVariable: name
graphicVariableType: strokeTransparency
graphicVariableId: fixed
strokeWidth:
recordSet: author
dataVariable: name
graphicVariableType: strokeWidth
graphicVariableId: fixed
strokeColor:
recordSet: author
dataVariable: name
graphicVariableType: strokeColor
graphicVariableId: fixed
- id: coAuthorLinks
type: line
recordStream: coAuthorLinks
graphicVariables:
identifier:
recordSet: coAuthorLink
dataVariable: identifier
graphicVariableType: identifier
graphicVariableId: identifier
sourceX:
recordSet: coAuthorLink
dataVariable: sourceX
graphicVariableType: axis
graphicVariableId: axis
sourceY:
recordSet: coAuthorLink
dataVariable: sourceY
graphicVariableType: axis
graphicVariableId: axis
targetX:
recordSet: coAuthorLink
dataVariable: targetX
graphicVariableType: axis
graphicVariableId: axis
targetY:
recordSet: coAuthorLink
dataVariable: targetY
graphicVariableType: axis
graphicVariableId: axis
latitude1:
recordSet: coAuthorLink
dataVariable: latitude1
graphicVariableType: latitude
graphicVariableId: latitude
longitude1:
recordSet: coAuthorLink
dataVariable: longitude1
graphicVariableType: longitude
graphicVariableId: longitude
latitude2:
recordSet: coAuthorLink
dataVariable: latitude2
graphicVariableType: latitude
graphicVariableId: latitude
longitude2:
recordSet: coAuthorLink
dataVariable: longitude2
graphicVariableType: longitude
graphicVariableId: longitude
strokeWidth:
recordSet: coAuthorLink
dataVariable: numPapers
graphicVariableType: strokeWidth
graphicVariableId: strokeWidth
strokeColor:
recordSet: coAuthorLink
dataVariable: firstYear
graphicVariableType: color
graphicVariableId: color
tooltip:
recordSet: coAuthorLink
dataVariable: identifier
graphicVariableType: identifier
graphicVariableId: identifier
transparency:
recordSet: coAuthorLink
dataVariable: identifier
graphicVariableType: transparency
graphicVariableId: fixed
strokeTransparency:
recordSet: coAuthorLink
dataVariable: identifier
graphicVariableType: strokeTransparency
graphicVariableId: fixed
visualizations:
- id: SG01
template: scattergraph
properties:
enableTooltip: true
gridlines: true
showAxisLabels: false
showAxisIndicators: false
graphicSymbols:
points: publicationPoints
- id: GM01
template: geomap
properties:
basemapSelectedZoomLevel: 1
basemapDefaultColor: white
basemapDefaultStrokeColor: '#bebebe'
graphicSymbols:
edges: coAuthorLinks
nodes: authorPoints
- id: SM01
template: science-map
properties: {}
graphicSymbols:
subdisciplinePoints: subdisciplinePoints
- id: NW01
template: network
properties: {}
graphicSymbols:
edges: coAuthorLinks
nodes: authorPoints
rawData:
- id: isiFile
template: string
url: https://gist.githubusercontent.com/bherr2/2e3e6c999575fe0fcd6cfaab42020e1b/raw/FourNetSciResearchers.isi
<!doctype html>
<html lang="en">
<!-- The containing element must have a non-percentage height -->
<body style="height: 100vh">
<!-- Add mav-embed javascript bundle -->
<script src="https://cdn.jsdelivr.net/npm/@dvl-fw/mav-embed@0.20.1/main-es5.js" nomodule></script>
<script src="https://cdn.jsdelivr.net/npm/@dvl-fw/mav-embed@0.20.1/main-es2015.js" type="module"></script>
<!-- Add a project -->
<mav-project id="proj1" href="https://gist.githubusercontent.com/bherr2/2e3e6c999575fe0fcd6cfaab42020e1b/raw/FourNetSciResearchers.yml"></mav-project>
<!-- Add a visualization referencing the project -->
<mav-visualization project="#proj1" index="0"></mav-visualization>
</body>
</html>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment